Last updated: 2022-06-07

Checks: 7 0

Knit directory: emlr_obs_preprocessing/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 46f2c6b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/read_Key_2004.Rmd) and HTML (docs/read_Key_2004.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 46f2c6b jens-daniel-mueller 2022-06-06 included Nicos xover analysis for adjusted Knorr data
html e949567 jens-daniel-mueller 2022-04-13 Build site.
html aea9afe jens-daniel-mueller 2022-04-07 Build site.
Rmd af08e38 jens-daniel-mueller 2022-04-07 rerun all with lat max 65N and without arcic
html f088f55 jens-daniel-mueller 2022-04-01 Build site.
Rmd d23e425 jens-daniel-mueller 2022-04-01 rerun all including arctic and North Atlantic biome
html dde77eb jens-daniel-mueller 2022-04-01 Build site.
Rmd a1ea47d jens-daniel-mueller 2022-04-01 rerun all including arctic and North Atlantic biome
html 6e65117 jens-daniel-mueller 2022-02-16 Build site.
html f2871b9 jens-daniel-mueller 2021-11-20 Build site.
html 0908ee5 jens-daniel-mueller 2021-11-15 Build site.
Rmd 651fc9a jens-daniel-mueller 2021-11-15 rerun with Key 2004

path_key_2004    <- "/nfs/kryo/work/updata/glodapv1_1/GLODAP_gridded.data/"
path_preprocessing  <- paste(path_root, "/observations/preprocessing/", sep = "")
library(marelac)

1 Data source

2 Read files

# read text files
pCFC_12_data <-
  read_csv(
    paste(path_key_2004,
          "CFC.data/pCFC-12.data.txt",
          sep = ""),
    col_names = FALSE,
    na = "-999",
    col_types = list(.default = "d")
  )

# read respective depth layers and convert to vector
Depth_centers <-
  read_file(paste(path_key_2004,
                  "Depth.centers.txt",
                  sep = ""))

Depth_centers <- Depth_centers %>%
  str_split(",") %>%
  as_vector()

# read respective latitudes and convert to vector
Lat_centers <-
  read_file(paste(path_key_2004, "Lat.centers.txt",
                  sep = ""))

Lat_centers <- Lat_centers %>%
  str_split(",") %>%
  as_vector()

# read respective longitudes and convert to vector
Long_centers <-
  read_file(paste(path_key_2004, "Long.centers.txt",
                  sep = ""))

Long_centers <- Long_centers %>%
  str_split(",") %>%
  as_vector()

# match lon, lat and depth vectors with Cant value file
names(pCFC_12_data) <- Lat_centers

Long_Depth <-
  expand_grid(depth = Depth_centers, lon = Long_centers) %>%
  mutate(lon = as.numeric(lon),
         depth = as.numeric(depth))

pCFC_12_3d <- bind_cols(pCFC_12_data, Long_Depth)

# adjust file dimensions
pCFC_12_3d <- pCFC_12_3d %>%
  pivot_longer(1:180, names_to = "lat", values_to = "pCFC_12") %>%
  mutate(lat = as.numeric(lat))

pCFC_12_3d <- pCFC_12_3d %>%
  drop_na()

# harmonize coordinates
pCFC_12_3d <- pCFC_12_3d %>%
  mutate(lon = if_else(lon < 20, lon + 360, lon))

rm(pCFC_12_data,
   Long_Depth,
   Depth_centers,
   Lat_centers,
   Long_centers)

3 Apply basin mask

# use only three basin to assign general basin mask
# ie this is not specific to the MLR fitting
basinmask <- basinmask %>% 
  filter(MLR_basins == "2") %>% 
  select(lat, lon, basin_AIP)

pCFC_12_3d <- inner_join(pCFC_12_3d, basinmask)

4 Calculation

4.1 Column inventory

pCFC_12_inv_layers <- m_pCFC_12_inv(pCFC_12_3d)

pCFC_12_inv <- pCFC_12_inv_layers %>% 
  filter(inv_depth == params_global$inventory_depth_standard)

4.2 Zonal mean section

pCFC_12_zonal <- m_zonal_mean_sd(pCFC_12_3d)

5 Plots

5.1 Inventory map

p_map_cant_inv(
  df = pCFC_12_inv,
  var = "pCFC_12_pos",
  breaks = seq(0,max(pCFC_12_inv$pCFC_12_pos),5))

5.2 Horizontal plane maps

p_map_climatology(
  df = pCFC_12_3d,
  var = "pCFC_12")

Version Author Date
aea9afe jens-daniel-mueller 2022-04-07
dde77eb jens-daniel-mueller 2022-04-01
0908ee5 jens-daniel-mueller 2021-11-15

5.3 Global section

p_section_global(
  df = pCFC_12_3d,
  var = "pCFC_12")

Version Author Date
f088f55 jens-daniel-mueller 2022-04-01
dde77eb jens-daniel-mueller 2022-04-01
0908ee5 jens-daniel-mueller 2021-11-15

5.4 Sections at regular longitudes

p_section_climatology_regular(
  df = pCFC_12_3d,
  var = "pCFC_12")

Version Author Date
aea9afe jens-daniel-mueller 2022-04-07
dde77eb jens-daniel-mueller 2022-04-01
0908ee5 jens-daniel-mueller 2021-11-15

5.5 Write files

pCFC_12_3d %>%
  write_csv(paste(path_preprocessing,
                  "K04_pCFC_12_3d.csv", sep = ""))

# pCFC_12_inv %>%
#   write_csv(paste(path_preprocessing,
#                   "K04_pCFC_12_inv.csv", sep = ""))

pCFC_12_zonal %>%
  write_csv(paste(path_preprocessing,
                  "K04_pCFC_12_zonal.csv", sep = ""))

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] colorspace_2.0-2 marelac_2.1.10   shape_1.4.6      ggforce_0.3.3   
 [5] metR_0.11.0      scico_1.3.0      patchwork_1.1.1  collapse_1.7.0  
 [9] forcats_0.5.1    stringr_1.4.0    dplyr_1.0.7      purrr_0.3.4     
[13] readr_2.1.1      tidyr_1.1.4      tibble_3.1.6     ggplot2_3.3.5   
[17] tidyverse_1.3.1  workflowr_1.7.0 

loaded via a namespace (and not attached):
 [1] fs_1.5.2          bit64_4.0.5       lubridate_1.8.0   gsw_1.0-6        
 [5] httr_1.4.2        rprojroot_2.0.2   tools_4.1.2       backports_1.4.1  
 [9] bslib_0.3.1       utf8_1.2.2        R6_2.5.1          DBI_1.1.2        
[13] withr_2.4.3       tidyselect_1.1.1  processx_3.5.2    bit_4.0.4        
[17] compiler_4.1.2    git2r_0.29.0      cli_3.1.1         rvest_1.0.2      
[21] xml2_1.3.3        isoband_0.2.5     labeling_0.4.2    sass_0.4.0       
[25] scales_1.1.1      checkmate_2.0.0   SolveSAPHE_2.1.0  callr_3.7.0      
[29] digest_0.6.29     rmarkdown_2.11    oce_1.5-0         pkgconfig_2.0.3  
[33] htmltools_0.5.2   highr_0.9         dbplyr_2.1.1      fastmap_1.1.0    
[37] rlang_1.0.2       readxl_1.3.1      rstudioapi_0.13   jquerylib_0.1.4  
[41] generics_0.1.1    farver_2.1.0      jsonlite_1.7.3    vroom_1.5.7      
[45] magrittr_2.0.1    Rcpp_1.0.8        munsell_0.5.0     fansi_1.0.2      
[49] lifecycle_1.0.1   stringi_1.7.6     whisker_0.4       yaml_2.2.1       
[53] MASS_7.3-55       grid_4.1.2        parallel_4.1.2    promises_1.2.0.1 
[57] crayon_1.4.2      haven_2.4.3       hms_1.1.1         seacarb_3.3.0    
[61] knitr_1.37        ps_1.6.0          pillar_1.6.4      reprex_2.0.1     
[65] glue_1.6.0        evaluate_0.14     getPass_0.2-2     data.table_1.14.2
[69] modelr_0.1.8      vctrs_0.3.8       tzdb_0.2.0        tweenr_1.0.2     
[73] httpuv_1.6.5      cellranger_1.1.0  gtable_0.3.0      polyclip_1.10-0  
[77] assertthat_0.2.1  xfun_0.29         broom_0.7.11      later_1.3.0      
[81] viridisLite_0.4.0 ellipsis_0.3.2