Last updated: 2021-08-19

Checks: 7 0

Knit directory: emlr_obs_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4d618d3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   code/Workflowr_project_managment.R
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mapping_dcant_mod_truth.Rmd) and HTML (docs/mapping_dcant_mod_truth.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html a03f2f0 jens-daniel-mueller 2021-08-18 Build site.
html 9335b31 jens-daniel-mueller 2021-08-10 Build site.
html 9943b45 jens-daniel-mueller 2021-08-10 Build site.
Rmd 4b27dd8 jens-daniel-mueller 2021-08-10 without P, AIP basins
html ee6c815 jens-daniel-mueller 2021-08-09 Build site.
Rmd c1efeb3 jens-daniel-mueller 2021-08-09 added cstar-based dcant estimate
html 17518ad jens-daniel-mueller 2021-08-09 Build site.
Rmd 1d6ee94 jens-daniel-mueller 2021-08-09 added cstar-based dcant estimate
html 00fc082 jens-daniel-mueller 2021-08-09 Build site.
Rmd d0f77eb jens-daniel-mueller 2021-08-09 added cstar-based dcant estimate
html bf149ea jens-daniel-mueller 2021-08-09 Build site.
Rmd 39e32f2 jens-daniel-mueller 2021-08-09 added cstar-based dcant estimate
html 0b00a2b jens-daniel-mueller 2021-08-09 Build site.
html 755c6b1 jens-daniel-mueller 2021-08-09 Build site.
html cd8e0d5 jens-daniel-mueller 2021-08-06 Build site.
html 15773a0 jens-daniel-mueller 2021-08-06 included calculation of revelle factor
html da61d1a jens-daniel-mueller 2021-08-06 Build site.
html 340d731 jens-daniel-mueller 2021-08-06 Build site.
html 71546e4 jens-daniel-mueller 2021-08-06 test with stricter CANYON-B filtering
html 29444a1 jens-daniel-mueller 2021-08-05 Build site.
html 42e80c0 jens-daniel-mueller 2021-08-04 Build site.
html 48f6eed jens-daniel-mueller 2021-08-04 Build site.
Rmd 7499718 jens-daniel-mueller 2021-08-04 test with eMLR to surface
html 1c597ab jens-daniel-mueller 2021-08-04 Build site.
Rmd 92bb6b3 jens-daniel-mueller 2021-08-04 test with intermediate CANYON-B offset threshold
html 81a46a4 jens-daniel-mueller 2021-08-03 Build site.
html b88c61b jens-daniel-mueller 2021-08-03 Build site.
html 0f0d5e5 jens-daniel-mueller 2021-08-03 Build site.
html a53656d jens-daniel-mueller 2021-08-03 Build site.
html 88f7356 jens-daniel-mueller 2021-08-02 Build site.
html d759279 jens-daniel-mueller 2021-08-02 Build site.
html 127b801 jens-daniel-mueller 2021-07-24 Build site.
html 1f65ef1 jens-daniel-mueller 2021-07-23 Build site.
html 912d90e jens-daniel-mueller 2021-07-23 Build site.
html 2477316 jens-daniel-mueller 2021-07-23 rebuild: surface dcant mapping seperate
html c9ccc00 jens-daniel-mueller 2021-07-22 Build site.
html f3c0d7a jens-daniel-mueller 2021-07-22 Build site.
Rmd 203223f jens-daniel-mueller 2021-07-22 surface dcant mapping seperate
html 426b2df jens-daniel-mueller 2021-07-21 Build site.
html 971ce87 jens-daniel-mueller 2021-07-13 Build site.
Rmd 89d9fcb jens-daniel-mueller 2021-07-13 complete revision
html 8d6c6c2 jens-daniel-mueller 2021-07-09 Build site.
Rmd 6743f76 jens-daniel-mueller 2021-07-09 complete revision

1 Version ID

The results displayed on this site correspond to the Version_ID: v_XXX

2 Required data

  • tcant 3D fields at tref1 and tref2 for variable and constant climate model runs
tref  <-
  read_csv(paste(path_version_data,
                 "tref.csv",
                 sep = ""))

tcant_tref_1 <-
  read_csv(
    paste(
      path_model_preprocessing,
      "cant_annual_field_AD",
      "/cant_",
      unique(tref$median_year[1]),
      ".csv",
      sep = ""
    )
  )

tcant_tref_1 <- tcant_tref_1 %>%
  rename(tcant_tref_1 = cant_total) %>%
  select(-year)

tcant_tref_2 <-
  read_csv(
    paste(
      path_model_preprocessing,
      "cant_annual_field_AD",
      "/cant_",
      unique(tref$median_year[2]),
      ".csv",
      sep = ""
    )
  )

tcant_tref_2 <- tcant_tref_2 %>%
  rename(tcant_tref_2 = cant_total) %>%
  select(-year)
tcant_cc_tref_1 <-
  read_csv(
    paste(
      path_model_preprocessing,
      "cant_annual_field_CB",
      "/cant_",
      unique(tref$median_year[1]),
      ".csv",
      sep = ""
    )
  )

tcant_cc_tref_1 <- tcant_cc_tref_1 %>%
  rename(tcant_tref_1 = cant_total) %>%
  select(-year)

tcant_cc_tref_2 <-
  read_csv(
    paste(
      path_model_preprocessing,
      "cant_annual_field_CB",
      "/cant_",
      unique(tref$median_year[2]),
      ".csv",
      sep = ""
    )
  )

tcant_cc_tref_2 <- tcant_cc_tref_2 %>%
  rename(tcant_tref_2 = cant_total) %>%
  select(-year)
cstar_tref_1 <-
  read_csv(
    paste(
      path_model_preprocessing,
      "cstar_annual_field_A",
      "/cstar_A_",
      unique(tref$median_year[1]),
      ".csv",
      sep = ""
    )
  )

cstar_tref_1 <- cstar_tref_1 %>%
  select(lon, lat, depth, cstar_no3, cstar_po4) %>% 
  pivot_longer(cstar_no3:cstar_po4,
               names_to = "data_source",
               names_prefix = "cstar_",
               values_to = "cstar_tref_1")

cstar_tref_2 <-
  read_csv(
    paste(
      path_model_preprocessing,
      "cstar_annual_field_A",
      "/cstar_A_",
      unique(tref$median_year[2]),
      ".csv",
      sep = ""
    )
  )

cstar_tref_2 <- cstar_tref_2 %>%
  select(lon, lat, depth, cstar_no3, cstar_po4) %>% 
  pivot_longer(cstar_no3:cstar_po4,
               names_to = "data_source",
               names_prefix = "cstar_",
               values_to = "cstar_tref_2")
climatology <-
  read_csv(paste0(path_model_preprocessing,
                  "climatology_runA_2007.csv"))

climatology <- climatology %>%
  select(lon, lat, depth, gamma)

3 dcant calculation

dcant_3d <- left_join(tcant_tref_1, tcant_tref_2) %>%
  mutate(dcant = tcant_tref_2 - tcant_tref_1)

rm(tcant_tref_1, tcant_tref_2)

dcant_3d <- dcant_3d %>%
  mutate(dcant_pos = if_else(dcant <= 0, 0, dcant))

dcant_3d <- full_join(dcant_3d, climatology)

dcant_3d <- dcant_3d %>%
  mutate(
    method = "surface",
    method = if_else(
      depth >= params_local$depth_min | gamma >= params_local$gamma_min,
      "eMLR",
      method
    )
  )

dcant_3d <- m_cut_gamma(dcant_3d, "gamma")

dcant_3d_vc <- dcant_3d %>% 
  mutate(data_source = "mod_truth") %>% 
  select(lon, lat, depth, basin_AIP, data_source, method,
            tcant_tref_1, dcant, dcant_pos,
            gamma, gamma_slab)
dcant_3d <- left_join(tcant_cc_tref_1, tcant_cc_tref_2) %>%
  mutate(dcant = tcant_tref_2 - tcant_tref_1)

rm(tcant_cc_tref_1, tcant_cc_tref_2)

dcant_3d <- dcant_3d %>%
  mutate(dcant_pos = if_else(dcant <= 0, 0, dcant))

dcant_3d <- full_join(dcant_3d, climatology)

dcant_3d <- dcant_3d %>%
  mutate(
    method = "surface",
    method = if_else(
      depth >= params_local$depth_min | gamma >= params_local$gamma_min,
      "eMLR",
      method
    )
  )

dcant_3d <- m_cut_gamma(dcant_3d, "gamma")

dcant_3d_cc <- dcant_3d %>% 
  mutate(data_source = "mod_truth_cc") %>% 
  select(lon, lat, depth, basin_AIP, data_source, method,
            tcant_tref_1, dcant, dcant_pos,
            gamma, gamma_slab)

rm(dcant_3d)
dcant_3d <- bind_rows(
  dcant_3d_cc,
  dcant_3d_vc
)

rm(
  dcant_3d_cc,
  dcant_3d_vc
)
surface_data <- nrow(dcant_3d %>% filter(method == "surface")) > 0
dcant_3d_cstar <- left_join(cstar_tref_1, cstar_tref_2) %>%
  mutate(dcant = cstar_tref_2 - cstar_tref_1)

rm(cstar_tref_1, cstar_tref_2)

dcant_3d_cstar <- dcant_3d_cstar %>%
  mutate(dcant_pos = if_else(dcant <= 0, 0, dcant))

dcant_3d_cstar <- full_join(dcant_3d_cstar, climatology)

dcant_3d_cstar <- dcant_3d_cstar %>%
  mutate(
    method = "surface",
    method = if_else(
      depth >= params_local$depth_min | gamma >= params_local$gamma_min,
      "eMLR",
      method
    )
  )


dcant_3d_cstar <- inner_join(
  dcant_3d_cstar,
  basinmask %>%
    filter(MLR_basins == params_local$MLR_basins) %>%
    select(-MLR_basins)
) 

dcant_3d_cstar <- m_cut_gamma(dcant_3d_cstar, "gamma")


dcant_3d_cstar <- dcant_3d_cstar %>% 
  # mutate(data_source = "mod_truth_cstar") %>% 
  select(lon, lat, depth, basin_AIP, data_source, data_source, method,
            cstar_tref_1, cstar_tref_2, dcant, dcant_pos,
            gamma, gamma_slab)

4 Maps

dcant_3d %>%
  group_split(data_source) %>%
  # head(1) %>%
  map(~ p_map_climatology(
    df = .x,
    var = "dcant",
    subtitle_text = paste("Climate: ", .x$data_source)
  ))
[[1]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
bf149ea jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
8d6c6c2 jens-daniel-mueller 2021-07-09

[[2]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
bf149ea jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
8d6c6c2 jens-daniel-mueller 2021-07-09
dcant_3d_cstar %>%
  group_split(data_source) %>%
  # head(1) %>%
  map(~ p_map_climatology(
    df = .x,
    var = "dcant",
    subtitle_text = paste("data_source: ", .x$data_source)
  ))
[[1]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09
bf149ea jens-daniel-mueller 2021-08-09

[[2]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09
bf149ea jens-daniel-mueller 2021-08-09
dcant_3d %>%
  group_split(data_source) %>%
  # head(1) %>%
  map(~ p_section_climatology_regular(
    df = .x,
    var = "dcant",
    subtitle_text = paste("Climate: ", .x$data_source)
  ))
[[1]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
bf149ea jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
8d6c6c2 jens-daniel-mueller 2021-07-09

[[2]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
bf149ea jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
971ce87 jens-daniel-mueller 2021-07-13
dcant_3d_cstar %>%
  group_split(data_source) %>%
  # head(1) %>%
  map(~ p_section_climatology_regular(
    df = .x,
    var = "dcant",
    subtitle_text = paste("data_source: ", .x$data_source)
  ))
[[1]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09
bf149ea jens-daniel-mueller 2021-08-09

[[2]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09
bf149ea jens-daniel-mueller 2021-08-09

5 Averaging and integration

5.1 Zonal sections

dcant_zonal <- dcant_3d %>%
  group_by(data_source) %>%
  nest() %>%
  mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
  select(-data) %>%
  unnest(zonal)

dcant_zonal <- m_cut_gamma(dcant_zonal, "gamma_mean")

dcant_zonal_method <- dcant_3d %>%
  group_by(data_source, method) %>%
  nest() %>%
  mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
  select(-data) %>%
  unnest(zonal)

dcant_zonal_method <- m_cut_gamma(dcant_zonal_method,
                                   "gamma_mean")

dcant_zonal <- dcant_zonal %>% 
  rename(dcant = dcant_mean,
         dcant_pos = dcant_pos_mean)

dcant_zonal_method <- dcant_zonal_method %>% 
  rename(dcant = dcant_mean,
         dcant_pos = dcant_pos_mean)
dcant_zonal_cstar <- dcant_3d_cstar %>%
  group_by(data_source) %>%
  nest() %>%
  mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
  select(-data) %>%
  unnest(zonal)

dcant_zonal_cstar <- m_cut_gamma(dcant_zonal_cstar, "gamma_mean")

dcant_zonal_method_cstar <- dcant_3d_cstar %>%
  group_by(data_source, method) %>%
  nest() %>%
  mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
  select(-data) %>%
  unnest(zonal)

dcant_zonal_method_cstar <- m_cut_gamma(dcant_zonal_method_cstar,
                                   "gamma_mean")

dcant_zonal_cstar <- dcant_zonal_cstar %>% 
  rename(dcant = dcant_mean,
         dcant_pos = dcant_pos_mean)

dcant_zonal_method_cstar <- dcant_zonal_method_cstar %>% 
  rename(dcant = dcant_mean,
         dcant_pos = dcant_pos_mean)

5.2 Inventories

To calculate dcant column inventories, we:

  1. Convert Cant concentrations to volumetric units
  2. Multiply layer thickness with volumetric Cant concentration to get a layer inventory
  3. For each horizontal grid cell and era, sum cant layer inventories for different inventory depths (100, 500, 1000, 3000, 10^{4} m)

Step 2 is performed separately for all Cant and positive Cant values only.

5.2.1 Full water column

dcant_inv <- dcant_3d %>%
  group_by(data_source) %>%
  nest() %>%
  mutate(inv = map(.x = data, ~m_dcant_inv(.x))) %>%
  select(-data) %>%
  unnest(inv)

p_map_cant_inv(df = dcant_inv,
               var = "dcant",
               subtitle_text = "for predefined integration depths") +
  facet_grid(inv_depth ~ data_source)

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
f3c0d7a jens-daniel-mueller 2021-07-22
971ce87 jens-daniel-mueller 2021-07-13
8d6c6c2 jens-daniel-mueller 2021-07-09
if (surface_data == FALSE){
  dcant_inv <- dcant_inv %>% 
    mutate(method = "total")
}
dcant_inv_cstar <- dcant_3d_cstar %>%
  group_by(data_source) %>%
  nest() %>%
  mutate(inv = map(.x = data, ~m_dcant_inv(.x))) %>%
  select(-data) %>%
  unnest(inv)

p_map_cant_inv(df = dcant_inv_cstar,
               var = "dcant",
               subtitle_text = "for predefined integration depths") +
  facet_grid(inv_depth ~ data_source)

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09
if (surface_data == FALSE){
  dcant_inv <- dcant_inv %>% 
    mutate(method = "total")
}

5.2.2 Surface layer

dcant_inv_surface <- dcant_3d %>%
  filter(method == "surface") %>% 
  group_by(data_source) %>%
  nest() %>%
  mutate(inv = map(.x = data, ~m_dcant_inv(.x))) %>%
  select(-data) %>%
  unnest(inv)

p_map_cant_inv(
  df = dcant_inv_surface %>%
    filter(inv_depth < 1000),
  var = "dcant_pos",
  subtitle_text = "for predefined integration depths",
  breaks = c(-Inf, seq(0, 4, 0.5), Inf)
) +
  facet_grid(inv_depth ~ data_source)

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04
48f6eed jens-daniel-mueller 2021-08-04
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
f3c0d7a jens-daniel-mueller 2021-07-22
dcant_inv_surface_cstar <- dcant_3d_cstar %>%
  filter(method == "surface") %>% 
  group_by(data_source) %>%
  nest() %>%
  mutate(inv = map(.x = data, ~m_dcant_inv(.x))) %>%
  select(-data) %>%
  unnest(inv)

p_map_cant_inv(
  df = dcant_inv_surface_cstar %>%
    filter(inv_depth < 1000),
  var = "dcant_pos",
  subtitle_text = "for predefined integration depths",
  breaks = c(-Inf, seq(0, 4, 0.5), Inf)
) +
  facet_grid(inv_depth ~ data_source)

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

5.2.3 eMLR only

dcant_inv <- full_join(
  dcant_inv %>% rename(dcant_total = dcant,
                       dcant_pos_total = dcant_pos),
  dcant_inv_surface %>% rename(dcant_surface = dcant,
                               dcant_pos_surface = dcant_pos)
)

dcant_inv <- dcant_inv %>%
  mutate(dcant_eMLR = dcant_total -
           replace(dcant_surface, is.na(dcant_surface), 0),
         dcant_pos_eMLR = dcant_pos_total -
           replace(dcant_pos_surface, is.na(dcant_pos_surface), 0))

dcant_inv_all <- dcant_inv %>% 
  select(-starts_with("dcant_pos")) %>% 
  pivot_longer(starts_with("dcant_"),
               names_to = "method",
               names_prefix = "dcant_",
               values_to = "dcant")

dcant_inv_pos <- dcant_inv %>% 
  select(data_source, lon, lat, basin_AIP, inv_depth,
         starts_with("dcant_pos_")) %>% 
  pivot_longer(starts_with("dcant_pos_"),
               names_to = "method",
               names_prefix = "dcant_pos_",
               values_to = "dcant_pos")

dcant_inv <- full_join(
  dcant_inv_all,
  dcant_inv_pos
)

rm(dcant_inv_all, dcant_inv_pos, dcant_inv_surface)

dcant_inv %>%
  group_by(inv_depth) %>%
  group_split() %>% 
  # tail(1) %>%
  map(
    ~ p_map_cant_inv(df = .x,
                     var = "dcant",
                     subtitle_text = paste("Integration depth",
                                           unique(.x$inv_depth))) +
      facet_grid(method ~ data_source)
  )
[[1]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04
48f6eed jens-daniel-mueller 2021-08-04
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
f3c0d7a jens-daniel-mueller 2021-07-22

[[2]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04
48f6eed jens-daniel-mueller 2021-08-04
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
f3c0d7a jens-daniel-mueller 2021-07-22

[[3]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04
48f6eed jens-daniel-mueller 2021-08-04
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
f3c0d7a jens-daniel-mueller 2021-07-22

[[4]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04
48f6eed jens-daniel-mueller 2021-08-04
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
f3c0d7a jens-daniel-mueller 2021-07-22

[[5]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04
48f6eed jens-daniel-mueller 2021-08-04
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
f3c0d7a jens-daniel-mueller 2021-07-22
dcant_inv_cstar <- full_join(
  dcant_inv_cstar %>% rename(dcant_total = dcant,
                       dcant_pos_total = dcant_pos),
  dcant_inv_surface_cstar %>% rename(dcant_surface = dcant,
                               dcant_pos_surface = dcant_pos)
)

dcant_inv_cstar <- dcant_inv_cstar %>%
  mutate(dcant_eMLR = dcant_total -
           replace(dcant_surface, is.na(dcant_surface), 0),
         dcant_pos_eMLR = dcant_pos_total -
           replace(dcant_pos_surface, is.na(dcant_pos_surface), 0))

dcant_inv_all_cstar <- dcant_inv_cstar %>% 
  select(-starts_with("dcant_pos")) %>% 
  pivot_longer(starts_with("dcant_"),
               names_to = "method",
               names_prefix = "dcant_",
               values_to = "dcant")

dcant_inv_pos_cstar <- dcant_inv_cstar %>% 
  select(data_source, lon, lat, basin_AIP, inv_depth,
         starts_with("dcant_pos_")) %>% 
  pivot_longer(starts_with("dcant_pos_"),
               names_to = "method",
               names_prefix = "dcant_pos_",
               values_to = "dcant_pos")

dcant_inv_cstar <- full_join(
  dcant_inv_all_cstar,
  dcant_inv_pos_cstar
)

rm(dcant_inv_all_cstar, dcant_inv_pos_cstar, dcant_inv_surface_cstar)

dcant_inv_cstar %>%
  group_by(inv_depth) %>%
  group_split() %>% 
  # tail(1) %>%
  map(
    ~ p_map_cant_inv(df = .x,
                     var = "dcant",
                     subtitle_text = paste("Integration depth",
                                           unique(.x$inv_depth))) +
      facet_grid(method ~ data_source)
  )
[[1]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[2]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[3]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[4]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[5]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

5.3 Budgets

Global dcant budgets were estimated in units of Pg C. Please note that here we added dcant (all vs postitive only) values and do not apply additional corrections for areas not covered.

dcant_budget_global <- m_dcant_budget(dcant_inv)

dcant_budget_global %>%
  filter(inv_depth == params_global$inventory_depth_standard,
         method == "total") %>%
  ggplot(aes(estimate, value)) +
  scale_fill_brewer(palette = "Dark2") +
  geom_col() +
  facet_grid(~data_source)

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
f3c0d7a jens-daniel-mueller 2021-07-22
971ce87 jens-daniel-mueller 2021-07-13
dcant_budget_global_cstar <- m_dcant_budget(dcant_inv_cstar)

dcant_budget_global_cstar %>%
  filter(inv_depth == params_global$inventory_depth_standard,
         method == "total") %>%
  ggplot(aes(estimate, value)) +
  scale_fill_brewer(palette = "Dark2") +
  geom_col() +
  facet_grid(~data_source)

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09
dcant_budget_global %>%
  filter(inv_depth == params_global$inventory_depth_standard,
         method %in% c("surface", "eMLR")) %>%
  ggplot(aes(estimate, value, fill=method)) +
  scale_fill_brewer(palette = "Dark2") +
  geom_col() +
  facet_grid(.~data_source)

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04
48f6eed jens-daniel-mueller 2021-08-04
88f7356 jens-daniel-mueller 2021-08-02
127b801 jens-daniel-mueller 2021-07-24
912d90e jens-daniel-mueller 2021-07-23
2477316 jens-daniel-mueller 2021-07-23
f3c0d7a jens-daniel-mueller 2021-07-22
dcant_budget_global_cstar %>%
  filter(inv_depth == params_global$inventory_depth_standard,
         method %in% c("surface", "eMLR")) %>%
  ggplot(aes(estimate, value, fill=method)) +
  scale_fill_brewer(palette = "Dark2") +
  geom_col() +
  facet_grid(.~data_source)

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09
dcant_budget_basin_AIP <- dcant_inv %>% 
  group_by(basin_AIP) %>%
  nest() %>% 
  mutate(budget = map(.x = data, ~m_dcant_budget(.x))) %>% 
  select(-data) %>%
  unnest(budget)
dcant_budget_basin_AIP_cstar <- dcant_inv_cstar %>% 
  group_by(basin_AIP) %>%
  nest() %>% 
  mutate(budget = map(.x = data, ~m_dcant_budget(.x))) %>% 
  select(-data) %>%
  unnest(budget)
dcant_budget_basin_AIP %>%
  filter(inv_depth == params_global$inventory_depth_standard,
         method %in% c("surface", "eMLR")) %>%
  ggplot(aes(basin_AIP, value, fill=method)) +
  scale_fill_brewer(palette = "Dark2") +
  geom_col() +
  facet_grid(estimate~data_source)

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04
dcant_budget_basin_AIP_cstar %>%
  filter(inv_depth == params_global$inventory_depth_standard,
         method %in% c("surface", "eMLR")) %>%
  ggplot(aes(basin_AIP, value, fill=method)) +
  scale_fill_brewer(palette = "Dark2") +
  geom_col() +
  facet_grid(estimate~data_source)

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09
dcant_budget_basin_MLR <-
  full_join(dcant_inv, basinmask) %>%
  group_by(basin, MLR_basins) %>%
  nest() %>%
  mutate(budget = map(.x = data, ~ m_dcant_budget(.x))) %>%
  select(-data) %>%
  unnest(budget)
dcant_budget_basin_MLR_cstar <-
  full_join(dcant_inv_cstar, basinmask) %>%
  group_by(basin, MLR_basins) %>%
  nest() %>%
  mutate(budget = map(.x = data, ~ m_dcant_budget(.x))) %>%
  select(-data) %>%
  unnest(budget)
dcant_budget_basin_MLR %>%
  filter(inv_depth == params_global$inventory_depth_standard,
         method %in% c("surface", "eMLR")) %>%
  group_by(MLR_basins) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(basin, value, fill = method)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      facet_grid(estimate ~ data_source) +
      labs(title = paste("MLR_basins:", unique(.x$MLR_basins)))
  )
[[1]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
da61d1a jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04

[[2]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
da61d1a jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04

[[3]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
da61d1a jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04

[[4]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
da61d1a jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04

[[5]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
da61d1a jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04

[[6]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
da61d1a jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04

[[7]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
da61d1a jens-daniel-mueller 2021-08-06
dcant_budget_basin_MLR_cstar %>%
  filter(inv_depth == params_global$inventory_depth_standard,
         method %in% c("surface", "eMLR")) %>%
  group_by(MLR_basins) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(basin, value, fill = method)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      facet_grid(estimate ~ data_source) +
      labs(title = paste("MLR_basins:", unique(.x$MLR_basins)))
  )
[[1]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[2]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[3]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[4]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[5]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[6]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[7]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09
dcant_budget_lat_grid <- 
  dcant_inv %>% 
  m_grid_horizontal_coarse() %>%
  group_by(lat_grid, basin_AIP) %>% 
  nest() %>%
  mutate(budget = map(.x = data, ~ m_dcant_budget(.x))) %>%
  select(-data) %>%
  unnest(budget)
dcant_budget_lat_grid_cstar <- 
  dcant_inv_cstar %>% 
  m_grid_horizontal_coarse() %>%
  group_by(lat_grid, basin_AIP) %>% 
  nest() %>%
  mutate(budget = map(.x = data, ~ m_dcant_budget(.x))) %>%
  select(-data) %>%
  unnest(budget)
dcant_budget_lat_grid %>%
  filter(inv_depth == params_global$inventory_depth_standard,
         method %in% c("surface", "eMLR")) %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(lat_grid, value, fill = method)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      coord_flip() +
      facet_grid(estimate ~ data_source) +
      labs(title = paste("MLR_basins:", unique(.x$basin_AIP)))
  )
[[1]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
0b00a2b jens-daniel-mueller 2021-08-09
cd8e0d5 jens-daniel-mueller 2021-08-06
15773a0 jens-daniel-mueller 2021-08-06
340d731 jens-daniel-mueller 2021-08-06
71546e4 jens-daniel-mueller 2021-08-06
42e80c0 jens-daniel-mueller 2021-08-04

[[2]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
00fc082 jens-daniel-mueller 2021-08-09

[[3]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
00fc082 jens-daniel-mueller 2021-08-09
dcant_budget_lat_grid_cstar %>%
  filter(inv_depth == params_global$inventory_depth_standard,
         method %in% c("surface", "eMLR")) %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(lat_grid, value, fill = method)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      coord_flip() +
      facet_grid(estimate ~ data_source) +
      labs(title = paste("MLR_basins:", unique(.x$basin_AIP)))
  )
[[1]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[2]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

[[3]]

Version Author Date
a03f2f0 jens-daniel-mueller 2021-08-18
17518ad jens-daniel-mueller 2021-08-09
00fc082 jens-daniel-mueller 2021-08-09

6 Write csv

dcant_3d <- dcant_3d %>%
  select(-c(tcant_tref_1))

dcant_3d %>%
  filter(data_source == "mod_truth") %>%
  write_csv(paste(path_version_data,
                  "dcant_3d_mod_truth.csv", sep = ""))

dcant_3d %>%
  filter(data_source == "mod_truth_cc") %>%
  write_csv(paste(path_version_data,
                  "dcant_3d_mod_truth_cc.csv", sep = ""))


dcant_zonal %>%
  filter(data_source == "mod_truth") %>%
  write_csv(paste(path_version_data,
                  "dcant_zonal_mod_truth.csv", sep = ""))

dcant_zonal_method %>%
  filter(data_source == "mod_truth") %>%
  write_csv(paste(path_version_data,
                  "dcant_zonal_mod_truth_method.csv", sep = ""))

dcant_zonal %>%
  filter(data_source == "mod_truth_cc") %>%
  write_csv(paste(path_version_data,
                  "dcant_zonal_mod_truth_cc.csv", sep = ""))

dcant_zonal_method %>%
  filter(data_source == "mod_truth_cc") %>%
  write_csv(paste(path_version_data,
                  "dcant_zonal_mod_truth_cc_method.csv", sep = ""))


dcant_inv %>%
  filter(data_source == "mod_truth",
         method == "total") %>%
  write_csv(paste(path_version_data,
                  "dcant_inv_mod_truth.csv", sep = ""))

dcant_inv %>%
  filter(data_source == "mod_truth_cc",
         method == "total") %>%
  write_csv(paste(path_version_data,
                  "dcant_inv_mod_truth_cc.csv", sep = ""))

dcant_inv %>%
  filter(data_source == "mod_truth",
         method != "total") %>%
  write_csv(paste(path_version_data,
                  "dcant_inv_mod_truth_method.csv", sep = ""))

dcant_inv %>%
  filter(data_source == "mod_truth_cc",
         method != "total") %>%
  write_csv(paste(path_version_data,
                  "dcant_inv_mod_truth_cc_method.csv", sep = ""))



dcant_budget_global %>%
  filter(data_source == "mod_truth") %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_global_mod_truth.csv", sep = ""))

dcant_budget_global %>%
  filter(data_source == "mod_truth_cc") %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_global_mod_truth_cc.csv", sep = ""))

dcant_budget_basin_AIP %>%
  filter(data_source == "mod_truth") %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_basin_AIP_mod_truth.csv", sep = ""))

dcant_budget_basin_AIP %>%
  filter(data_source == "mod_truth_cc") %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_basin_AIP_mod_truth_cc.csv", sep = ""))

dcant_budget_basin_MLR %>%
  filter(data_source == "mod_truth") %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_basin_MLR_mod_truth.csv", sep = ""))

dcant_budget_basin_MLR %>%
  filter(data_source == "mod_truth_cc") %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_basin_MLR_mod_truth_cc.csv", sep = ""))

dcant_budget_lat_grid %>%
  filter(data_source == "mod_truth") %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_lat_grid_mod_truth.csv", sep = ""))

dcant_budget_lat_grid %>%
  filter(data_source == "mod_truth_cc") %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_lat_grid_mod_truth_cc.csv", sep = ""))
dcant_3d_cstar %>%
  write_csv(paste(path_version_data,
                  "dcant_3d_cstar.csv", sep = ""))

dcant_zonal_cstar %>%
  write_csv(paste(path_version_data,
                  "dcant_zonal_cstar.csv", sep = ""))

dcant_zonal_method_cstar %>% 
  write_csv(paste(path_version_data,
                  "dcant_zonal_method_cstar.csv", sep = ""))

dcant_inv_cstar %>%
  filter(method == "total") %>%
  write_csv(paste(path_version_data,
                  "dcant_inv_cstar.csv", sep = ""))

dcant_inv_cstar %>%
  filter(method != "total") %>%
  write_csv(paste(path_version_data,
                  "dcant_inv_method_cstar.csv", sep = ""))

dcant_budget_global_cstar %>%
  filter(data_source == "mod_truth") %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_global_cstar.csv", sep = ""))


dcant_budget_basin_AIP_cstar %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_basin_AIP_cstar.csv", sep = ""))


dcant_budget_basin_MLR_cstar %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_basin_MLR_cstar.csv", sep = ""))


dcant_budget_lat_grid_cstar %>%
  write_csv(paste(path_version_data,
                  "dcant_budget_lat_grid_cstar.csv", sep = ""))

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] marelac_2.1.10  shape_1.4.5     ggforce_0.3.3   metR_0.9.0     
 [5] scico_1.2.0     patchwork_1.1.1 collapse_1.5.0  forcats_0.5.0  
 [9] stringr_1.4.0   dplyr_1.0.5     purrr_0.3.4     readr_1.4.0    
[13] tidyr_1.1.3     tibble_3.1.3    ggplot2_3.3.3   tidyverse_1.3.0
[17] workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 lubridate_1.7.9          gsw_1.0-5               
 [4] RColorBrewer_1.1-2       httr_1.4.2               rprojroot_2.0.2         
 [7] tools_4.0.3              backports_1.1.10         utf8_1.1.4              
[10] R6_2.5.0                 DBI_1.1.0                colorspace_2.0-2        
[13] withr_2.3.0              tidyselect_1.1.0         compiler_4.0.3          
[16] git2r_0.27.1             cli_3.0.1                rvest_0.3.6             
[19] xml2_1.3.2               isoband_0.2.2            labeling_0.4.2          
[22] scales_1.1.1             checkmate_2.0.0          digest_0.6.27           
[25] rmarkdown_2.10           oce_1.2-0                pkgconfig_2.0.3         
[28] htmltools_0.5.0          highr_0.8                dbplyr_1.4.4            
[31] rlang_0.4.10             readxl_1.3.1             rstudioapi_0.13         
[34] farver_2.0.3             generics_0.1.0           jsonlite_1.7.1          
[37] magrittr_1.5             Matrix_1.2-18            Rcpp_1.0.5              
[40] munsell_0.5.0            fansi_0.4.1              lifecycle_1.0.0         
[43] stringi_1.5.3            whisker_0.4              yaml_2.2.1              
[46] MASS_7.3-53              grid_4.0.3               blob_1.2.1              
[49] parallel_4.0.3           promises_1.1.1           crayon_1.3.4            
[52] lattice_0.20-41          haven_2.3.1              hms_0.5.3               
[55] seacarb_3.2.14           knitr_1.33               pillar_1.6.2            
[58] reprex_0.3.0             glue_1.4.2               evaluate_0.14           
[61] RcppArmadillo_0.10.1.2.0 data.table_1.14.0        modelr_0.1.8            
[64] vctrs_0.3.8              tweenr_1.0.2             httpuv_1.5.4            
[67] testthat_2.3.2           cellranger_1.1.0         gtable_0.3.0            
[70] polyclip_1.10-0          assertthat_0.2.1         xfun_0.25               
[73] broom_0.7.5              RcppEigen_0.3.3.7.0      later_1.2.0             
[76] viridisLite_0.3.0        ellipsis_0.3.2           here_0.1