Last updated: 2022-07-15

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version afb27ad. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/publication/

Untracked files:
    Untracked:  figure/

Unstaged changes:
    Modified:   analysis/child/budget_analysis_plot_data.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/data_adjustment_cruise_budgets.Rmd) and HTML (docs/data_adjustment_cruise_budgets.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 1aabfea jens-daniel-mueller 2022-07-12 Build site.
Rmd 567c3ed jens-daniel-mueller 2022-07-12 revised bias decomposition
html 781e859 jens-daniel-mueller 2022-07-04 Build site.
html b44c72a jens-daniel-mueller 2022-07-03 Build site.
html 157af41 jens-daniel-mueller 2022-07-03 Build site.
html 6e173bf jens-daniel-mueller 2022-06-30 updated regional budget plots
html a13a7cf jens-daniel-mueller 2022-06-28 Build site.
html b52b159 jens-daniel-mueller 2022-06-27 Build site.
html 09b0780 jens-daniel-mueller 2022-05-24 Build site.
html 25da2fb jens-daniel-mueller 2022-05-24 Build site.
html e09320d jens-daniel-mueller 2022-04-12 Build site.
html 8dca96a jens-daniel-mueller 2022-04-12 Build site.
Rmd e5e9288 jens-daniel-mueller 2022-04-12 3 data adjustment procedures implemented

version_id_pattern <- "c"
config <- "MLR_basins"

1 Read files

print(version_id_pattern)
[1] "c"
# identify required version IDs

Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_1", "c"))

Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_2", "c"))

Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_3", "c"))

Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)

# print(Version_IDs)

1.1 Global

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_global <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global.csv",
                   sep = ""))
  
  dcant_budget_global_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_global_mod_truth.csv",
      sep = ""
    ))
  
  dcant_budget_global_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global_bias.csv",
                   sep = ""))
  
  lm_best_predictor_counts <-
    read_csv(paste(path_version_data,
                   "lm_best_predictor_counts.csv",
                   sep = ""))
  
  lm_best_dcant <-
    read_csv(paste(path_version_data,
                   "lm_best_dcant.csv",
                   sep = ""))
  
  dcant_budget_global <- bind_rows(dcant_budget_global,
                                      dcant_budget_global_mod_truth)
  
  dcant_budget_global <- dcant_budget_global %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_global_bias <- dcant_budget_global_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_predictor_counts <- lm_best_predictor_counts %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_dcant <- lm_best_dcant %>%
    mutate(Version_ID = i_Version_IDs)

  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    MLR_basins := str_c(params_local$MLR_basins, collapse = "|"),
    tref1 = params_local$tref1,
    tref2 = params_local$tref2)
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>%
    mutate(
      median_year_1 = sort(tref$median_year)[1],
      median_year_2 = sort(tref$median_year)[2],
      duration = median_year_2 - median_year_1,
      period = paste(median_year_1, "-", median_year_2)
    )
  
  if (exists("dcant_budget_global_all")) {
    dcant_budget_global_all <-
      bind_rows(dcant_budget_global_all, dcant_budget_global)
  }
  
  if (!exists("dcant_budget_global_all")) {
    dcant_budget_global_all <- dcant_budget_global
  }
  
  if (exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <-
      bind_rows(dcant_budget_global_bias_all,
                dcant_budget_global_bias)
  }

  if (!exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <- dcant_budget_global_bias
  }
  
    
  if (exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <-
      bind_rows(lm_best_predictor_counts_all, lm_best_predictor_counts)
  }
  
  if (!exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <- lm_best_predictor_counts
  }
    
  if (exists("lm_best_dcant_all")) {
    lm_best_dcant_all <-
      bind_rows(lm_best_dcant_all, lm_best_dcant)
  }
  
  if (!exists("lm_best_dcant_all")) {
    lm_best_dcant_all <- lm_best_dcant
  }
  
  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}

rm(
  dcant_budget_global,
  dcant_budget_global_bias,
  dcant_budget_global_mod_truth,
  lm_best_predictor_counts,
  lm_best_dcant,
  params_local,
  tref
)

1.2 Basins

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_AIP <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP.csv",
                   sep = ""))
  
  dcant_budget_basin_AIP_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_AIP_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_AIP <- bind_rows(dcant_budget_basin_AIP,
                                      dcant_budget_basin_AIP_mod_truth)
  
  dcant_budget_basin_AIP_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP_bias.csv",
                   sep = ""))
  
  dcant_slab_budget_bias <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget_bias.csv"))

  dcant_slab_budget <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget.csv"))

  dcant_budget_basin_AIP <- dcant_budget_basin_AIP %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_basin_AIP_bias <- dcant_budget_basin_AIP_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget <- dcant_slab_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget_bias <- dcant_slab_budget_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <-
      bind_rows(dcant_budget_basin_AIP_all, dcant_budget_basin_AIP)
  }
  
  if (!exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP
  }
  
  if (exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <-
      bind_rows(dcant_budget_basin_AIP_bias_all,
                dcant_budget_basin_AIP_bias)
  }
  
  if (!exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias
  }
  
  if (exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <-
      bind_rows(dcant_slab_budget_all, dcant_slab_budget)
  }
  
  if (!exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <- dcant_slab_budget
  }
  
  if (exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <-
      bind_rows(dcant_slab_budget_bias_all,
                dcant_slab_budget_bias)
  }
  
  if (!exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <- dcant_slab_budget_bias
  }
  
}

rm(
  dcant_budget_basin_AIP,
  dcant_budget_basin_AIP_bias,
  dcant_budget_basin_AIP_mod_truth,
  dcant_slab_budget,
  dcant_slab_budget_bias
)

1.3 Basins hemisphere

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_MLR <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_MLR.csv",
                   sep = ""))
  
  dcant_budget_basin_MLR_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_MLR_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_MLR <- bind_rows(dcant_budget_basin_MLR,
                                      dcant_budget_basin_MLR_mod_truth)
  

  dcant_budget_basin_MLR <- dcant_budget_basin_MLR %>%
    mutate(Version_ID = i_Version_IDs)

  if (exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <-
      bind_rows(dcant_budget_basin_MLR_all, dcant_budget_basin_MLR)
  }
  
  if (!exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR
  }

  
}

rm(
  dcant_budget_basin_MLR,
  dcant_budget_basin_MLR_mod_truth
)

1.4 Steady state

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_obs_budget <-
    read_csv(paste0(path_version_data,
                    "anom_dcant_obs_budget.csv"))
  
  dcant_obs_budget <- dcant_obs_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <-
      bind_rows(dcant_obs_budget_all, dcant_obs_budget)
  }
  
  if (!exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <- dcant_obs_budget
  }
  
}


rm(dcant_obs_budget)

1.5 Atm CO2

co2_atm <-
  read_csv(paste(path_preprocessing,
                 "co2_atm.csv",
                 sep = ""))
all_predictors <- c("saltempaouoxygenphosphatenitratesilicate")

params_local_all <- params_local_all %>%
  mutate(MLR_predictors = str_remove_all(all_predictors,
                                         MLR_predictors))
dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_global_all_depth <- dcant_budget_global_all

dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(estimate == "dcant") %>%
  select(-c(estimate))

dcant_budget_global_bias_all_depth <- dcant_budget_global_bias_all

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_basin_AIP_all_depth <- dcant_budget_basin_AIP_all

dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(estimate == "dcant") %>% 
  select(-c(estimate))

dcant_budget_basin_AIP_bias_all_depth <- dcant_budget_basin_AIP_bias_all

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

# dcant_budget_basin_MLR_all_depth <- dcant_budget_basin_MLR_all

dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(estimate == "dcant") %>% 
#   select(-c(estimate))
# 
# dcant_budget_basin_MLR_bias_all_depth <- dcant_budget_basin_MLR_bias_all
# 
# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(inv_depth == params_global$inventory_depth_standard)

2 Bias thresholds

global_bias_rel_max <- 10
global_bias_rel_max
[1] 10
regional_bias_rel_max <- 20
regional_bias_rel_max
[1] 20

3 Individual cases

3.1 Global

3.1.1 Absoulte values

legend_title = expression(atop(Delta * C[ant],
                               (mu * mol ~ kg ^ {
                                 -1
                               })))

dcant_budget_global_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

3.1.2 Biases

dcant_budget_global_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(atop(Delta * C[ant] ~ bias,
                               (PgC)))) +
  geom_point() +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
781e859 jens-daniel-mueller 2022-07-04
b44c72a jens-daniel-mueller 2022-07-03
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12
p_global_bias <-
  dcant_budget_global_bias_all %>%
  ggplot() +
  geom_hline(yintercept = global_bias_rel_max * c(-1, 1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
  alpha = 0.7) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        axis.title.x = element_blank())

p_global_bias

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_global_bias_all %>%
  group_by(period) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
period dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 1.489714 1.390667 8.445091 7.883598
1994 - 2014 1.705241 2.768667 4.432883 7.197324
2004 - 2014 0.874078 1.511333 4.196649 7.256258

3.2 Basins

3.2.1 Absoulte values

dcant_budget_basin_AIP_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin_AIP ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

3.2.2 Biases

dcant_budget_basin_AIP_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin_AIP ~ .)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin_AIP)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12
p_regional_bias <- 
  dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12

3.3 Slab budgets

3.3.1 Absolute values

dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  ggplot(aes(MLR_basins, dcant, fill = gamma_slab)) +
  geom_hline(yintercept = 0, col = "red") +
  geom_col() +
  scale_fill_scico_d(direction = -1) +
  facet_grid(basin_AIP ~ period)

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12
dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_basins, dcant, fill = gamma_slab)) +
      geom_hline(yintercept = 0) +
      geom_col() +
      scale_fill_scico_d(direction = -1) +
      labs(title = paste("data_source:", unique(.x$basin_AIP))) +
      facet_grid(gamma_slab ~ period)
  )
[[1]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[2]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[3]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

3.3.2 Bias

dcant_slab_budget_bias_all %>%
  filter(period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_bias, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ MLR_basins) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
    )
[[1]]
Warning: Removed 48 rows containing missing values (position_stack).

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[2]]
Warning: Removed 24 rows containing missing values (position_stack).

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[3]]
Warning: Removed 108 rows containing missing values (position_stack).

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

3.3.3 Spread

dcant_slab_budget_all %>%
  filter(period != "1994 - 2014",
         data_source != "mod_truth") %>%
  group_by(data_source, basin_AIP, gamma_slab, period) %>%
  summarise(dcant_range = max(dcant) - min(dcant)) %>%
  ungroup() %>%
  group_split(basin_AIP) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_range, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ data_source) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
  )
`summarise()` has grouped output by 'data_source', 'basin_AIP', 'gamma_slab'.
You can override using the `.groups` argument.
[[1]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[2]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[3]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

3.4 Basins hemisphere

3.4.1 Absoulte values

dcant_budget_basin_MLR_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

3.4.2 Biases

dcant_budget_basin_MLR_bias_all <-
  dcant_budget_basin_MLR_all %>%
  filter(data_source %in% c("mod", "mod_truth")) %>%
  pivot_wider(names_from = data_source,
              values_from = dcant) %>%
  mutate(dcant_bias = mod - mod_truth,
         dcant_bias_rel = 100*(mod - mod_truth)/mod_truth)
  
dcant_budget_basin_MLR_bias_all %>%   
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin ~ .)

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin)

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
p_regional_bias <- 
  dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
dcant_budget_basin_MLR_bias_all %>%
  group_by(period, basin) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'period'. You can override using the
`.groups` argument.
period basin dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 Indian 1.0186801 0.2145000 21.130058 4.4492844
1994 - 2004 N_Atlantic 0.2364308 0.1945000 12.118439 9.9692465
1994 - 2004 N_Pacific 0.1760318 0.4370000 6.481289 16.0898380
1994 - 2004 S_Atlantic 0.2876655 0.1426667 11.506622 5.7066667
1994 - 2004 S_Pacific 0.8232710 0.4020000 14.566013 7.1125265
1994 - 2014 Indian 1.3020733 0.7758333 12.462417 7.4256636
1994 - 2014 N_Atlantic 0.3464364 -0.0208333 8.064162 -0.4849472
1994 - 2014 N_Pacific 0.2720608 0.5993333 4.660171 10.2660729
1994 - 2014 S_Atlantic 0.3545439 0.5118333 6.703420 9.6773177
1994 - 2014 S_Pacific 1.3013835 0.9026667 10.330900 7.1657273
2004 - 2014 Indian 0.5357314 0.5161667 9.522422 9.1746652
2004 - 2014 N_Atlantic 0.1791741 -0.1021667 7.640688 -4.3567875
2004 - 2014 N_Pacific 0.2125320 0.1956667 6.807560 6.2673500
2004 - 2014 S_Atlantic 0.2108257 0.4413333 7.559185 15.8240708
2004 - 2014 S_Pacific 0.5045666 0.4613333 7.265178 6.6426686

4 Ensemble

4.1 Global

dcant_budget_global_all_in <- dcant_budget_global_all %>% 
  filter(data_source %in% c("mod", "obs"))

dcant_budget_global_ensemble <- dcant_budget_global_all_in %>% 
  group_by(data_source, period, tref2) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'data_source', 'period'. You can override
using the `.groups` argument.

4.1.1 Mean

legend_title = expression(Delta * C[ant]~(PgC))

ggplot() +
  geom_col(data = dcant_budget_global_ensemble,
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
  geom_errorbar(
    data = dcant_budget_global_ensemble,
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  geom_point(
    data = dcant_budget_global_all,
    aes(period, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0.2, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  labs(y = legend_title) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12
p_global_dcant <- ggplot() +
  geom_col(data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
    geom_point(
    data = dcant_budget_global_all %>% 
             filter(data_source == "obs"),
    aes(period, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0.1, height = 0)
  ) +
  geom_errorbar(
    data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

p_global_dcant_bias <-
p_global_dcant / p_global_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_global_dcant_bias

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12
# ggsave(plot = p_global_dcant_bias,
#        path = here::here("output/publication"),
#        filename = "Fig_global_dcant_budget.png",
#        height = 5,
#        width = 5)

rm(p_global_bias, p_global_dcant, p_global_dcant_bias)

4.1.2 Mean vs atm CO2

dcant_ensemble <- dcant_budget_global_ensemble %>% 
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  select(year = tref2, dcant_mean, dcant_sd)

tcant_S04 <- bind_cols(year = 1994, dcant_mean = 118, dcant_sd = 19)

tcant_ensemble <- full_join(dcant_ensemble, tcant_S04)
Joining, by = c("year", "dcant_mean", "dcant_sd")
tcant_ensemble <- left_join(tcant_ensemble, co2_atm)
Joining, by = "year"
co2_atm_pi <- bind_cols(pCO2 = 280, dcant_mean = 0, year = 1750, dcant_sd = 0)

tcant_ensemble <- full_join(tcant_ensemble, co2_atm_pi)
Joining, by = c("year", "dcant_mean", "dcant_sd", "pCO2")
tcant_ensemble <- tcant_ensemble %>% 
  arrange(year) %>% 
  mutate(tcant = cumsum(dcant_mean),
         tcant_sd = cumsum(dcant_sd))

tcant_ensemble %>% 
  ggplot(aes(pCO2, tcant, ymin = tcant - tcant_sd, ymax = tcant + tcant_sd)) +
  geom_ribbon(fill = "grey80") +
  geom_point() +
  geom_line() +
  scale_x_continuous(breaks = seq(280, 400, 30),
                     sec.axis = dup_axis(labels =  c(1750, 1940, 1980, 2000, 2015),
                                         name = "Year")) +
  geom_text(aes(label = year), nudge_x = -5, nudge_y = 5) +
  labs(x = expression(Atmospheric~pCO[2]~(µatm)),
       y = expression(Total~oceanic~C[ant]~(PgC)))

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12
# ggsave(path = "output/publication",
#        filename = "Fig_global_dcant_budget_vs_atm_pCO2.png",
#        height = 4,
#        width = 7)

4.1.3 Sum decades

dcant_budget_global_all_in_sum <-
  dcant_budget_global_all_in %>%
  filter(period != "1994 - 2014") %>%
  arrange(tref1) %>%
  group_by(data_source, MLR_basins) %>%
  mutate(dcant = dcant + lag(dcant)) %>% 
  ungroup() %>%
  drop_na() %>% 
  mutate(estimate = "sum")

dcant_budget_global_all_in_sum <-
  bind_rows(
    dcant_budget_global_all_in_sum,
    dcant_budget_global_all_in %>%
      filter(period == "1994 - 2014") %>%
      mutate(estimate = "direct")
  )

ggplot() +
  geom_point(
    data = dcant_budget_global_all_in_sum,
    aes(estimate, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

4.1.4 Mean bias

dcant_budget_global_ensemble_bias <- full_join(
  dcant_budget_global_ensemble %>%
    filter(data_source == "mod") %>% 
    select(period, dcant_mean, dcant_sd),
  dcant_budget_global_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_budget_global_all$MLR_basins)[1]) %>% 
    select(period, dcant)
)
Joining, by = "period"
dcant_budget_global_ensemble_bias <- dcant_budget_global_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)

dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

4.1.5 Vertical patterns

4.1.5.1 Absoulte values

dcant_budget_global_all_depth %>%
  filter(data_source != "mod_truth") %>% 
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_basins, fill=period)) +
      geom_vline(xintercept = 0) +
      geom_col(position = "dodge") +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ .) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[2]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

4.1.5.2 Biases

dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_basins, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_basins, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12
rm(dcant_budget_global_all,
   dcant_budget_global_all_depth,
   dcant_budget_global_bias_all,
   dcant_budget_global_bias_all_depth,
   dcant_budget_global_ensemble,
   dcant_budget_global_ensemble_bias)

4.2 Basins

dcant_budget_basin_AIP_ensemble <- dcant_budget_basin_AIP_all %>% 
  filter(data_source %in% c("mod", "obs")) %>% 
  group_by(basin_AIP, data_source, period) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'basin_AIP', 'data_source'. You can override
using the `.groups` argument.

4.2.1 Mean

dcant_budget_basin_AIP_ensemble %>%
  ggplot(aes(period, dcant_mean, col=basin_AIP)) +
  geom_pointrange(aes(ymax = dcant_mean + dcant_sd,
                      ymin = dcant_mean - dcant_sd),
                  shape = 21) +
  facet_grid(. ~ data_source)

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12
p_regional_dcant <- ggplot() +
  geom_col(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(x = period,
        y = dcant_mean),
    fill = "darkgrey"
  ) +
  geom_point(
    data = dcant_budget_basin_AIP_all %>%
      filter(data_source == "obs"),
    aes(period, dcant, col = MLR_basins),
    position = position_jitter(width = 0.1, height = 0),
    alpha = 0.7
  ) +
  geom_errorbar(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0, 35), expand = c(0, 0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP)

p_regional_dcant_bias <-
p_regional_dcant / p_regional_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_regional_dcant_bias

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12
# ggsave(plot = p_regional_dcant_bias,
#        path = "output/publication",
#        filename = "Fig_regional_dcant_budget.png",
#        height = 5,
#        width = 10)

rm(p_regional_bias, p_regional_dcant, p_regional_dcant_bias)

4.2.2 Mean bias

dcant_budget_basin_AIP_ensemble_bias <- full_join(
  dcant_budget_basin_AIP_ensemble %>%
    filter(data_source == "mod") %>% 
    select(basin_AIP, period, dcant_mean, dcant_sd),
  dcant_budget_basin_AIP_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_budget_basin_AIP_all$MLR_basins)[1]) %>% 
    select(basin_AIP, period, dcant)
)
Joining, by = c("basin_AIP", "period")
dcant_budget_basin_AIP_ensemble_bias <- dcant_budget_basin_AIP_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)


dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

4.2.3 Vertical patterns

4.2.3.1 Absoulte values

dcant_budget_basin_AIP_all_depth %>%
  filter(data_source != "mod_truth") %>%
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_basins, fill = basin_AIP)) +
      geom_vline(xintercept = 0) +
      geom_col() +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ period) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[2]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

4.2.3.2 Biases

dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_basins, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_basins, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

5 Steady state

dcant_obs_budget_all %>%
  group_by(inv_depth) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(estimate, dcant_pos, fill = basin_AIP)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      facet_grid(MLR_basins ~ period) +
      labs(title = paste("inventory depth:",unique(.x$inv_depth)))
  )
[[1]]

Version Author Date
8dca96a jens-daniel-mueller 2022-04-12

[[2]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[3]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[4]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

[[5]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
8dca96a jens-daniel-mueller 2022-04-12

6 Predictor analysis

lm_best_predictor_counts_all <-
  full_join(lm_best_predictor_counts_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_predictor_counts_all <- lm_best_predictor_counts_all %>% 
  mutate(n_predictors_total = rowSums(across(aou:temp), na.rm = TRUE)/10)

lm_best_predictor_counts_all %>%
  ggplot(aes(x = MLR_basins, y = n_predictors_total)) +
  # ggdist::stat_halfeye(
  #   adjust = .5,
  #   width = .6,
  #   .width = 0,
  #   justification = -.2,
  #   point_colour = NA
  # ) +
  geom_boxplot(width = 0.5,
               outlier.shape = NA) +
  gghalves::geom_half_point(
    side = "l",
    range_scale = .4,
    alpha = .5,
    aes(col = gamma_slab)
  ) +
  scale_color_viridis_d() +
  facet_grid(basin ~ data_source)

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12
lm_best_predictor_counts_all %>%
  pivot_longer(aou:temp,
               names_to = "predictor",
               values_to = "count") %>%
  group_split(predictor) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_basins, count, color = gamma_slab)) +
      geom_jitter(alpha = 0.5) +
      scale_color_viridis_d() +
      labs(title = paste0("predictor:", unique(.x$predictor))) +
      coord_cartesian(ylim = c(0, 10)) +
      facet_grid(basin ~ data_source)
  )
[[1]]
Warning: Removed 2 rows containing missing values (geom_point).

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12

[[2]]
Warning: Removed 39 rows containing missing values (geom_point).

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12

[[3]]
Warning: Removed 2 rows containing missing values (geom_point).

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12

[[4]]
Warning: Removed 6 rows containing missing values (geom_point).

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12

[[5]]

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12

[[6]]
Warning: Removed 3 rows containing missing values (geom_point).

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12

[[7]]
Warning: Removed 3 rows containing missing values (geom_point).

Version Author Date
781e859 jens-daniel-mueller 2022-07-04
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12
lm_best_dcant_all <-
  full_join(lm_best_dcant_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_dcant_all %>%
  count(basin, data_source, gamma_slab, MLR_basins, period) %>%
  ggplot(aes(MLR_basins, n)) +
  geom_jitter(height = 0, alpha = 0.3) +
  facet_grid(basin ~ data_source)

Version Author Date
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12

7 Drift and bias

dcant_budget_global_all_dissic %>%
  filter(estimate == "dcant") %>%
  ggplot(aes(inv_depth, value, col = !!sym(config))) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  geom_point() +
  geom_path() +
  labs(y = "DIC change (PgC)") +
  facet_grid(data_source ~ period, scales = "free_y")

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  filter(estimate == "dcant") %>%
  select(inv_depth, dcant_bias, contribution, !!sym(config), period) %>%
  pivot_wider(names_from = contribution,
              values_from = dcant_bias)

dcant_budget_global_bias_all_decomposition <-
  full_join(
    dcant_budget_global_bias_all_decomposition,
    dcant_budget_global_bias_all_depth %>%
      select(inv_depth, !!sym(config), period, mod_truth)
  )
Joining, by = c("inv_depth", "MLR_basins", "period")
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `delta C* - mod_truth`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `C* prediction error`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    `dcant offset`,
    `C* prediction error` + `delta C* - mod_truth`,
    col = !!sym(config)
  )) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `C* drift`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    `dcant offset` - `C* drift`,
    `C* prediction error`,
    col = !!sym(config)
  )) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    x = period,
    fill = !!sym(config),
    col = !!sym(config)
  )) +
  geom_hline(yintercept = 0) +
  geom_point(
    aes(y = `dcant offset`, shape = "dcant offset"),
    position = position_nudge(x = -0.05),
    alpha = 0.5
  ) +
  geom_point(
    aes(y = `dcant offset` - `C* drift`, shape = "dcant offset - C* drift"),
    position = position_nudge(x = 0.05),
    alpha = 0.5
  ) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  scale_shape_manual(values = c(21,23)) +
  facet_grid(inv_depth ~ .)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  mutate(
    `dcant offset rel` = 100 * `dcant offset` / mod_truth,
    `dcant offset rel corr` = 100 * (`dcant offset` - `C* drift`) / mod_truth,
    `C* prediction error rel` = 100 * (`C* prediction error`) / mod_truth
  )

dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    x = period,
    fill = !!sym(config),
    col = !!sym(config)
  )) +
  geom_hline(yintercept = 0) +
  geom_point(
    aes(y = `dcant offset rel`, shape = "dcant offset"),
    position = position_nudge(x = -0.05),
    alpha = 0.5
  ) +
  geom_point(
    aes(y = `dcant offset rel corr`, shape = "dcant offset - C* drift"),
    position = position_nudge(x = 0.05),
    alpha = 0.5
  ) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  scale_shape_manual(values = c(21,23)) +
  facet_grid(inv_depth ~ .)

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  pivot_longer(-c(inv_depth:period),
               names_to = "estimate",
               values_to = "value")


dcant_budget_global_bias_all_decomposition %>%
  group_by(inv_depth, estimate) %>%
  summarise(mean = mean(value),
            sd = sd(value)) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth'. You can override using the
`.groups` argument.
inv_depth estimate mean sd
100 C* drift 0.2033333 0.0740032
100 C* prediction error -0.2386667 0.3367011
100 C* prediction error rel -4.4306567 8.0490626
100 dcant offset 0.3193333 0.1239108
100 dcant offset rel 6.9090394 2.2036801
100 dcant offset rel corr 2.6169726 1.9954782
100 delta C* - mod_truth -0.3946667 0.2164184
100 mod_truth 4.7563333 1.7425592
500 C* drift 1.3446667 0.4893907
500 C* prediction error -1.2830556 0.9531252
500 C* prediction error rel -7.3224757 4.9467546
500 dcant offset 0.4978333 0.6718685
500 dcant offset rel 3.1645946 4.4421200
500 dcant offset rel corr -4.8017709 4.0584159
500 delta C* - mod_truth 0.3773333 0.1374833
500 mod_truth 16.9600000 6.2242462
1000 C* drift 3.1486667 1.1458415
1000 C* prediction error -2.9342222 1.5983966
1000 C* prediction error rel -12.7848634 5.1807393
1000 dcant offset 0.5561667 1.0484518
1000 dcant offset rel 2.5749712 4.9508717
1000 dcant offset rel corr -11.3340984 4.6835677
1000 delta C* - mod_truth 2.0866667 0.7598902
1000 mod_truth 22.7516667 8.3557301
3000 C* drift 3.9900000 1.4521475
3000 C* prediction error -2.1316667 1.4880349
3000 C* prediction error rel -8.2916021 5.2678933
3000 dcant offset 1.8902222 1.4641641
3000 dcant offset rel 7.4457266 5.6602085
3000 dcant offset rel corr -8.1984180 5.7474037
3000 delta C* - mod_truth 2.6026667 0.9469936
3000 mod_truth 25.6453333 9.4254881
10000 C* drift 3.3760000 1.2289476
10000 C* prediction error -1.0018889 1.8245170
10000 C* prediction error rel -3.8001059 7.3833018
10000 dcant offset 2.1717222 2.0342962
10000 dcant offset rel 8.4275356 7.9610560
10000 dcant offset rel corr -4.6113405 7.9948323
10000 delta C* - mod_truth 1.7546667 0.6384472
10000 mod_truth 26.0420000 9.5725748
dcant_budget_global_bias_all_decomposition %>%
  group_by(inv_depth, estimate, period) %>%
  summarise(mean = mean(value),
            sd = sd(value)) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth', 'estimate'. You can override
using the `.groups` argument.
inv_depth estimate period mean sd
100 C* drift 1994 - 2004 0.1550000 0.0000000
100 C* drift 1994 - 2014 0.3050000 0.0000000
100 C* drift 2004 - 2014 0.1500000 0.0000000
100 C* prediction error 1994 - 2004 0.1218333 0.1914549
100 C* prediction error 1994 - 2014 -0.4096667 0.2384866
100 C* prediction error 2004 - 2014 -0.4281667 0.2403859
100 C* prediction error rel 1994 - 2004 3.6707844 5.7684504
100 C* prediction error rel 1994 - 2014 -5.7424540 3.3429579
100 C* prediction error rel 2004 - 2014 -11.2203005 6.2994201
100 dcant offset 1994 - 2004 0.2991667 0.0565629
100 dcant offset 1994 - 2014 0.4555000 0.0636420
100 dcant offset 2004 - 2014 0.2033333 0.0779016
100 dcant offset rel 1994 - 2004 9.0137592 1.7042165
100 dcant offset rel 1994 - 2014 6.3849173 0.8920937
100 dcant offset rel 2004 - 2014 5.3284416 2.0414478
100 dcant offset rel corr 1994 - 2004 4.3436778 1.7042165
100 dcant offset rel corr 1994 - 2014 2.1096159 0.8920937
100 dcant offset rel corr 2004 - 2014 1.3976240 2.0414478
100 delta C* - mod_truth 1994 - 2004 -0.4900000 0.0000000
100 delta C* - mod_truth 1994 - 2014 -0.5910000 0.0000000
100 delta C* - mod_truth 2004 - 2014 -0.1030000 0.0000000
100 mod_truth 1994 - 2004 3.3190000 0.0000000
100 mod_truth 1994 - 2014 7.1340000 0.0000000
100 mod_truth 2004 - 2014 3.8160000 0.0000000
500 C* drift 1994 - 2004 1.0250000 0.0000000
500 C* drift 1994 - 2014 2.0170000 0.0000000
500 C* drift 2004 - 2014 0.9920000 0.0000000
500 C* prediction error 1994 - 2004 -0.4740000 0.6189698
500 C* prediction error 1994 - 2014 -1.9915000 0.9850362
500 C* prediction error 2004 - 2014 -1.3836667 0.5791351
500 C* prediction error rel 1994 - 2004 -4.0357599 5.2700706
500 C* prediction error rel 1994 - 2014 -7.8282233 3.8719976
500 C* prediction error rel 2004 - 2014 -10.1034441 4.2288069
500 dcant offset 1994 - 2004 0.8020000 0.4992927
500 dcant offset 1994 - 2014 0.7071667 0.7813180
500 dcant offset 2004 - 2014 -0.0156667 0.4415992
500 dcant offset rel 1994 - 2004 6.8284376 4.2511086
500 dcant offset rel 1994 - 2014 2.7797432 3.0712184
500 dcant offset rel 2004 - 2014 -0.1143970 3.2245288
500 dcant offset rel corr 1994 - 2004 -1.8986803 4.2511086
500 dcant offset rel corr 1994 - 2014 -5.1487159 3.0712184
500 dcant offset rel corr 2004 - 2014 -7.3579165 3.2245288
500 delta C* - mod_truth 1994 - 2004 0.2920000 0.0000000
500 delta C* - mod_truth 1994 - 2014 0.5660000 0.0000000
500 delta C* - mod_truth 2004 - 2014 0.2740000 0.0000000
500 mod_truth 1994 - 2004 11.7450000 0.0000000
500 mod_truth 1994 - 2014 25.4400000 0.0000000
500 mod_truth 2004 - 2014 13.6950000 0.0000000
1000 C* drift 1994 - 2004 2.3950000 0.0000000
1000 C* drift 1994 - 2014 4.7230000 0.0000000
1000 C* drift 2004 - 2014 2.3280000 0.0000000
1000 C* prediction error 1994 - 2004 -1.8018333 1.1990123
1000 C* prediction error 1994 - 2014 -4.4515000 1.5801492
1000 C* prediction error 2004 - 2014 -2.5493333 0.5224656
1000 C* prediction error rel 1994 - 2004 -11.4766454 7.6370212
1000 C* prediction error rel 1994 - 2014 -13.0439242 4.6302025
1000 C* prediction error rel 2004 - 2014 -13.8340207 2.8351724
1000 dcant offset 1994 - 2004 0.7400000 1.1360123
1000 dcant offset 1994 - 2014 0.8120000 1.3984703
1000 dcant offset 2004 - 2014 0.1165000 0.3743639
1000 dcant offset rel 1994 - 2004 4.7133758 7.2357473
1000 dcant offset rel 1994 - 2014 2.3793477 4.0978413
1000 dcant offset rel 2004 - 2014 0.6321901 2.0314948
1000 dcant offset rel corr 1994 - 2004 -10.5414013 7.2357473
1000 dcant offset rel corr 1994 - 2014 -11.4601342 4.0978413
1000 dcant offset rel corr 2004 - 2014 -12.0007597 2.0314948
1000 delta C* - mod_truth 1994 - 2004 1.5570000 0.0000000
1000 delta C* - mod_truth 1994 - 2014 3.1310000 0.0000000
1000 delta C* - mod_truth 2004 - 2014 1.5720000 0.0000000
1000 mod_truth 1994 - 2004 15.7000000 0.0000000
1000 mod_truth 1994 - 2014 34.1270000 0.0000000
1000 mod_truth 2004 - 2014 18.4280000 0.0000000
3000 C* drift 1994 - 2004 3.0410000 0.0000000
3000 C* drift 1994 - 2014 5.9850000 0.0000000
3000 C* drift 2004 - 2014 2.9440000 0.0000000
3000 C* prediction error 1994 - 2004 -1.5738333 1.3532050
3000 C* prediction error 1994 - 2014 -3.2678333 1.6361689
3000 C* prediction error 2004 - 2014 -1.5533333 0.8345079
3000 C* prediction error rel 1994 - 2004 -8.9219577 7.6712301
3000 C* prediction error rel 1994 - 2014 -8.4949395 4.2533245
3000 C* prediction error rel 2004 - 2014 -7.4579092 4.0066637
3000 dcant offset 1994 - 2004 1.3906667 1.4897140
3000 dcant offset 1994 - 2014 2.7686667 1.7052413
3000 dcant offset 2004 - 2014 1.5113333 0.8740780
3000 dcant offset rel 1994 - 2004 7.8835979 8.4450908
3000 dcant offset rel 1994 - 2014 7.1973242 4.4328826
3000 dcant offset rel 2004 - 2014 7.2562576 4.1966485
3000 dcant offset rel corr 1994 - 2004 -9.3556311 8.4450908
3000 dcant offset rel corr 1994 - 2014 -8.3610620 4.4328826
3000 dcant offset rel corr 2004 - 2014 -6.8785609 4.1966485
3000 delta C* - mod_truth 1994 - 2004 1.9330000 0.0000000
3000 delta C* - mod_truth 1994 - 2014 3.9040000 0.0000000
3000 delta C* - mod_truth 2004 - 2014 1.9710000 0.0000000
3000 mod_truth 1994 - 2004 17.6400000 0.0000000
3000 mod_truth 1994 - 2014 38.4680000 0.0000000
3000 mod_truth 2004 - 2014 20.8280000 0.0000000
10000 C* drift 1994 - 2004 2.5830000 0.0000000
10000 C* drift 1994 - 2014 5.0640000 0.0000000
10000 C* drift 2004 - 2014 2.4810000 0.0000000
10000 C* prediction error 1994 - 2004 -0.7313333 1.9941008
10000 C* prediction error 1994 - 2014 -1.5850000 2.3819906
10000 C* prediction error 2004 - 2014 -0.6893333 1.0269971
10000 C* prediction error rel 1994 - 2004 -4.0852046 11.1389832
10000 C* prediction error rel 1994 - 2014 -4.0575481 6.0978179
10000 C* prediction error rel 2004 - 2014 -3.2575650 4.8532542
10000 dcant offset 1994 - 2004 1.6031667 2.1714955
10000 dcant offset 1994 - 2014 3.1791667 2.5180319
10000 dcant offset 2004 - 2014 1.7328333 1.0851555
10000 dcant offset rel 1994 - 2004 8.9552378 12.1299043
10000 dcant offset rel 1994 - 2014 8.1385625 6.4460791
10000 dcant offset rel 2004 - 2014 8.1888065 5.1280920
10000 dcant offset rel corr 1994 - 2004 -5.4733177 12.1299043
10000 dcant offset rel corr 1994 - 2014 -4.8251116 6.4460791
10000 dcant offset rel corr 2004 - 2014 -3.5355922 5.1280920
10000 delta C* - mod_truth 1994 - 2004 1.3030000 0.0000000
10000 delta C* - mod_truth 1994 - 2014 2.6320000 0.0000000
10000 delta C* - mod_truth 2004 - 2014 1.3290000 0.0000000
10000 mod_truth 1994 - 2004 17.9020000 0.0000000
10000 mod_truth 1994 - 2014 39.0630000 0.0000000
10000 mod_truth 2004 - 2014 21.1610000 0.0000000

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.4 colorspace_2.0-2 marelac_2.1.10   shape_1.4.6     
 [5] ggforce_0.3.3    metR_0.11.0      scico_1.3.0      patchwork_1.1.1 
 [9] collapse_1.7.0   forcats_0.5.1    stringr_1.4.0    dplyr_1.0.7     
[13] purrr_0.3.4      readr_2.1.1      tidyr_1.1.4      tibble_3.1.6    
[17] ggplot2_3.3.5    tidyverse_1.3.1  workflowr_1.7.0 

loaded via a namespace (and not attached):
 [1] fs_1.5.2           gghalves_0.1.1     bit64_4.0.5        lubridate_1.8.0   
 [5] gsw_1.0-6          RColorBrewer_1.1-2 webshot_0.5.2      httr_1.4.2        
 [9] rprojroot_2.0.2    tools_4.1.2        backports_1.4.1    bslib_0.3.1       
[13] utf8_1.2.2         R6_2.5.1           DBI_1.1.2          withr_2.4.3       
[17] tidyselect_1.1.1   processx_3.5.2     bit_4.0.4          compiler_4.1.2    
[21] git2r_0.29.0       cli_3.1.1          rvest_1.0.2        xml2_1.3.3        
[25] labeling_0.4.2     sass_0.4.0         scales_1.1.1       checkmate_2.0.0   
[29] SolveSAPHE_2.1.0   callr_3.7.0        systemfonts_1.0.3  digest_0.6.29     
[33] svglite_2.0.0      rmarkdown_2.11     oce_1.5-0          pkgconfig_2.0.3   
[37] htmltools_0.5.2    highr_0.9          dbplyr_2.1.1       fastmap_1.1.0     
[41] rlang_1.0.2        readxl_1.3.1       rstudioapi_0.13    jquerylib_0.1.4   
[45] generics_0.1.1     farver_2.1.0       jsonlite_1.7.3     vroom_1.5.7       
[49] magrittr_2.0.1     Rcpp_1.0.8         munsell_0.5.0      fansi_1.0.2       
[53] lifecycle_1.0.1    stringi_1.7.6      whisker_0.4        yaml_2.2.1        
[57] MASS_7.3-55        grid_4.1.2         parallel_4.1.2     promises_1.2.0.1  
[61] crayon_1.4.2       haven_2.4.3        hms_1.1.1          seacarb_3.3.0     
[65] knitr_1.37         ps_1.6.0           pillar_1.6.4       reprex_2.0.1      
[69] glue_1.6.0         evaluate_0.14      getPass_0.2-2      data.table_1.14.2 
[73] modelr_0.1.8       vctrs_0.3.8        tzdb_0.2.0         tweenr_1.0.2      
[77] httpuv_1.6.5       cellranger_1.1.0   gtable_0.3.0       polyclip_1.10-0   
[81] assertthat_0.2.1   xfun_0.29          broom_0.7.11       later_1.3.0       
[85] viridisLite_0.4.0  ellipsis_0.3.2     here_1.0.1