Last updated: 2022-04-06

Checks: 7 0

Knit directory: rare-mutation-detection/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210916) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5dcf0e9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rapp.history
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    scripts/

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  ._metrics.rds
    Untracked:  DOCNAME
    Untracked:  analysis/._.DS_Store
    Untracked:  analysis/cache/
    Untracked:  analysis/calc_nanoseq_metrics.Rmd
    Untracked:  data/
    Untracked:  metrics.rds
    Untracked:  prototype_code/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ecoli_K12.Rmd) and HTML (docs/ecoli_K12.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5dcf0e9 Marek Cmero 2022-04-06 Added relationship plots
html 81272b2 Marek Cmero 2022-04-05 Build site.
Rmd 43c95e3 Marek Cmero 2022-04-05 Fix figures
html f13e13a Marek Cmero 2022-04-05 Build site.
Rmd db75aa7 Marek Cmero 2022-04-05 Added statistical tests
html def2130 Marek Cmero 2022-04-05 Build site.
Rmd 1e5e696 Marek Cmero 2022-04-05 Added descriptions for metrics. General plot improvements.
html 953b83e Marek Cmero 2022-03-31 Build site.
html 05412f6 Marek Cmero 2022-03-28 Build site.
Rmd ea0ad82 Marek Cmero 2022-03-28 Added singleton comparison + facet summary plots
html 51aba0e Marek Cmero 2022-03-25 Build site.
Rmd a3895f7 Marek Cmero 2022-03-25 Bug fix
html ea4faf4 Marek Cmero 2022-03-25 Build site.
Rmd 5964f14 Marek Cmero 2022-03-25 Added more comparison plots for ecoli K12 data
html e5b39ad Marek Cmero 2022-03-25 Build site.
Rmd 1926d3d Marek Cmero 2022-03-25 added K12 ecoli metrics

Metrics for E. coli K12 data

MultiQC reports:

library(ggplot2)
library(data.table)
library(dplyr)
library(here)
library(tibble)
library(stringr)
library(Rsamtools)
library(GenomicRanges)
library(seqinr)
library(parallel)
library(readxl)
library(patchwork)
library(RColorBrewer)
source(here('code/load_data.R'))
source(here('code/plot.R'))
source(here('code/efficiency_nanoseq_functions.R'))
# Ecoli genome max size
# genome_max <- 4528118
genome_max <- c('2e914854fabb46b9_1' = 4661751,
                '2e914854fabb46b9_2' = 67365)
cores = 8
genomeFile <- here('data/ref/Escherichia_coli_ATCC_10798.fasta')
rinfo_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/QC/read_info')
markdup_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/QC/mark_duplicates')
qualimap_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/QC/qualimap')
qualimap_cons_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/QC/consensus/qualimap')
metadata_file <- here('data/metadata/NovaSeq data E coli.xlsx')
sample_names <- list.files(rinfo_dir) %>%
                str_split('\\.txt.gz') %>%
                lapply(., dplyr::first) %>%
                unlist() %>%
                str_split('_') %>%
                lapply(., head, 2) %>%
                lapply(., paste, collapse='-') %>%
                unlist()

# load and fetch duplicate rate from MarkDuplicates output
mdup <- load_markdup_data(markdup_dir, sample_names)

# get mean coverage for pre and post-consensus reads
qmap_cov <- get_qmap_coverage(qualimap_dir, sample_names)
qmap_cons_cov <- get_qmap_coverage(qualimap_cons_dir, sample_names)

# calculate metrics for nanoseq
rlen <- 151; skips <- 5
metrics_nano <- calc_metrics_new_rbs(rinfo_dir, pattern = 'Nano', cores = cores)

# calculate metrics for xGen
rlen <- 151; skips <- 8
metrics_xgen <- calc_metrics_new_rbs(rinfo_dir, pattern = 'xGEN', cores = cores)

metrics <- c(metrics_nano, metrics_xgen) %>% bind_rows()
metrics$duplicate_rate <- as.numeric(mdup)
metrics$duplex_coverage_ratio <- qmap_cov$coverage / qmap_cons_cov$coverage
metrics$duplex_coverage_ratio[qmap_cons_cov$coverage < 1] <- 0 # fix when < 1 duplex cov
metrics$sample <- gsub('-HJK2GDSX3', '', sample_names)

# cache metrics object
# saveRDS(metrics, file = 'metrics.rds')
# metrics <- readRDS(here('metrics.rds'))

# load metadata
metadata <- read_excel(metadata_file)
metadata$`sample name` <- gsub('_', '-', metadata$`sample name`)

# prepare for plotting
mm <- data.frame(melt(metrics))
mm$protocol <- 'NanoSeq'
mm$protocol[grep('xGEN', mm$sample)] <- 'xGen'

mm <- inner_join(mm, metadata, by=c('sample' = 'sample name'))
colnames(mm)[2] <- 'metric'
mm$nuclease <- paste(mm$`Mung bean unit`, mm$`S1 unit`, sep='+')

Metric comparison plots

Duplicate rate

Fraction of duplicate reads calculated by Picard’s MarkDuplicates. This is based on barcode-aware aligned duplicates mapping to the same 5’ positions for both read pairs. The NanoSeq Analysis pipeline states the optimal empirical duplicate rate is 75-76% (marked in the plot).

metric <- 'duplicate_rate'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = c(0.75, 0.76), alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Fraction of single-read families

Shows the number of single-read families divided by the total number of reads. As suggested by Stoler et al. 2016, this metric can server as a proxy for error rate, as (uncorrected) barcode mismatches will manifest as single-read families. The lower the fraction of singletons, the better.

metric <- 'frac_singletons'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        ggtitle(metric)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Drop-out rate

This is the same calculation as F-EFF in the NanoSeq Analysis pipeline:

“This shows the fraction of read bundles missing one of the two original strands beyond what would be expected under random sampling (assuming a binomial process). Good values are between 0.10-0.30, and larger values are likely due to DNA damage such as modified bases or internal nicks that prevent amplification of one of the two strands. Larger values do not impact the quality of the results, just reduce the efficiency of the protocol.”

This is similar to the singleton fraction, but taking into account loss of pairs due to sampling. The optimal range is shown by the lines.

metric <- 'drop_out_rate'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = c(0.1, 0.3), alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Efficiency

Efficiency is the number of duplex bases divided by the number of sequenced bases. According the NanoSeq Analysis pipeline, this value is maximised at ~0.07 when duplicate rates and strand drop-outs are optimal.

metric <- 'efficiency'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = c(0.07), alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

GC deviation

GC deviation is the absolute difference between GC_BOTH and GC_SINGLE calculated by the NanoSeq Analysis pipeline. The lower this deviation, the better.

“GC_BOTH and GC_SINGLE: the GC content of RBs with both strands and with just one strand. The two values should be similar between them and similar to the genome average. If there are large deviations that is possibly due to biases during PCR amplification. If GC_BOTH is substantially larger than GC_SINGLE, DNA denaturation before dilution may have taken place.”

metric <- 'gc_deviation'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = c(0.07), alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Duplex Coverage ratio

The mean sequence (pre-duplex) coverage divided by mean duplex coverage. Indicates the yield of how much duplex coverage we get at each sample’s sequence coverage. Abascal et al. report that their yield was approximately 30x (marked on the plot).

metric <- 'duplex_coverage_ratio'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = 30, alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Compare metrics side-by-side

Compare protocols and nucleases directly.

# duplicate rate
p1 <- plot_metric_boxplot(mm, 'protocol', 'duplicate_rate', 'Duplicate rate (line = optimal)') +
    geom_jitter(width=0.1, aes(protocol, value, colour = nuclease)) +
    geom_hline(yintercept = 0.81) +
    theme(legend.position = 'bottom')

p2 <- plot_metric_boxplot(mm, 'nuclease', 'duplicate_rate', 'Duplicate rate (line = optimal)') +
    geom_jitter(width=0.1, aes(nuclease, value, colour = protocol)) +
    geom_hline(yintercept = 0.81) +
    theme(legend.position = 'bottom')

show(p1 + p2)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# singletons
p1 <- plot_metric_boxplot(mm, 'protocol', 'frac_singletons', 'Fraction of singleton reads') +
    geom_jitter(width=0.1, aes(protocol, value, colour = nuclease)) +
    theme(legend.position = 'bottom') +
    ylim(c(0,1))

p2 <- plot_metric_boxplot(mm, 'nuclease', 'frac_singletons', 'Fraction of singleton reads') +
    geom_jitter(width=0.1, aes(nuclease, value, colour = protocol))  +
    theme(legend.position = 'bottom') +
    ylim(c(0,1))

show(p1 + p2)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# drop out rate
p1 <- plot_metric_boxplot(mm, 'protocol', 'drop_out_rate', 'Strand drop-out fraction (lines = optimal range)') +
    geom_jitter(width=0.1, aes(protocol, value, colour = nuclease)) +
    geom_hline(yintercept = c(0.1, 0.3)) +
    theme(legend.position = 'bottom') +
    ylim(c(0,1))


p2 <- plot_metric_boxplot(mm, 'nuclease', 'drop_out_rate', 'Strand drop-out fraction (lines = optimal range)') +
    geom_jitter(width=0.1, aes(nuclease, value, colour = protocol)) +
    geom_hline(yintercept = c(0.1, 0.3)) +
    theme(legend.position = 'bottom') +
    ylim(c(0,1))

show(p1 + p2)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# efficiency
p1 <- plot_metric_boxplot(mm, 'protocol', 'efficiency', 'Efficiency (line = optimal)') +
    geom_jitter(width=0.1, aes(protocol, value, colour = nuclease)) +
    geom_hline(yintercept = 0.07) +
    theme(legend.position = 'bottom')

p2 <- plot_metric_boxplot(mm, 'nuclease', 'efficiency', 'Efficiency (line = optimal)') +
    geom_jitter(width=0.1, aes(nuclease, value, colour = protocol)) +
    geom_hline(yintercept = 0.07) +
    theme(legend.position = 'bottom')

show(p1 + p2)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# GC deviation between strands
p1 <- plot_metric_boxplot(mm, 'protocol', 'gc_deviation', 'GC deviation (both strands vs. one)') +
    geom_jitter(width=0.1, aes(protocol, value, colour = nuclease)) +
    theme(legend.position = 'bottom')

p2 <- plot_metric_boxplot(mm, 'nuclease', 'gc_deviation', 'GC deviation (both strands vs. one)') +
    geom_jitter(width=0.1, aes(nuclease, value, colour = protocol)) +
    theme(legend.position = 'bottom')

show(p1 + p2)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# duplex coverage ratio
p1 <- plot_metric_boxplot(mm, 'protocol', 'duplex_coverage_ratio', 'Duplex coverage ratio (total cov / duplex cov)') +
    geom_jitter(width=0.1, aes(protocol, value, colour = nuclease)) +
    geom_hline(yintercept = 30) +
    theme(legend.position = 'bottom')

p2 <- plot_metric_boxplot(mm, 'nuclease', 'duplex_coverage_ratio', 'Duplex coverage ratio (total cov / duplex cov)') +
    geom_jitter(width=0.1, aes(nuclease, value, colour = protocol)) +
    geom_hline(yintercept = 30) +
    theme(legend.position = 'bottom')

show(p1 + p2)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Facet summary plots

Facet boxplots by nuclease and protocol to show overall results.

ggplot(mm, aes(protocol, value)) + 
    geom_boxplot() +
    theme_bw() +
    facet_wrap(~metric, scales = 'free') +
    ggtitle('by protocol')

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
953b83e Marek Cmero 2022-03-31
05412f6 Marek Cmero 2022-03-28
ggplot(mm, aes(nuclease, value)) + 
    geom_boxplot() +
    theme_bw() +
    facet_wrap(~metric, scales = 'free') +
    ggtitle('by nuclease')

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
953b83e Marek Cmero 2022-03-31
05412f6 Marek Cmero 2022-03-28

Statistical test results by protocol

For each metric, take the average of each replicate and perform a two-sided, unpaired T-test between protocols.

stats <- NULL
metric_names <- unique(mm$metric) %>% as.character()
for(metric_name in metric_names) {
    nano <- mm[mm$metric == metric_name & mm$protocol == 'NanoSeq',]
    xgen <- mm[mm$metric == metric_name & mm$protocol == 'xGen',]
    nano_vals <- data.table(nano)[, mean(value), by = nuclease]$V1
    xgen_vals <- data.table(xgen)[, mean(value), by = nuclease]$V1
    wtest <- t.test(nano_vals, xgen_vals)
    stats <- rbind(stats,
                   data.frame(metric = metric_name, pvalue = wtest$p.value))
}
stats$significant <- stats$pvalue < 0.05
print(stats)
                 metric      pvalue significant
1       frac_singletons 0.350920599       FALSE
2            efficiency 0.001645545        TRUE
3         drop_out_rate 0.001656330        TRUE
4          gc_deviation 0.045504038        TRUE
5        duplicate_rate 0.922536682       FALSE
6 duplex_coverage_ratio 0.316697444       FALSE

Two-way ANOVA analysis

We consider a two-way ANOVA, modelling the protocol, Mung Bean Unit and S1 Unit variables, as well as the interaction effect between the units and the protocol.

stats <- NULL
metric_names <- unique(mm$metric) %>% as.character()
for(metric_name in metric_names) {
    x <- mm[mm$metric == metric_name,]
    x$MungBeanUnit <- as.factor(x$`Mung bean unit`)
    x$S1Unit <- as.factor(x$`S1 unit`)
    x <- x[,c('MungBeanUnit', 'S1Unit', 'protocol', 'nuclease', 'value')]
    x_aov <- aov(value ~ MungBeanUnit * protocol + S1Unit * protocol, data = x) %>% summary() %>% dplyr::first()
    stats <- rbind(stats,
                   data.frame(metric = metric_name,
                              variable = rownames(x_aov)[1:5],
                              pvalue = x_aov[['Pr(>F)']][1:5]))
}
stats$significant <- stats$pvalue < 0.05
print(stats)
                  metric              variable       pvalue significant
1        frac_singletons MungBeanUnit          0.3179447536       FALSE
2        frac_singletons protocol              0.9702278541       FALSE
3        frac_singletons S1Unit                0.8553539457       FALSE
4        frac_singletons MungBeanUnit:protocol 0.9858376372       FALSE
5        frac_singletons protocol:S1Unit       0.8540792709       FALSE
6             efficiency MungBeanUnit          0.6743588660       FALSE
7             efficiency protocol              0.0033776091        TRUE
8             efficiency S1Unit                0.4674622674       FALSE
9             efficiency MungBeanUnit:protocol 0.8509682597       FALSE
10            efficiency protocol:S1Unit       0.2278366157       FALSE
11         drop_out_rate MungBeanUnit          0.4118682293       FALSE
12         drop_out_rate protocol              0.0002566346        TRUE
13         drop_out_rate S1Unit                0.0904262242       FALSE
14         drop_out_rate MungBeanUnit:protocol 0.8387881526       FALSE
15         drop_out_rate protocol:S1Unit       0.3182162279       FALSE
16          gc_deviation MungBeanUnit          0.6632789428       FALSE
17          gc_deviation protocol              0.0591657318       FALSE
18          gc_deviation S1Unit                0.6799659214       FALSE
19          gc_deviation MungBeanUnit:protocol 0.7726060695       FALSE
20          gc_deviation protocol:S1Unit       0.4452940513       FALSE
21        duplicate_rate MungBeanUnit          0.3209743574       FALSE
22        duplicate_rate protocol              0.6617113407       FALSE
23        duplicate_rate S1Unit                0.4855983121       FALSE
24        duplicate_rate MungBeanUnit:protocol 0.8160371321       FALSE
25        duplicate_rate protocol:S1Unit       0.5516726318       FALSE
26 duplex_coverage_ratio MungBeanUnit          0.0515969116       FALSE
27 duplex_coverage_ratio protocol              0.0059993368        TRUE
28 duplex_coverage_ratio S1Unit                0.4875101164       FALSE
29 duplex_coverage_ratio MungBeanUnit:protocol 0.0621558351       FALSE
30 duplex_coverage_ratio protocol:S1Unit       0.0041291841        TRUE

Relationships between variables

mm$replicate <- str_split(mm$sample, 'Rep') %>% lapply(., dplyr::last) %>% unlist() %>% as.numeric()
mm$sample <- str_split(mm$sample, 'Rep') %>% lapply(., dplyr::first) %>% unlist()

mm <- mm[,c('sample', 'metric', 'value', 'protocol', 'nuclease', 'replicate')]
dm <- reshape2::dcast(mm, sample + protocol + nuclease + replicate ~ metric)

cols <- c(brewer.pal(5, 'Greens')[2:5],
          brewer.pal(6, 'Blues')[2:6])
names(cols) <- as.factor(dm$sample) %>% levels()

ggplot(dm, aes(frac_singletons, drop_out_rate, colour=sample)) +
    geom_point() +
    theme_bw() +
    scale_colour_manual(values = cols) +
    ggtitle('Singletons vs. drop-out rate')

ggplot(dm, aes(efficiency, duplicate_rate, colour=sample)) +
    geom_point() +
    theme_bw() +
    scale_colour_manual(values = cols) +
    ggtitle('Efficiency vs. duplicate rate')

ggplot(dm, aes(efficiency, drop_out_rate, colour=sample)) +
    geom_point() +
    theme_bw() +
    scale_colour_manual(values = cols) +
    ggtitle('Efficiency vs. drop-out rate')

ggplot(dm, aes(efficiency, duplex_coverage_ratio, colour=sample)) +
    geom_point() +
    theme_bw() +
    scale_colour_manual(values = cols) +
    ggtitle('Efficiency vs. duplex coverage ratio')

ggplot(dm, aes(duplicate_rate, duplex_coverage_ratio, colour=sample)) +
    geom_point() +
    theme_bw() +
    scale_colour_manual(values = cols) +
    ggtitle('Duplicate rate vs. duplex coverage ratio')


sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /stornext/System/data/apps/R/R-4.0.5/lib64/R/lib/libRblas.so
LAPACK: /stornext/System/data/apps/R/R-4.0.5/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] RColorBrewer_1.1-2   patchwork_1.1.1      readxl_1.3.1        
 [4] seqinr_4.2-8         Rsamtools_2.6.0      Biostrings_2.58.0   
 [7] XVector_0.30.0       GenomicRanges_1.42.0 GenomeInfoDb_1.26.7 
[10] IRanges_2.24.1       S4Vectors_0.28.1     BiocGenerics_0.36.1 
[13] stringr_1.4.0        tibble_3.1.5         here_1.0.1          
[16] dplyr_1.0.7          data.table_1.14.0    ggplot2_3.3.5       
[19] workflowr_1.6.2     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.7             assertthat_0.2.1       rprojroot_2.0.2       
 [4] digest_0.6.27          utf8_1.2.2             plyr_1.8.6            
 [7] cellranger_1.1.0       R6_2.5.1               evaluate_0.14         
[10] highr_0.9              pillar_1.6.4           zlibbioc_1.36.0       
[13] rlang_0.4.12           whisker_0.4            jquerylib_0.1.4       
[16] rmarkdown_2.11         labeling_0.4.2         BiocParallel_1.24.1   
[19] RCurl_1.98-1.3         munsell_0.5.0          compiler_4.0.5        
[22] httpuv_1.6.3           xfun_0.22              pkgconfig_2.0.3       
[25] htmltools_0.5.2        tidyselect_1.1.1       GenomeInfoDbData_1.2.4
[28] fansi_0.5.0            crayon_1.4.2           withr_2.4.2           
[31] later_1.3.0            MASS_7.3-53.1          bitops_1.0-7          
[34] grid_4.0.5             jsonlite_1.7.2         gtable_0.3.0          
[37] lifecycle_1.0.1        DBI_1.1.1              git2r_0.28.0          
[40] magrittr_2.0.1         scales_1.1.1           stringi_1.7.5         
[43] farver_2.1.0           reshape2_1.4.4         fs_1.5.0              
[46] promises_1.2.0.1       bslib_0.3.0            ellipsis_0.3.2        
[49] generics_0.1.1         vctrs_0.3.8            tools_4.0.5           
[52] ade4_1.7-18            glue_1.4.2             purrr_0.3.4           
[55] fastmap_1.1.0          yaml_2.2.1             colorspace_2.0-0      
[58] knitr_1.33             sass_0.4.0