Last updated: 2021-01-05

Checks: 7 0

Knit directory: emlr_mod_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5855606. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   code/Workflowr_project_managment.R
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eMLR_data_preparation.Rmd) and HTML (docs/eMLR_data_preparation.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5855606 Donghe-Zhu 2021-01-05 first model-based run
Rmd 715bdb4 Donghe-Zhu 2021-01-02 model modification
html fb8a752 Donghe-Zhu 2020-12-23 Build site.
Rmd 82e3c9c Donghe-Zhu 2020-12-23 first build after creating model template
html 8fae0b2 Donghe-Zhu 2020-12-21 Build site.
Rmd d73ae35 Donghe-Zhu 2020-12-21 first version with lm error
html c8b76b3 jens-daniel-mueller 2020-12-19 Build site.
Rmd b5fedce jens-daniel-mueller 2020-12-19 first build after creating model template
Rmd 8e8abf5 Jens Müller 2020-12-18 Initial commit

1 Required data

Required are:

  • Synthetic cmorized model subsetting data based on preprocessed GLODAP data
    • cleaned data file
  • Cmorized annual cant field for three reference year
  • Cmorized annual mean atmospheric pCO2
GLODAP <-
  read_csv(paste(path_version_data,
                 "GLODAPv2.2020_clean_model_runA.csv",
                 sep = ""))

cant_1994 <-
  read_csv(paste(path_preprocessing,
                 "cant_annual_field_AD/cant_1994.csv",
                 sep = ""))

cant_2008 <-
  read_csv(paste(path_preprocessing,
                 "cant_annual_field_AD/cant_2008.csv",
                 sep = ""))

cant_2016 <-
  read_csv(paste(path_preprocessing,
                 "cant_annual_field_AD/cant_2016.csv",
                 sep = ""))

co2_atm <-
  read_csv(paste(path_preprocessing,
                 "co2_atm.csv",
                 sep = ""))

2 PO4*

2.1 Calculation

The predictor PO4* was be calculated according to Clement and Gruber (2018), ie based on oxygen. Please note that an erroneous equations for PO4* calculation is given in the supplement of Gruber et al (2019), based on nitrate.

Here we use following equation:

print(b_phosphate_star)
function (phosphate, oxygen) 
{
    phosphate_star = phosphate + (oxygen/params_local$rPO) - 
        params_local$rPO_offset
    return(phosphate_star)
}
GLODAP <- GLODAP %>% 
  mutate(phosphate_star = b_phosphate_star(phosphate, oxygen))

3 C*

C* serves as a conservative tracer of anthropogenic CO2 uptake. It is derived from synthetic subsetted DIC by removing the impact of

  • organic matter formation and respiration
  • calcification and calcium carbonate dissolution

Contributions of those processes are estimated from phosphate and alkalinity concentrations.

3.1 Stoichiometric ratios

The stoichiometric nutrient ratios for the production and mineralization of organic matter were set to:

  • C/P: 117
  • N/P: 16

3.2 Calculation

C* was calculated as:

print(b_cstar)
function (tco2, phosphate, talk) 
{
    cstar = tco2 - (params_local$rCP * phosphate) - 0.5 * (talk - 
        (params_local$rNP * phosphate))
    return(cstar)
}
GLODAP <- GLODAP %>% 
  mutate(rCP_phosphate = -params_local$rCP * phosphate,
         talk_05 = -0.5 * talk,
         rNP_phosphate_05 = -0.5 * params_local$rNP * phosphate,
         cstar = b_cstar(tco2, phosphate, talk))

3.3 Reference year adjustment

To adjust C* values to the reference year of each observation period, we assume a transient steady state change of cant between the time of model subsetting and the reference year. The adjustment requires an approximation of the cant concentration at the reference year. We here use the model-estimated annual cant field for each reference year.

3.3.1 Cant at tref

Read in Cant field for each reference year. (For some sensitivity test, the reference years read in might need to be manually adjusted)

# calculate reference year
tref <- GLODAP %>%
  group_by(era) %>%
  summarise(year = median(year)) %>%
  ungroup()

# join cant with tref
cant_3d <- bind_rows(cant_1994, cant_2008, cant_2016)

cant_3d <- left_join(cant_3d, tref) %>%
  arrange(lon, lat, depth) %>% 
  select(lon, lat, depth, era, cant_total)

rm(cant_1994, cant_2008, cant_2016)

3.3.2 Combine GLODAP + Cant

# observations grid per era
GLODAP_obs_grid_era <- GLODAP %>% 
  distinct(lat, lon, era)

# cant data at observations grid
cant_3d_obs <- left_join(
  GLODAP_obs_grid_era,
  cant_3d)

# calculate number of cant data points per grid cell
cant_3d_obs <- cant_3d_obs %>%
  group_by(lon, lat, era) %>% 
  mutate(n = n()) %>% 
  ungroup()

cant_3d_obs %>%
  filter(n <= 1) %>%
  ggplot(aes(lon,lat)) +
  geom_point(data = GLODAP_obs_grid_era, aes(lon, lat)) +
  geom_point(col = "red") +
  facet_wrap(~era)

Version Author Date
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(cant_3d, GLODAP_obs_grid_era)

GLODAP_cant_obs <- full_join(GLODAP, cant_3d_obs)

rm(GLODAP, cant_3d_obs)

# fill number of cant data points per grid cell to all observations
GLODAP_cant_obs <- GLODAP_cant_obs %>%
  group_by(lon, lat, era) %>%
  fill(n, .direction = "updown") %>% 
  ungroup()

The model-estimated annual cant fields were merged with GLODAP-based synthetic cmorized model subsetting by:

  • using an identical 1x1° horizontal grid
  • linear interpolation of Cant from standard to subsetting depth
# interpolate cant to subsetting depth
GLODAP_cant_obs_int <- GLODAP_cant_obs %>%
  filter(n > 1) %>% 
  group_by(lat, lon, era) %>%
  arrange(depth) %>%
  mutate(cant_int = approxfun(depth, cant_total, rule = 2)(depth)) %>%
  ungroup()

# set cant for subsetting depth if only one cant available
#GLODAP_cant_obs_set <- GLODAP_cant_obs %>%
#  filter(n == 1) %>%
#  group_by(lat, lon, era) %>%
#  mutate(cant_int = mean(cant_total, na.rm = TRUE)) %>%
#  ungroup()

### bin data sets with interpolated and set cant
GLODAP_cant_obs <- GLODAP_cant_obs_int
rm(GLODAP_cant_obs_int)


ggplot() +
  geom_path(
    data = GLODAP_cant_obs %>%
      filter(lat == 48.5, lon == 165.5,!is.na(cant_total)) %>%
      arrange(depth),
    aes(cant_total, depth, col = "mapped")
  ) +
  geom_point(
    data = GLODAP_cant_obs %>%
      filter(lat == 48.5, lon == 165.5,!is.na(cant_total)) %>%
      arrange(depth),
    aes(cant_total, depth, col = "mapped")
  ) +
  geom_point(
    data = GLODAP_cant_obs %>%
      filter(lat == 48.5, lon == 165.5, date == ymd("2018-06-27")),
    aes(cant_int, depth, col = "interpolated")
  ) +
  scale_y_reverse() +
  facet_wrap(~era) +
  scale_color_brewer(palette = "Dark2", name = "") +
  labs(title = "Cant interpolation to subsetting depth - example profile")

Version Author Date
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
# remove cant data at grid cells without observations
GLODAP <- GLODAP_cant_obs %>%
  filter(!is.na(cstar)) %>%
  mutate(cant_total = cant_int) %>%
  select(-cant_int, n)

rm(GLODAP_cant_obs)

3.3.3 Merge GLODAP + atm. pCO2

GLODAP-based subsetting were merged with mean annual atmospheric pCO2 levels by year.

GLODAP <- left_join(GLODAP, co2_atm)

3.3.4 Calculation

# assign reference year
GLODAP <- GLODAP %>% 
  group_by(era) %>% 
  mutate(tref = median(year)) %>% 
  ungroup()

# extract atm pCO2 at reference year
co2_atm_tref <- right_join(co2_atm, tref) %>% 
  select(-year) %>% 
  rename(pCO2_tref = pCO2)

# merge atm pCO2 at tref with GLODAP
GLODAP <- full_join(GLODAP, co2_atm_tref)
rm(co2_atm, tref)

# calculate cstar for reference year
GLODAP <- GLODAP %>%
  mutate(
    cstar_tref_delta =
      ((pCO2 - pCO2_tref) / (pCO2_tref - params_local$preind_atm_pCO2)) * cant_total,
    cstar_tref = cstar - cstar_tref_delta)

3.4 Control plots

GLODAP %>% 
  ggplot(aes(cstar_tref_delta)) +
  geom_histogram(binwidth = 1) +
  labs(title = "Histogramm with binwidth = 1")

Version Author Date
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
GLODAP %>% 
  sample_n(1e4) %>% 
  ggplot(aes(year, cstar_tref_delta, col = cant_total)) +
  geom_point() +
  scale_color_viridis_c() +
  labs(title = "Time series of random subsample 1e4")

Version Author Date
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
GLODAP %>% 
  ggplot(aes(year, cstar_tref_delta)) +
  geom_bin2d(binwidth = 1) +
  scale_fill_viridis_c(trans = "log10") +
  labs(title = "Heatmap with binwidth = 1")

Version Author Date
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

4 Selected section plots

A selected section is plotted to demonstrate the magnitude of various parameters and corrections relevant to C*.

GLODAP_cruise <- GLODAP %>% 
  filter(cruise %in% params_global$cruises_meridional)
map +
  geom_path(data = GLODAP_cruise %>%
              arrange(date),
            aes(lon, lat)) +
  geom_point(data = GLODAP_cruise %>%
              arrange(date),
             aes(lon, lat, col = date)) +
  scale_color_viridis_c(trans = "date") +
  labs(title = paste("Cruise year:", mean(GLODAP_cruise$year)))

Version Author Date
c8b76b3 jens-daniel-mueller 2020-12-19
lat_section <- 
GLODAP_cruise %>%
  ggplot(aes(lat, depth)) +
  scale_y_reverse() +
  scale_fill_viridis_c() +
  theme(axis.title.x = element_blank())

for (i_var in c("tco2",
                "rCP_phosphate",
                "talk_05",
                "rNP_phosphate_05",
                "cstar",
                "cstar_tref")) {
  print(lat_section +
          stat_summary_2d(aes(z = !!sym(i_var))) +
          scale_fill_viridis_c(name = i_var)
        )
  
}

Version Author Date
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

Version Author Date
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

Version Author Date
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

Version Author Date
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

Version Author Date
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

Version Author Date
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(lat_section, GLODAP_cruise)

5 Isoneutral slabs

The following boundaries for isoneutral slabs were defined:

  • Atlantic: -, 26, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 27.85, 27.95, 28.05, 28.1, 28.15, 28.2,
  • Indo-Pacific: -, 26, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 27.85, 27.95, 28.05, 28.1,

Continuous neutral densities (gamma) values from model subsetting are grouped into isoneutral slabs.

GLODAP <- m_cut_gamma(GLODAP, "gamma")
GLODAP_cruise <- GLODAP %>% 
  filter(cruise %in% params_global$cruises_meridional)

lat_section <- 
GLODAP_cruise %>%
  ggplot(aes(lat, depth)) +
  scale_y_reverse() +
  theme(legend.position = "bottom")

lat_section +
  geom_point(aes(col = gamma_slab)) +
  scale_color_viridis_d()

Version Author Date
c8b76b3 jens-daniel-mueller 2020-12-19
rm(lat_section, GLODAP_cruise)
# this section was only used to calculate gamma locally, and compare it to the value provided in GLODAP data set

GLODAP_cruise <- GLODAP %>% 
  filter(cruise %in% params_global$cruises_meridional)

library(oce)
library(gsw)
# calculate pressure from depth

GLODAP_cruise <- GLODAP_cruise %>% 
  mutate(CTDPRS = gsw_p_from_z(-depth,
                               lat))

GLODAP_cruise <- GLODAP_cruise %>% 
  mutate(THETA = swTheta(salinity = sal,
                         temperature = temp,
                         pressure = CTDPRS,
                         referencePressure = 0,
                         longitude = lon-180,
                         latitude = lat))

GLODAP_cruise <- GLODAP_cruise %>% 
  rename(LATITUDE = lat,
         LONGITUDE = lon,
         SALNTY = sal,
         gamma_provided = gamma)

library(reticulate)
source_python(
  paste(
    path_root,
    "/utilities/functions/python_scripts/",
    "Gamma_GLODAP_python.py",
    sep = ""
  )
)

GLODAP_cruise <- calculate_gamma(GLODAP_cruise)

GLODAP_cruise <- GLODAP_cruise %>% 
  mutate(gamma_delta = gamma_provided - GAMMA)

lat_section <- 
GLODAP_cruise %>%
  ggplot(aes(LATITUDE, CTDPRS)) +
  scale_y_reverse() +
  theme(legend.position = "bottom")

lat_section +
  stat_summary_2d(aes(z = gamma_delta)) +
  scale_color_viridis_c()

GLODAP_cruise %>% 
  ggplot(aes(gamma_delta))+
  geom_histogram()

rm(lat_section, GLODAP_cruise, cruises_meridional)

6 Synthetic subsetting coverage

GLODAP <- GLODAP %>% 
  mutate(gamma_slab = factor(gamma_slab), 
         gamma_slab = factor(gamma_slab, levels = rev(levels(gamma_slab))))

for (i_basin in unique(GLODAP$basin)) {
  # i_basin <- unique(GLODAP$basin)[3]
  
  print(
    GLODAP %>%
      filter(basin == i_basin) %>%
      ggplot(aes(lat, gamma_slab)) +
      geom_bin2d(binwidth = 5) +
      scale_fill_viridis_c(
        option = "magma",
        direction = -1,
        trans = "log10"
      ) +
      scale_x_continuous(breaks = seq(-100, 100, 20),
                         limits = c(params_global$lat_min,
                                    params_global$lat_max)) +
      facet_grid(era ~ .) +
      labs(title = paste("MLR region: ", i_basin))
  )
  
}

Version Author Date
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

Version Author Date
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

Version Author Date
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.1 Histograms

GLODAP_vars <- GLODAP %>% 
  select(cstar_tref,
         sal,
         temp,
         oxygen,
         aou,
         silicate,
         phosphate,
         phosphate_star)

GLODAP_vars_long <- GLODAP_vars %>% 
  pivot_longer(cstar_tref:phosphate_star, names_to = "variable", values_to = "value")

GLODAP_vars_long %>% 
  ggplot(aes(value)) +
  geom_histogram() +
  facet_wrap(~ variable,
             ncol = 2,
             scales = "free")

Version Author Date
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(GLODAP_vars, GLODAP_vars_long)

7 Individual cruise sections

Zonal and meridional section plots are produce for each cruise individually and are available under:

/nfs/kryo/work/jenmueller/emlr_cant/model/v_XXX/figures/Cruise_sections_histograms/

if (params_local$plot_all_figures == "y") {

cruises <- GLODAP %>% 
  group_by(cruise) %>% 
  summarise(date_mean = mean(date, na.rm = TRUE),
            n = n()) %>% 
  ungroup() %>% 
  arrange(date_mean)

GLODAP <- full_join(GLODAP, cruises)

n <- 0
for (i_cruise in unique(cruises$cruise)) {

# i_cruise <- unique(cruises$cruise)[1]
# n <- n + 1
# print(n)  
  
GLODAP_cruise <- GLODAP %>%
  filter(cruise == i_cruise) %>% 
  arrange(date)

cruises_cruise <- cruises %>%
  filter(cruise == i_cruise)
  
map_plot <- 
  map +
  geom_point(data = GLODAP_cruise,
             aes(lon, lat, col = date)) +
  scale_color_viridis_c(trans = "date") +
  labs(title = paste("Mean date:", cruises_cruise$date_mean,
                     "| cruise:", cruises_cruise$cruise,
                     "| n(samples):", cruises_cruise$n))


lon_section <- GLODAP_cruise %>%
  ggplot(aes(lon, depth)) +
  scale_y_reverse() +
  scale_fill_viridis_c()

lon_tco2 <- lon_section+
  stat_summary_2d(aes(z=tco2))

lon_talk <- lon_section+
  stat_summary_2d(aes(z=talk))

lon_phosphate <- lon_section+
  stat_summary_2d(aes(z=phosphate))

lon_oxygen <- lon_section+
  stat_summary_2d(aes(z=oxygen))

lon_aou <- lon_section+
  stat_summary_2d(aes(z=aou))

lon_phosphate_star <- lon_section+
  stat_summary_2d(aes(z=phosphate_star))

lon_nitrate <- lon_section+
  stat_summary_2d(aes(z=nitrate))

lon_cstar <- lon_section+
  stat_summary_2d(aes(z=cstar_tref))


lat_section <- GLODAP_cruise %>%
  ggplot(aes(lat, depth)) +
  scale_y_reverse() +
  scale_fill_viridis_c()

lat_tco2 <- lat_section+
  stat_summary_2d(aes(z=tco2))

lat_talk <- lat_section+
  stat_summary_2d(aes(z=talk))

lat_phosphate <- lat_section+
  stat_summary_2d(aes(z=phosphate))

lat_oxygen <- lat_section+
  stat_summary_2d(aes(z=oxygen))

lat_aou <- lat_section+
  stat_summary_2d(aes(z=aou))

lat_phosphate_star <- lat_section+
  stat_summary_2d(aes(z=phosphate_star))

lat_nitrate <- lat_section+
  stat_summary_2d(aes(z=nitrate))

lat_cstar <- lat_section+
  stat_summary_2d(aes(z=cstar_tref))

hist_tco2 <- GLODAP_cruise %>%
  ggplot(aes(tco2)) +
  geom_histogram()

hist_talk <- GLODAP_cruise %>%
  ggplot(aes(talk)) +
  geom_histogram()

hist_phosphate <- GLODAP_cruise %>%
  ggplot(aes(phosphate)) +
  geom_histogram()

hist_oxygen <- GLODAP_cruise %>%
  ggplot(aes(oxygen)) +
  geom_histogram()

hist_aou <- GLODAP_cruise %>%
  ggplot(aes(aou)) +
  geom_histogram()

hist_phosphate_star <- GLODAP_cruise %>%
  ggplot(aes(phosphate_star)) +
  geom_histogram()

hist_nitrate <- GLODAP_cruise %>%
  ggplot(aes(nitrate)) +
  geom_histogram()

hist_cstar <- GLODAP_cruise %>%
  ggplot(aes(cstar_tref)) +
  geom_histogram()

(map_plot /
    ((hist_tco2 / hist_talk / hist_phosphate / hist_cstar) |
       (hist_oxygen / hist_phosphate_star / hist_nitrate / hist_aou)
    )) |
  ((lat_tco2 / lat_talk / lat_phosphate / lat_oxygen / lat_aou / lat_phosphate_star / lat_nitrate / lat_cstar) |
     (lon_tco2 / lon_talk / lon_phosphate / lon_oxygen /  lon_aou /lon_phosphate_star / lon_nitrate / lon_cstar))    

ggsave(
  path = paste(path_version_figures, "Cruise_sections_histograms/", sep = ""),
  filename = paste(
    "Cruise_date",
    cruises_cruise$date_mean,
    "count",
    cruises_cruise$n,
    "cruiseID",
    cruises_cruise$cruise,
    ".png",
    sep = "_"
  ),
width = 20, height = 12)

rm(map_plot,
   lon_section, lat_section,
   lat_tco2, lat_talk, lat_phosphate, lon_tco2, lon_talk, lon_phosphate,
   GLODAP_cruise, cruises_cruise)

}

}

8 Write files

# select relevant columns
GLODAP <- GLODAP %>%
  select(
    year,
    date,
    era,
    basin,
    basin_AIP,
    lat,
    lon,
    depth,
    gamma,
    gamma_slab,
    params_local$MLR_predictors,
    params_local$MLR_target
  )

GLODAP %>% write_csv(paste(
  path_version_data,
  "GLODAPv2.2020_MLR_fitting_ready_model_runA.csv",
  sep = ""
))

co2_atm_tref %>%  write_csv(paste(path_version_data,
                                  "co2_atm_tref.csv",
                                  sep = ""))

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.7.9 marelac_2.1.10  shape_1.4.5     metR_0.9.0     
 [5] scico_1.2.0     patchwork_1.1.1 collapse_1.4.2  forcats_0.5.0  
 [9] stringr_1.4.0   dplyr_1.0.2     purrr_0.3.4     readr_1.4.0    
[13] tidyr_1.1.2     tibble_3.0.4    ggplot2_3.3.2   tidyverse_1.3.0
[17] workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2               viridisLite_0.3.0        jsonlite_1.7.2          
 [4] here_0.1                 modelr_0.1.8             assertthat_0.2.1        
 [7] blob_1.2.1               cellranger_1.1.0         yaml_2.2.1              
[10] pillar_1.4.7             backports_1.2.1          lattice_0.20-41         
[13] glue_1.4.2               RcppEigen_0.3.3.9.1      digest_0.6.27           
[16] RColorBrewer_1.1-2       promises_1.1.1           checkmate_2.0.0         
[19] rvest_0.3.6              colorspace_2.0-0         htmltools_0.5.0         
[22] httpuv_1.5.4             Matrix_1.2-18            pkgconfig_2.0.3         
[25] broom_0.7.3              seacarb_3.2.14           haven_2.3.1             
[28] scales_1.1.1             whisker_0.4              later_1.1.0.1           
[31] git2r_0.27.1             farver_2.0.3             generics_0.1.0          
[34] ellipsis_0.3.1           withr_2.3.0              cli_2.2.0               
[37] magrittr_2.0.1           crayon_1.3.4             readxl_1.3.1            
[40] evaluate_0.14            fs_1.5.0                 fansi_0.4.1             
[43] xml2_1.3.2               RcppArmadillo_0.10.1.2.0 oce_1.2-0               
[46] tools_4.0.3              data.table_1.13.4        hms_0.5.3               
[49] lifecycle_0.2.0          munsell_0.5.0            reprex_0.3.0            
[52] gsw_1.0-5                compiler_4.0.3           rlang_0.4.9             
[55] grid_4.0.3               rstudioapi_0.13          labeling_0.4.2          
[58] rmarkdown_2.5            testthat_3.0.1           gtable_0.3.0            
[61] DBI_1.1.0                R6_2.5.0                 knitr_1.30              
[64] rprojroot_2.0.2          stringi_1.5.3            parallel_4.0.3          
[67] Rcpp_1.0.5               vctrs_0.3.6              dbplyr_1.4.4            
[70] tidyselect_1.1.0         xfun_0.19