Last updated: 2021-12-23
Checks: 7 0
Knit directory: emlr_obs_preprocessing/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 513243c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/
Ignored: output/
Untracked files:
Untracked: code/IO_1990_own_crossover_analysis_backup.R
Untracked: code/read_GLODAPv2_2020.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/read_OceanSODA.Rmd
) and HTML (docs/read_OceanSODA.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 513243c | jens-daniel-mueller | 2021-12-23 | plot regional time series and moving average |
html | 8cc98a8 | jens-daniel-mueller | 2021-12-13 | Build site. |
Rmd | bab6472 | jens-daniel-mueller | 2021-12-13 | decadal climatology offset added |
html | b6d0770 | jens-daniel-mueller | 2021-12-13 | Build site. |
Rmd | cb88dbc | jens-daniel-mueller | 2021-12-13 | decadal climatology added |
html | d6c2d11 | jens-daniel-mueller | 2021-11-22 | Build site. |
Rmd | 5d9ebb2 | jens-daniel-mueller | 2021-11-22 | calculate revelle factor historical |
html | f2871b9 | jens-daniel-mueller | 2021-11-20 | Build site. |
html | 0908ee5 | jens-daniel-mueller | 2021-11-15 | Build site. |
html | 002b89c | jens-daniel-mueller | 2021-10-06 | Build site. |
Rmd | 2f78646 | jens-daniel-mueller | 2021-10-06 | OceanSODA read-in updated |
html | 767aa26 | jens-daniel-mueller | 2021-10-06 | Build site. |
Rmd | 5ed301b | jens-daniel-mueller | 2021-10-06 | OceanSODA read-in updated |
html | 3a99e0b | jens-daniel-mueller | 2021-10-05 | Build site. |
Rmd | f36c707 | jens-daniel-mueller | 2021-10-05 | OceanSODA read-in updated |
html | 5db29f4 | jens-daniel-mueller | 2021-10-05 | Build site. |
Rmd | caf8c9a | jens-daniel-mueller | 2021-10-05 | OceanSODA read-in updated |
html | e49875a | jens-daniel-mueller | 2021-07-07 | Build site. |
html | 6312bd4 | jens-daniel-mueller | 2021-07-07 | Build site. |
html | 58bc706 | jens-daniel-mueller | 2021-07-06 | Build site. |
html | f600971 | jens-daniel-mueller | 2021-07-02 | Build site. |
html | ad81465 | jens-daniel-mueller | 2021-06-17 | Build site. |
Rmd | 3bc04be | jens-daniel-mueller | 2021-06-17 | derive air sea disequilibrium |
html | 240c1f4 | jens-daniel-mueller | 2021-06-07 | Build site. |
Rmd | 2730067 | jens-daniel-mueller | 2021-06-07 | write preprocessed file |
html | 4df00b5 | jens-daniel-mueller | 2021-06-07 | Build site. |
Rmd | f16f718 | jens-daniel-mueller | 2021-06-07 | added multi parameter analysis global trends |
html | 8186273 | jens-daniel-mueller | 2021-06-07 | Build site. |
Rmd | 663eb4d | jens-daniel-mueller | 2021-06-07 | added multi parameter analysis |
html | efc80ab | jens-daniel-mueller | 2021-06-07 | Build site. |
Rmd | 0f42222 | jens-daniel-mueller | 2021-06-07 | improved revelle factor analysis |
html | 265c4ef | jens-daniel-mueller | 2021-06-04 | Build site. |
Rmd | 00065c8 | jens-daniel-mueller | 2021-06-04 | included OceanSODA |
basinmask_5 <- basinmask %>%
filter(MLR_basins == "5") %>%
select(lat, lon, basin)
basinmask <- basinmask %>%
filter(MLR_basins == "2") %>%
select(lat, lon, basin_AIP)
OceanSODA <-
tidync(paste(
path_updata,
"pco2_oceansoda-ethz/OS-ETHZ-GRaCER-v2021a_1982-2020.nc",
sep = ""
))
OceanSODA <- OceanSODA %>%
hyper_tibble()
OceanSODA <- OceanSODA %>%
mutate(date = as.Date(time, origin = '1982-01-15'),
year = year(date))
OceanSODA <- OceanSODA %>%
select(year, date, lat, lon,
sal = salinity, temp = temperature,
tco2 = dic, talk,
rev_fac = revelle_factor,
pCO2 = spco2,
fgco2)
path_SeaFlux <-
paste0(path_updata,"pco2_seaflux/")
icefrac <-
tidync(paste0(path_SeaFlux,
"SeaFluxV2021.01_icefrac_1988-2018.nc")) %>%
hyper_tibble()
icefrac <- icefrac %>%
mutate(date = as.Date(time, origin = '1988-01-15'),
year = year(date))
kw <-
tidync(paste0(path_SeaFlux,
"SeaFluxV2021.01_kwScaled16.5cmhr_1988-2018.nc"))
kw <- kw %>%
hyper_filter(wind = wind == "ERA5") %>%
hyper_tibble() %>%
select(-wind)
pCO2atm <-
tidync(paste0(path_SeaFlux,
"SeaFluxV2021.01_pCO2atm_NOAAmbl_ERA5mslp_1988-2018.nc")) %>%
hyper_tibble()
sol <-
tidync(paste0(path_SeaFlux,
"SeaFluxV2021.01_solWeis74.nc")) %>%
hyper_tibble()
all_variables <- full_join(icefrac, kw)
all_variables <- full_join(all_variables, pCO2atm)
all_variables <- full_join(all_variables, sol)
OceanSODA <- inner_join(all_variables,
OceanSODA)
OceanSODA <- OceanSODA %>%
mutate(lon = if_else(lon < 20, lon + 360, lon))
OceanSODA <- inner_join(OceanSODA, basinmask)
OceanSODA <- OceanSODA %>%
select(-time)
# Note: this file is only created downstream in read_CO2_atm.Rmd
co2_atm_reccap2 <-
read_csv(paste(path_preprocessing,
"co2_atm_reccap2.csv",
sep = ""))
all_variables <- OceanSODA %>%
select(
time_mon = date,
lon,
lat,
spco2 = pCO2,
pco2atm = pCO2atm,
fice = ice,
alpha = sol_Weiss74,
Kw = kw_scaled
) %>%
drop_na()
all_variables <- all_variables %>%
mutate(area = earth_surf(lat = lat))
mol_to_g <- 12.011
P <- 1e-15
cm_to_m <- 100
hr_to_yr <- 24 * 365
unit_conversion_to_PgCyr <- mol_to_g * P * hr_to_yr / cm_to_m
all_variables <- all_variables %>%
mutate(
delta_pco2 = spco2 - pco2atm,
scale = area * Kw * alpha * (1 - fice),
fgco2 = delta_pco2 * scale
)
delta_pco2_monthly <- all_variables %>%
group_by(time_mon) %>%
summarise(
scaling_glob = sum(scale),
fgco2_glob = sum(fgco2),
delta_pco2_glob = fgco2_glob / scaling_glob
) %>%
ungroup() %>%
mutate(fgco2_glob = fgco2_glob * unit_conversion_to_PgCyr)
delta_pco2_annual <- delta_pco2_monthly %>%
mutate(year = year(time_mon)) %>%
group_by(year) %>%
summarise(
scaling_glob = mean(scaling_glob),
fgco2_glob = mean(fgco2_glob),
delta_pco2_glob = mean(delta_pco2_glob)
) %>%
ungroup()
delta_pco2_annual <- delta_pco2_annual %>%
mutate(fgco2_glob_roll = zoo::rollmean(fgco2_glob, 10, fill = NA))
ggplot() +
geom_path(data = delta_pco2_monthly,
aes(decimal_date(time_mon), delta_pco2_glob, col = "monthly")) +
geom_path(data = delta_pco2_annual,
aes(year, delta_pco2_glob, col = "annual")) +
scale_color_brewer(palette = "Set1", name = "Average") +
labs(x = "year")
print(
ggplot() +
geom_path(data = delta_pco2_monthly,
aes(decimal_date(time_mon), fgco2_glob, col = "monthly")) +
geom_path(data = delta_pco2_annual,
aes(year, fgco2_glob, col = "annual")) +
geom_path(data = delta_pco2_annual,
aes(year, fgco2_glob_roll, col = "5yr roll ave")) +
scale_color_brewer(palette = "Set1", name = "Average") +
labs(x = "year")
)
print(ggplot() +
geom_path(data = delta_pco2_annual,
aes(
year,
scaling_glob * unit_conversion_to_PgCyr
)))
print(
ggplot() +
geom_path(
data = delta_pco2_annual,
aes(
year,
scaling_glob * delta_pco2_glob * unit_conversion_to_PgCyr,
col = "scaled"
)
) +
geom_path(data = delta_pco2_annual,
aes(year, fgco2_glob, col = "integrated")) +
scale_color_brewer(palette = "Set1", name = "Estimate") +
scale_y_continuous(name = "Air-sea flux [PgC yr-1]") +
labs(x = "year")
)
# calculate annual averaged fields
OceanSODA_annual_all <- OceanSODA %>%
mutate(tco2_over_pCO2 = tco2 / pCO2) %>%
group_by(year, lat, lon) %>%
summarise_if(is.numeric, mean, na.rm = TRUE) %>%
ungroup() %>%
mutate(grid_area = earth_surf(lat = lat))
# grid data in space and time, remove data outside grid
OceanSODA_annual <- OceanSODA_annual_all %>%
mutate(
grid_area = earth_surf(lat = lat),
lat_bands = cut(lat, seq(-80, 80, 20)),
decade = cut(year,
seq(1990, 2020, 10),
right = FALSE,
labels = c("1990-1999", "2000-2009", "2010-2019"))
) %>%
drop_na()
# calculate climatological fields
OceanSODA_clim <- OceanSODA_annual %>%
select(-c(grid_area)) %>%
group_by(lat, lon) %>%
summarise_if(is.numeric, mean, na.rm = TRUE) %>%
ungroup()
# calculate decadal climatological fields
OceanSODA_clim_decadal <- OceanSODA_annual %>%
select(-c(grid_area)) %>%
group_by(lat, lon, decade) %>%
summarise_if(is.numeric, mean, na.rm = TRUE) %>%
ungroup()
# calculate area-weighted annual mean within latitude band
OceanSODA_annual_lat <- OceanSODA_annual %>%
pivot_longer(sal:tco2_over_pCO2,
names_to = "parameter",
values_to = "value") %>%
mutate(value_area = value * grid_area) %>%
group_by(year, lat_bands, decade, parameter) %>%
summarise(
area_total = sum(grid_area),
value_area_total = sum(value_area),
value_area_ave = value_area_total / area_total
) %>%
ungroup() %>%
select(-c(area_total,value_area_total))
# fit decadel linear trends per latitude band
OceanSODA_annual_lat_trend <- OceanSODA_annual_lat %>%
nest(data = -c(decade, lat_bands, parameter)) %>%
mutate(tidy = map(data,
~tidy(lm(value_area_ave ~ year, data = .x)))) %>%
select(-data) %>%
unnest(tidy)
# calculate area-weighted annual mean globally
OceanSODA_annual_glob <- OceanSODA_annual %>%
pivot_longer(sal:tco2_over_pCO2,
names_to = "parameter",
values_to = "value") %>%
mutate(value_area = value * grid_area) %>%
group_by(year, decade, parameter) %>%
summarise(
area_total = sum(grid_area),
value_area_total = sum(value_area),
value_area_ave = value_area_total / area_total
) %>%
ungroup() %>%
select(-c(area_total,value_area_total))
# fit decadel linear trends globally
OceanSODA_annual_glob_trend <- OceanSODA_annual_glob %>%
nest(data = -c(decade, parameter)) %>%
mutate(tidy = map(data,
~tidy(lm(value_area_ave ~ year, data = .x)))) %>%
select(-data) %>%
unnest(tidy)
#regionall integrated air sea fluxes
OceanSODA_annual_5 <- left_join(basinmask_5,
OceanSODA_annual_all)
# calculate area-weighted annual mean globally
OceanSODA_annual_5 <- OceanSODA_annual_5 %>%
pivot_longer(sal:tco2_over_pCO2,
names_to = "parameter",
values_to = "value") %>%
mutate(value_area = value * grid_area) %>%
group_by(year, parameter, basin) %>%
summarise(
area_total = sum(grid_area, na.rm = TRUE),
value_area_total = sum(value_area, na.rm = TRUE),
value_area_ave = value_area_total / area_total
) %>%
ungroup() %>%
select(-c(area_total,value_area_total))
map +
geom_tile(data = OceanSODA_clim,
aes(lon, lat, fill = as.factor(year)))
pco2_atm_2004 <- co2_atm_reccap2 %>%
filter(year == 2004) %>%
pull(pCO2)
co2_atm_reccap2 <- co2_atm_reccap2 %>%
mutate(delta_pCO2_hist = pCO2 - pco2_atm_2004)
co2_atm_reccap2_decade <- co2_atm_reccap2 %>%
filter(year > 1900) %>%
mutate(year = ymd(paste(year, "-06-01"))) %>%
mutate(decade = floor_date(year, years(10))) %>%
group_by(decade) %>%
summarise(delta_pCO2_hist = mean(delta_pCO2_hist)) %>%
ungroup()
co2_atm_reccap2_decade %>%
ggplot(aes(decade, delta_pCO2_hist)) +
geom_point() +
geom_path()
Version | Author | Date |
---|---|---|
d6c2d11 | jens-daniel-mueller | 2021-11-22 |
OceanSODA_revelle_hist <- expand_grid(
co2_atm_reccap2_decade,
OceanSODA_clim
)
OceanSODA_revelle_hist <- OceanSODA_revelle_hist %>%
mutate(pCO2 = pCO2 + delta_pCO2_hist)
map +
geom_tile(data = OceanSODA_revelle_hist,
aes(lon, lat, fill = pCO2)) +
facet_wrap(~ decade) +
scale_fill_viridis_c()
OceanSODA_revelle_hist <- OceanSODA_revelle_hist %>%
mutate(
rev_fac = buffer(
flag = 24,
var1 = pCO2,
var2 = talk * 1e-6,
S = sal,
T = temp,
P = 0,
k1k2 = "l"
)$BetaD
)
map +
geom_tile(data = OceanSODA_revelle_hist,
aes(lon, lat, fill = rev_fac)) +
facet_wrap(~ decade) +
scale_fill_viridis_c()
OceanSODA_revelle_hist_time_series <- OceanSODA_revelle_hist %>%
mutate(area = earth_surf(lat, lon),
rev_fac_scaled = rev_fac * area) %>%
group_by(decade) %>%
summarise(rev_fac = sum(rev_fac_scaled) / sum(area)) %>%
ungroup()
OceanSODA_revelle_hist_time_series %>%
ggplot(aes(decade, rev_fac))+
geom_point() +
geom_path()
OceanSODA_annual_all %>%
write_csv(paste0(path_preprocessing,
"OceanSODA.csv"))
OceanSODA_clim %>%
write_csv(paste0(path_preprocessing,
"OceanSODA_climatology.csv"))
OceanSODA_revelle_hist_time_series %>%
write_csv(paste0(path_preprocessing,
"OceanSODA_revelle_hist_time_series.csv"))
delta_pco2_annual %>%
select(-c(scaling_glob, fgco2_glob)) %>%
write_csv(paste0(path_preprocessing,
"OceanSODA_disequilibrium_annual.csv"))
map +
geom_raster(data = OceanSODA_annual %>%
filter(year == 2010), aes(lon, lat, fill = lat_bands)) +
scale_fill_brewer(palette = "Spectral") +
labs(title = "Year: 2010")
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
002b89c | jens-daniel-mueller | 2021-10-06 |
767aa26 | jens-daniel-mueller | 2021-10-06 |
3a99e0b | jens-daniel-mueller | 2021-10-05 |
5db29f4 | jens-daniel-mueller | 2021-10-05 |
ad81465 | jens-daniel-mueller | 2021-06-17 |
4df00b5 | jens-daniel-mueller | 2021-06-07 |
8186273 | jens-daniel-mueller | 2021-06-07 |
map +
geom_raster(data = OceanSODA_annual %>%
filter(year == 2010), aes(lon, lat, fill = grid_area)) +
scale_fill_viridis_c() +
labs(title = "Year: 2010")
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
002b89c | jens-daniel-mueller | 2021-10-06 |
767aa26 | jens-daniel-mueller | 2021-10-06 |
3a99e0b | jens-daniel-mueller | 2021-10-05 |
5db29f4 | jens-daniel-mueller | 2021-10-05 |
ad81465 | jens-daniel-mueller | 2021-06-17 |
4df00b5 | jens-daniel-mueller | 2021-06-07 |
8186273 | jens-daniel-mueller | 2021-06-07 |
unique(OceanSODA_clim$year)
[1] 2004.000 2003.786 2011.000 2008.500 2004.400 2003.045
OceanSODA_clim %>%
pivot_longer(sal:tco2_over_pCO2,
names_to = "parameter",
values_to = "value") %>%
group_split(parameter) %>%
# head(1) %>%
map( ~ map +
geom_raster(data = .x,
aes(lon, lat, fill = value)) +
scale_fill_viridis_c(name = unique(.x$parameter)))
[[1]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[2]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[3]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[4]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[5]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[6]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[7]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[8]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
OceanSODA_clim_decadal %>%
pivot_longer(sal:tco2_over_pCO2,
names_to = "parameter",
values_to = "value") %>%
group_split(parameter) %>%
# head(1) %>%
map( ~ map +
geom_raster(data = .x,
aes(lon, lat, fill = value)) +
scale_fill_viridis_c(name = unique(.x$parameter)) +
facet_grid(decade ~ .))
[[1]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[2]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[3]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[4]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[5]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[6]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[7]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[8]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
OceanSODA_clim_decadal_offset <- bind_rows(
OceanSODA_clim_decadal,
OceanSODA_clim %>%
mutate(decade = "value_clim")
)
OceanSODA_clim_decadal_offset <- OceanSODA_clim_decadal_offset %>%
pivot_longer(sal:tco2_over_pCO2,
names_to = "parameter",
values_to = "value") %>%
select(lat, lon, decade, parameter, value) %>%
pivot_wider(names_from = decade,
values_from = value) %>%
pivot_longer(4:6,
names_to = "decade",
values_to = "value_decade") %>%
mutate(offset = value_decade - value_clim)
OceanSODA_clim_decadal_offset %>%
group_split(parameter) %>%
# head(1) %>%
map( ~ map +
geom_raster(data = .x,
aes(lon, lat, fill = offset)) +
scale_fill_divergent(name = unique(.x$parameter)) +
facet_grid(decade ~ .))
[[1]]
Version | Author | Date |
---|---|---|
8cc98a8 | jens-daniel-mueller | 2021-12-13 |
[[2]]
Version | Author | Date |
---|---|---|
8cc98a8 | jens-daniel-mueller | 2021-12-13 |
[[3]]
Version | Author | Date |
---|---|---|
8cc98a8 | jens-daniel-mueller | 2021-12-13 |
[[4]]
Version | Author | Date |
---|---|---|
8cc98a8 | jens-daniel-mueller | 2021-12-13 |
[[5]]
Version | Author | Date |
---|---|---|
8cc98a8 | jens-daniel-mueller | 2021-12-13 |
[[6]]
Version | Author | Date |
---|---|---|
8cc98a8 | jens-daniel-mueller | 2021-12-13 |
[[7]]
Version | Author | Date |
---|---|---|
8cc98a8 | jens-daniel-mueller | 2021-12-13 |
[[8]]
Version | Author | Date |
---|---|---|
8cc98a8 | jens-daniel-mueller | 2021-12-13 |
OceanSODA_annual_5 %>%
group_split(parameter) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(year, value_area_ave, col = basin)) +
scale_color_brewer(palette = "Set1") +
geom_path() +
geom_point() +
labs(y = .x$parameter)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
OceanSODA_annual_lat %>%
group_split(parameter) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(year, value_area_ave, col = lat_bands)) +
scale_color_brewer(palette = "Spectral") +
geom_path() +
geom_point() +
labs(y = .x$parameter)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
OceanSODA_annual_glob %>%
group_split(parameter) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(year, value_area_ave, col = decade)) +
scale_color_brewer(palette = "Set1") +
geom_point() +
labs(y = .x$parameter) +
geom_smooth(method = "lm", se = FALSE)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
OceanSODA_annual_glob_trend %>%
filter(term == "year") %>%
group_split(parameter) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(decade, estimate)) +
scale_fill_brewer(palette = "Spectral") +
geom_point(shape = 21) +
geom_path() +
labs(y = paste(.x$parameter, "annual change"))
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[8]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
OceanSODA_annual_lat %>%
group_split(parameter) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(year, value_area_ave, col = decade)) +
scale_color_brewer(palette = "Set1") +
geom_point() +
labs(y = .x$parameter) +
geom_smooth(method = "lm", se = FALSE) +
facet_wrap( ~ lat_bands)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
OceanSODA_annual_lat_trend %>%
filter(term == "year") %>%
group_split(parameter) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(decade, estimate, fill = lat_bands)) +
scale_fill_brewer(palette = "Spectral") +
geom_point(shape = 21) +
geom_path() +
labs(y = paste(.x$parameter, "annual change"))
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
[[8]]
Version | Author | Date |
---|---|---|
b6d0770 | jens-daniel-mueller | 2021-12-13 |
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] zoo_1.8-8 seacarb_3.2.14 oce_1.2-0 gsw_1.0-5
[5] testthat_2.3.2 broom_0.7.9 marelac_2.1.10 shape_1.4.5
[9] lubridate_1.7.9 tidync_0.2.4 ggforce_0.3.3 metR_0.9.0
[13] scico_1.2.0 patchwork_1.1.1 collapse_1.5.0 forcats_0.5.0
[17] stringr_1.4.0 dplyr_1.0.5 purrr_0.3.4 readr_1.4.0
[21] tidyr_1.1.3 tibble_3.1.3 ggplot2_3.3.5 tidyverse_1.3.0
[25] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] nlme_3.1-149 fs_1.5.0 RColorBrewer_1.1-2
[4] httr_1.4.2 rprojroot_2.0.2 tools_4.0.3
[7] backports_1.1.10 bslib_0.2.5.1 utf8_1.1.4
[10] R6_2.5.0 mgcv_1.8-33 DBI_1.1.0
[13] colorspace_2.0-2 withr_2.3.0 tidyselect_1.1.0
[16] compiler_4.0.3 git2r_0.27.1 cli_3.0.1
[19] rvest_0.3.6 RNetCDF_2.4-2 xml2_1.3.2
[22] labeling_0.4.2 sass_0.4.0 scales_1.1.1
[25] checkmate_2.0.0 digest_0.6.27 rmarkdown_2.10
[28] pkgconfig_2.0.3 htmltools_0.5.1.1 highr_0.8
[31] dbplyr_1.4.4 rlang_0.4.11 readxl_1.3.1
[34] rstudioapi_0.13 jquerylib_0.1.4 generics_0.1.0
[37] farver_2.0.3 jsonlite_1.7.1 magrittr_1.5
[40] ncmeta_0.3.0 Matrix_1.2-18 Rcpp_1.0.5
[43] munsell_0.5.0 fansi_0.4.1 lifecycle_1.0.0
[46] stringi_1.5.3 whisker_0.4 yaml_2.2.1
[49] MASS_7.3-53 grid_4.0.3 blob_1.2.1
[52] parallel_4.0.3 promises_1.1.1 crayon_1.3.4
[55] lattice_0.20-41 splines_4.0.3 haven_2.3.1
[58] hms_0.5.3 knitr_1.33 pillar_1.6.2
[61] reprex_0.3.0 glue_1.4.2 evaluate_0.14
[64] RcppArmadillo_0.10.1.2.0 data.table_1.14.0 modelr_0.1.8
[67] vctrs_0.3.8 tweenr_1.0.2 httpuv_1.5.4
[70] cellranger_1.1.0 gtable_0.3.0 polyclip_1.10-0
[73] assertthat_0.2.1 xfun_0.25 RcppEigen_0.3.3.7.0
[76] later_1.2.0 viridisLite_0.3.0 ncdf4_1.17
[79] ellipsis_0.3.2