Last updated: 2021-06-04

Checks: 7 0

Knit directory: emlr_obs_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 64a0608. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_anomalous_changes.Rmd) and HTML (docs/analysis_anomalous_changes.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 1c87a03 jens-daniel-mueller 2021-06-04 Build site.
Rmd b48d553 jens-daniel-mueller 2021-06-04 clean anomalous changes
html a656287 jens-daniel-mueller 2021-06-04 Build site.
Rmd 0e89bd2 jens-daniel-mueller 2021-06-04 clean anomalous changes
html 7e8d839 jens-daniel-mueller 2021-06-03 Build site.
Rmd a81f578 jens-daniel-mueller 2021-06-03 include anomalous changes
html 207339d jens-daniel-mueller 2021-06-03 Build site.
html 315710b jens-daniel-mueller 2021-06-03 include anomalous changes
html d612df8 jens-daniel-mueller 2021-06-03 Build site.
Rmd b8fb70c jens-daniel-mueller 2021-06-03 include anomalous changes
html 406d740 jens-daniel-mueller 2021-06-03 Build site.
Rmd 98e5d73 jens-daniel-mueller 2021-06-03 include anomalous changes
html 7802dd6 jens-daniel-mueller 2021-06-03 Build site.
Rmd dced077 jens-daniel-mueller 2021-06-03 include anomalous changes
html a496b5f jens-daniel-mueller 2021-06-03 Build site.
Rmd 90863c0 jens-daniel-mueller 2021-06-03 include anomalous changes

1 Version ID

The results displayed on this site correspond to the Version_ID: v_XXX

2 Data sources

Required are:

  • Cant from Sabine 2004 (S04)

  • Cant from Gruber 2019 (G19)

  • annual mean atmospheric pCO2

  • Mean eMLR-Cant per grid cell (lat, lon, depth)

cant_3d_tref <- read_csv(paste(path_version_data,
                               "cant_3d_tref.csv",
                               sep = ""))

cant_3d <-
  read_csv(paste(path_version_data,
                 "cant_3d.csv",
                 sep = ""))

co2_atm <-
  read_csv(paste(path_preprocessing,
                 "co2_atm.csv",
                 sep = ""))

tref <-
  read_csv(paste(path_version_data,
                 "tref.csv",
                 sep = ""))
m_zonal_mean_section <- function(df) {

  df_zonal_mean_section <- df %>%
    fselect(-lon) %>% 
    fgroup_by(lat, depth, basin_AIP) %>% {
      add_vars(fgroup_vars(.,"unique"),
               fmean(., keep.group_vars = FALSE) %>% add_stub(pre = FALSE, "_mean"),
               fsd(., keep.group_vars = FALSE) %>% add_stub(pre = FALSE, "_sd"))
    }
  
  return(df_zonal_mean_section)

}

3 Calculate ss Cant

# calculate delta cant as the difference between total cant at tref
# this includes the G19 anomaly
cant_3d_tref_wide <- cant_3d_tref %>%
  pivot_wider(names_from = era,
              values_from = "cant_pos") %>% 
  mutate(delta_cant_pos_G19 = `2010-2019` - `2000-2009`) %>% 
  drop_na()

# join with basinmask
cant_3d_tref_wide <- inner_join(basinmask, cant_3d_tref_wide)

# extract atm pCO2 at reference year
co2_atm_tref <- right_join(co2_atm, tref %>% rename(year = median_year)) %>% 
  select(-year) %>% 
  rename(pCO2_tref = pCO2)

# atm pCO2 at tref 1,2,3
pCO2_to <- params_local$preind_atm_pCO2
pCO2_t1 <- co2_atm_tref$pCO2_tref[1]
pCO2_t2 <- co2_atm_tref$pCO2_tref[2]

# ratio of atm pCO2 changes between eras
delta_pCO2_ratio <- 
  (pCO2_t2 - pCO2_t1) /
  (pCO2_t1 - pCO2_to)

rm(pCO2_to)
rm(pCO2_t1)
rm(pCO2_t2)

# alpha for ss projection
alpha = delta_pCO2_ratio * 0.94 * 0.94

# calculate cstar for reference year
cant_3d_tref_wide <- cant_3d_tref_wide %>%
  rename(cant_pos_t1 = `2010-2019`,
         cant_pos_t2 = `2000-2009`) %>%
  mutate(delta_cant_pos_ss = alpha * cant_pos_t1)

4 Zonal mean sections

4.1 delta Cant

4.1.1 G19 and ss projections

# calculate zonal mean section
cant_tref_section <- cant_3d_tref_wide %>%
  group_by(data_source) %>%
  nest() %>%
  mutate(section = map(.x = data, ~m_zonal_mean_section(.x))) %>%
  select(-data) %>%
  unnest(section)


cant_tref_section_long <- cant_tref_section %>%
  pivot_longer(
    cols = c(delta_cant_pos_G19_mean, delta_cant_pos_ss_mean),
    values_to = "delta_cant",
    names_to = "estimate",
    names_prefix = "delta_cant_pos_"
  )

cant_tref_section_long %>% 
  group_by(basin_AIP, data_source, estimate) %>%
  group_split() %>% 
  map( ~ p_section_zonal(
    df = .x,
    var = "delta_cant",
    plot_slabs = "n",
    subtitle_text = paste("Basin:", .x$basin_AIP, "| Data:", .x$data_source, "| Estimate:", .x$estimate)
  ))
[[1]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[2]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[3]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[4]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[5]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[6]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[7]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[8]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[9]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[10]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[11]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

[[12]]

Version Author Date
1c87a03 jens-daniel-mueller 2021-06-04
a656287 jens-daniel-mueller 2021-06-04

4.1.2 ss vs true

# calculate section of anomalous changes
cant_tref_section <- cant_tref_section %>%
  mutate(delta_cant_pos_anomalous = delta_cant_pos_G19_mean - delta_cant_pos_ss_mean)

cant_tref_section %>%
  group_by(basin_AIP, data_source) %>%
  group_split() %>%
  map( ~ p_section_zonal(
    df = .x,
    col = "divergent",
    var = "delta_cant_pos_anomalous",
    plot_slabs = "n",
    breaks = params_global$breaks_cant_offset,
    subtitle_text = paste(.x$basin_AIP, .x$data_source)
  ))
[[1]]

Version Author Date
a656287 jens-daniel-mueller 2021-06-04

[[2]]

Version Author Date
a656287 jens-daniel-mueller 2021-06-04

[[3]]

Version Author Date
a656287 jens-daniel-mueller 2021-06-04

[[4]]

Version Author Date
a656287 jens-daniel-mueller 2021-06-04

[[5]]

Version Author Date
a656287 jens-daniel-mueller 2021-06-04

[[6]]

Version Author Date
a656287 jens-daniel-mueller 2021-06-04

4.1.3 ss vs eMLR

cant_3d_anom <- inner_join(cant_3d, cant_3d_tref_wide)

cant_3d_anom <- cant_3d_anom %>% 
  mutate(delta_cant_pos_emlr_ss = cant_pos - delta_cant_pos_ss)

cant_anom_section <- cant_3d_anom %>%
  select(lon, lat, depth, basin_AIP, data_source, delta_cant_pos_emlr_ss) %>% 
  group_by(data_source) %>%
  nest() %>%
  mutate(section = map(.x = data, ~m_zonal_mean_section(.x))) %>%
  select(-data) %>%
  unnest(section)

cant_anom_section %>%
  group_by(basin_AIP, data_source) %>%
  group_split() %>%
  map( ~ p_section_zonal(
    df = .x,
    col = "divergent",
    var = "delta_cant_pos_emlr_ss_mean",
    plot_slabs = "n",
    breaks = params_global$breaks_cant_offset,
    subtitle_text = paste(.x$basin_AIP, .x$data_source)
  ))
[[1]]

Version Author Date
7e8d839 jens-daniel-mueller 2021-06-03

[[2]]

Version Author Date
7e8d839 jens-daniel-mueller 2021-06-03

[[3]]

Version Author Date
7e8d839 jens-daniel-mueller 2021-06-03

[[4]]

Version Author Date
7e8d839 jens-daniel-mueller 2021-06-03

[[5]]

Version Author Date
7e8d839 jens-daniel-mueller 2021-06-03

[[6]]

Version Author Date
7e8d839 jens-daniel-mueller 2021-06-03

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] metR_0.9.0      scico_1.2.0     patchwork_1.1.1 collapse_1.5.0 
 [5] forcats_0.5.0   stringr_1.4.0   dplyr_1.0.5     purrr_0.3.4    
 [9] readr_1.4.0     tidyr_1.1.2     tibble_3.0.4    ggplot2_3.3.3  
[13] tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.5               here_0.1                 lattice_0.20-41         
 [4] lubridate_1.7.9          assertthat_0.2.1         rprojroot_2.0.2         
 [7] digest_0.6.27            R6_2.5.0                 cellranger_1.1.0        
[10] backports_1.1.10         reprex_0.3.0             evaluate_0.14           
[13] httr_1.4.2               pillar_1.4.7             rlang_0.4.10            
[16] readxl_1.3.1             data.table_1.13.2        rstudioapi_0.11         
[19] whisker_0.4              blob_1.2.1               Matrix_1.2-18           
[22] checkmate_2.0.0          rmarkdown_2.5            labeling_0.4.2          
[25] RcppEigen_0.3.3.7.0      munsell_0.5.0            broom_0.7.5             
[28] compiler_4.0.3           httpuv_1.5.4             modelr_0.1.8            
[31] xfun_0.18                pkgconfig_2.0.3          htmltools_0.5.0         
[34] tidyselect_1.1.0         fansi_0.4.1              crayon_1.3.4            
[37] dbplyr_1.4.4             withr_2.3.0              later_1.1.0.1           
[40] grid_4.0.3               jsonlite_1.7.1           gtable_0.3.0            
[43] lifecycle_1.0.0          DBI_1.1.0                git2r_0.27.1            
[46] magrittr_1.5             scales_1.1.1             cli_2.1.0               
[49] stringi_1.5.3            farver_2.0.3             fs_1.5.0                
[52] promises_1.1.1           RcppArmadillo_0.10.1.2.0 xml2_1.3.2              
[55] ellipsis_0.3.1           generics_0.0.2           vctrs_0.3.5             
[58] tools_4.0.3              glue_1.4.2               hms_0.5.3               
[61] parallel_4.0.3           yaml_2.2.1               colorspace_1.4-1        
[64] isoband_0.2.2            rvest_0.3.6              knitr_1.30              
[67] haven_2.3.1