Last updated: 2022-07-04

Checks: 6 1

Knit directory: humanCardiacFibroblasts/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210903) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9fc92e5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/humanFibroblast/

Unstaged changes:
    Modified:   analysis/mergeHumanSamplesPlusGraz.Rmd
    Modified:   metadata2.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mergeHumanSamplesPlusGraz.Rmd) and HTML (docs/mergeHumanSamplesPlusGraz.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 9fc92e5 mluetge 2022-06-23 add samples from Graz
html 9fc92e5 mluetge 2022-06-23 add samples from Graz

load packages

suppressPackageStartupMessages({
  library(SingleCellExperiment)
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(ggsci)
  library(ggpubr)
  library(pheatmap)
})

set dir

basedir <- here()
metaDat <- read_tsv(paste0(basedir, "/metadata2.txt"), col_names = T)

load and assign samples

assignSamples <- function(smpNam, basedirSmp, smpTec, smpID, smpCond, smpOri,
                          smpIso, smpProc){
  smpNamFull <- list.files(path = paste0(basedirSmp, "/data/humanFibroblast/"),
                 pattern = paste0(smpNam, ".*_seurat.rds"))
  seuratSmp <- readRDS(paste0(basedirSmp, "/data/humanFibroblast/", smpNamFull))
  seuratSmp$technique <- smpTec
  seuratSmp$ID <- smpID
  seuratSmp$cond <- smpCond
  seuratSmp$origin <- smpOri
  seuratSmp$isolation <- smpIso
  seuratSmp$processing <- smpProc
  return(seuratSmp)
}

####################################################################

for(i in 1:length(metaDat$Sample)){
  seuratX <- assignSamples(smpNam = metaDat$Sample[i],
                           basedirSmp = basedir,
                           smpTec = metaDat$technique[i],
                           smpID = metaDat$ID[i],
                           smpCond = metaDat$cond[i],
                           smpOri = metaDat$origin[i],
                           smpProc = metaDat$processing[i],
                           smpIso = metaDat$isolation[i])
  if(exists("seurat")){
    seurat <- merge(x = seurat, y = seuratX, project = "humanCardiacFibro")
  }else{
    seurat <- seuratX
  }
}

remove(seuratX)

run clustering and DR and remove contaminating cells

seurat <- rerunSeurat3(seurat)
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 41081
Number of edges: 1416941

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9619
Number of communities: 16
Elapsed time: 9 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 41081
Number of edges: 1416941

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9283
Number of communities: 26
Elapsed time: 8 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 41081
Number of edges: 1416941

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9133
Number of communities: 26
Elapsed time: 8 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 41081
Number of edges: 1416941

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9455
Number of communities: 20
Elapsed time: 8 seconds
#seuratSub <- subset(seurat1, subset = `MGP-BALBcJ-G0026271.Grem1` >0) ## 5 cells
#seuratSub <- subset(seurat1, subset = `MGP-BALBcJ-G0026527.Bmp2` >0) ## 14104 cells

dat <- data.frame(table(seurat$dataset))
colnames(dat) <- c("dataset", "all")

knitr::kable(dat)
dataset all
1_20210930_Hu_nucseq_HTrans_Heart22_24_GEM 2381
1_20211018_Hu_nucseq_Myocar_Heart27_GEM 238
10_20210907_Hu_nucseq_iDCM_Heart01_GEM 826
2_20210930_Hu_nucseq_HTrans_Heart23_25_GEM 3131
9_20210817_Hu_nucleoi_seq_cardiac_transplant_Heart17_biopsy_NG 1321
9_20210907_Hu_nucseq_HTrans_Heart21_GEM 1536
o27533_1_09-9_20220203_Hu_nucseq_EMB28_GEM 1545
o27533_1_10-10_20220203_Hu_nucseq_EMB29_GEM 1254
o27533_1_11-11_20220203_Hu_nucseq_EMB30_GEM 1242
o27533_1_12-12_20220203_Hu_nucseq_EMB31_GEM 236
o27936_1_7-7_20220309_Hu_nucseq_EMB32_GEM 1192
o28576_1_01-1_20220525_Hu_nucseq_Graz_1_EMB_GEM 2740
o28576_1_02-2_20220525_Hu_nucseq_Graz_2_EMB_GEM 1684
o28576_1_03-3_20220525_Hu_nucseq_Graz_3_EMB_GEM 2396
o28576_1_04-4_20220525_Hu_nucseq_Graz_4_EMB_GEM 545
o28576_1_05-5_20220525_Hu_nucseq_Graz_5_EMB_GEM 781
o28576_1_06-6_20220525_Hu_nucseq_Graz_6_EMB_GEM 491
o28576_1_07-7_20220525_Hu_nucseq_Graz_7_EMB_GEM 653
o28576_1_08-8_20220525_Hu_nucseq_Graz_8_HH_GEM 3921
o28576_1_10-10_20220525_Hu_nucseq_Graz_10_HH_GEM 3731
o28576_1_11-11_20220525_Hu_nucseq_Graz_11_HH_GEM 3991
o28576_1_12-12_20220525_Hu_nucseq_Graz_12_HH_GEM 3818
o28576_1_13-13_20220525_Hu_nucseq_EMB32_GEM 1428

color vectors

colPal <- pal_igv()(length(levels(seurat)))
colTec <- pal_jama()(length(unique(seurat$technique)))
colSmp <- c(pal_uchicago()(8), pal_npg()(8), pal_aaas()(10))[1:length(unique(seurat$dataset))]
colCond <- pal_npg()(length(unique(seurat$cond)))
colID <- c(pal_jco()(10), pal_npg()(10))[1:length(unique(seurat$ID))]
colOrig <- pal_aaas()(length(unique(seurat$origin)))
colIso <- pal_nejm()(length(unique(seurat$isolation)))
colProc <- pal_aaas()(length(unique(seurat$processing)))

names(colPal) <- levels(seurat)
names(colTec) <- unique(seurat$technique)
names(colSmp) <- unique(seurat$dataset)
names(colCond) <- unique(seurat$cond)
names(colID) <- unique(seurat$ID)
names(colOrig) <- unique(seurat$origin)
names(colIso) <- unique(seurat$isolation)
names(colProc) <- unique(seurat$processing)

vis data

clusters

DimPlot(seurat, reduction = "umap", cols=colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
9fc92e5 mluetge 2022-06-23

technique

DimPlot(seurat, reduction = "umap", group.by = "technique", cols=colTec)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
9fc92e5 mluetge 2022-06-23

Sample

DimPlot(seurat, reduction = "umap", group.by = "dataset", cols=colSmp)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
9fc92e5 mluetge 2022-06-23

ID

DimPlot(seurat, reduction = "umap", group.by = "ID", cols=colID)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
9fc92e5 mluetge 2022-06-23

Origin

DimPlot(seurat, reduction = "umap", group.by = "origin", cols=colOrig)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
9fc92e5 mluetge 2022-06-23

isolation

DimPlot(seurat, reduction = "umap", group.by = "isolation", cols=colIso)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
9fc92e5 mluetge 2022-06-23

cond

DimPlot(seurat, reduction = "umap", group.by = "cond", cols=colCond)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
9fc92e5 mluetge 2022-06-23

processing

DimPlot(seurat, reduction = "umap", group.by = "processing", cols=colProc)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
9fc92e5 mluetge 2022-06-23

marker genes

seurat_markers_all <- FindAllMarkers(object = seurat, assay ="RNA",
                                     only.pos = TRUE, min.pct = 0.25,
                                     logfc.threshold = 0.25,
                                     test.use = "wilcox")

top 15 marker genes per cluster

cluster <- levels(seurat)
selGenesAll <- seurat_markers_all %>% group_by(cluster) %>% 
  top_n(-15, p_val_adj) %>% 
  top_n(15, avg_log2FC)
selGenesAll <- selGenesAll %>% mutate(geneIDval=gsub("^.*\\.", "", gene)) %>% filter(nchar(geneIDval)>1)

template_hm <- c(
    "#### {{cl}}\n",
    "```{r top marker {{cl}}, fig.height=8, fig.width=6, echo = FALSE}\n",
    "selGenes <- selGenesAll %>% filter(cluster=='{{cl}}')",
    "pOut <- avgHeatmap(seurat = seurat, selGenes = selGenes,
                  colVecIdent = colPal, 
                  ordVec=levels(seurat),
                  gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                  cr=T, condCol=F)\n",
    "```\n",
    "\n"
  )

plots_gp <- lapply(cluster, 
  function(cl) knitr::knit_expand(text = template_hm)
)

0

Version Author Date
9fc92e5 mluetge 2022-06-23

1

Version Author Date
9fc92e5 mluetge 2022-06-23

2

Version Author Date
9fc92e5 mluetge 2022-06-23

3

Version Author Date
9fc92e5 mluetge 2022-06-23

4

Version Author Date
9fc92e5 mluetge 2022-06-23

5

Version Author Date
9fc92e5 mluetge 2022-06-23

6

Version Author Date
9fc92e5 mluetge 2022-06-23

7

Version Author Date
9fc92e5 mluetge 2022-06-23

8

Version Author Date
9fc92e5 mluetge 2022-06-23

9

Version Author Date
9fc92e5 mluetge 2022-06-23

10

Version Author Date
9fc92e5 mluetge 2022-06-23

11

Version Author Date
9fc92e5 mluetge 2022-06-23

12

Version Author Date
9fc92e5 mluetge 2022-06-23

13

Version Author Date
9fc92e5 mluetge 2022-06-23

14

Version Author Date
9fc92e5 mluetge 2022-06-23

15

Version Author Date
9fc92e5 mluetge 2022-06-23

16

Version Author Date
9fc92e5 mluetge 2022-06-23

17

Version Author Date
9fc92e5 mluetge 2022-06-23

18

Version Author Date
9fc92e5 mluetge 2022-06-23

19

Version Author Date
9fc92e5 mluetge 2022-06-23

save objects

Idents(seurat) <- seurat$seurat_clusters
saveRDS(seurat, file = paste0(basedir, 
                              "/data/humanHeartsPlusGraz_merged_seurat.rds"))

write.table(seurat_markers_all,
            file=paste0(basedir, "/data/humanHeartsPlusGraz_merged_markerGenes.txt"),
            row.names = FALSE, col.names = TRUE, quote = FALSE, sep = "\t")

session info

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] pheatmap_1.0.12             ggpubr_0.4.0               
 [3] ggsci_2.9                   runSeurat3_0.1.0           
 [5] here_1.0.1                  magrittr_2.0.3             
 [7] sp_1.4-7                    SeuratObject_4.1.0         
 [9] Seurat_4.1.1                forcats_0.5.1              
[11] stringr_1.4.0               dplyr_1.0.9                
[13] purrr_0.3.4                 readr_2.1.2                
[15] tidyr_1.2.0                 tibble_3.1.7               
[17] ggplot2_3.3.6               tidyverse_1.3.1            
[19] SingleCellExperiment_1.14.1 SummarizedExperiment_1.22.0
[21] Biobase_2.52.0              GenomicRanges_1.44.0       
[23] GenomeInfoDb_1.28.4         IRanges_2.26.0             
[25] S4Vectors_0.30.2            BiocGenerics_0.38.0        
[27] MatrixGenerics_1.4.3        matrixStats_0.62.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.24        tidyselect_1.1.2      
  [4] htmlwidgets_1.5.4      grid_4.1.0             Rtsne_0.16            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-2             
 [10] future_1.25.0          miniUI_0.1.1.1         withr_2.5.0           
 [13] spatstat.random_2.2-0  colorspace_2.0-3       progressr_0.10.0      
 [16] highr_0.9              knitr_1.39             rstudioapi_0.13       
 [19] ROCR_1.0-11            ggsignif_0.6.3         tensor_1.5            
 [22] listenv_0.8.0          labeling_0.4.2         git2r_0.30.1          
 [25] GenomeInfoDbData_1.2.6 polyclip_1.10-0        farver_2.1.0          
 [28] bit64_4.0.5            rprojroot_2.0.3        parallelly_1.31.1     
 [31] vctrs_0.4.1            generics_0.1.2         xfun_0.30             
 [34] R6_2.5.1               bitops_1.0-7           spatstat.utils_2.3-1  
 [37] DelayedArray_0.18.0    assertthat_0.2.1       promises_1.2.0.1      
 [40] scales_1.2.0           vroom_1.5.7            rgeos_0.5-9           
 [43] gtable_0.3.0           globals_0.15.0         goftest_1.2-3         
 [46] workflowr_1.7.0        rlang_1.0.2            splines_4.1.0         
 [49] rstatix_0.7.0          lazyeval_0.2.2         spatstat.geom_2.4-0   
 [52] broom_0.8.0            yaml_2.3.5             reshape2_1.4.4        
 [55] abind_1.4-5            modelr_0.1.8           backports_1.4.1       
 [58] httpuv_1.6.5           tools_4.1.0            ellipsis_0.3.2        
 [61] spatstat.core_2.4-2    jquerylib_0.1.4        RColorBrewer_1.1-3    
 [64] ggridges_0.5.3         Rcpp_1.0.8.3           plyr_1.8.7            
 [67] zlibbioc_1.38.0        RCurl_1.98-1.6         rpart_4.1.16          
 [70] deldir_1.0-6           pbapply_1.5-0          cowplot_1.1.1         
 [73] zoo_1.8-10             haven_2.5.0            ggrepel_0.9.1         
 [76] cluster_2.1.3          fs_1.5.2               RSpectra_0.16-1       
 [79] data.table_1.14.2      scattermore_0.8        lmtest_0.9-40         
 [82] reprex_2.0.1           RANN_2.6.1             whisker_0.4           
 [85] fitdistrplus_1.1-8     hms_1.1.1              patchwork_1.1.1       
 [88] mime_0.12              evaluate_0.15          xtable_1.8-4          
 [91] readxl_1.4.0           gridExtra_2.3          compiler_4.1.0        
 [94] KernSmooth_2.23-20     crayon_1.5.1           htmltools_0.5.2       
 [97] mgcv_1.8-40            later_1.3.0            tzdb_0.3.0            
[100] lubridate_1.8.0        DBI_1.1.2              dbplyr_2.1.1          
[103] MASS_7.3-57            Matrix_1.4-1           car_3.0-13            
[106] cli_3.3.0              igraph_1.3.1           pkgconfig_2.0.3       
[109] plotly_4.10.0          spatstat.sparse_2.1-1  xml2_1.3.3            
[112] bslib_0.3.1            XVector_0.32.0         rvest_1.0.2           
[115] digest_0.6.29          sctransform_0.3.3      RcppAnnoy_0.0.19      
[118] spatstat.data_2.2-0    rmarkdown_2.14         cellranger_1.1.0      
[121] leiden_0.3.10          uwot_0.1.11            shiny_1.7.1           
[124] lifecycle_1.0.1        nlme_3.1-157           jsonlite_1.8.0        
[127] carData_3.0-5          limma_3.48.3           viridisLite_0.4.0     
[130] fansi_1.0.3            pillar_1.7.0           lattice_0.20-45       
[133] fastmap_1.1.0          httr_1.4.3             survival_3.3-1        
[136] glue_1.6.2             png_0.1-7              bit_4.0.4             
[139] stringi_1.7.6          sass_0.4.1             irlba_2.3.5           
[142] future.apply_1.9.0    
date()
[1] "Mon Jul  4 16:53:00 2022"

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] pheatmap_1.0.12             ggpubr_0.4.0               
 [3] ggsci_2.9                   runSeurat3_0.1.0           
 [5] here_1.0.1                  magrittr_2.0.3             
 [7] sp_1.4-7                    SeuratObject_4.1.0         
 [9] Seurat_4.1.1                forcats_0.5.1              
[11] stringr_1.4.0               dplyr_1.0.9                
[13] purrr_0.3.4                 readr_2.1.2                
[15] tidyr_1.2.0                 tibble_3.1.7               
[17] ggplot2_3.3.6               tidyverse_1.3.1            
[19] SingleCellExperiment_1.14.1 SummarizedExperiment_1.22.0
[21] Biobase_2.52.0              GenomicRanges_1.44.0       
[23] GenomeInfoDb_1.28.4         IRanges_2.26.0             
[25] S4Vectors_0.30.2            BiocGenerics_0.38.0        
[27] MatrixGenerics_1.4.3        matrixStats_0.62.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.24        tidyselect_1.1.2      
  [4] htmlwidgets_1.5.4      grid_4.1.0             Rtsne_0.16            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-2             
 [10] future_1.25.0          miniUI_0.1.1.1         withr_2.5.0           
 [13] spatstat.random_2.2-0  colorspace_2.0-3       progressr_0.10.0      
 [16] highr_0.9              knitr_1.39             rstudioapi_0.13       
 [19] ROCR_1.0-11            ggsignif_0.6.3         tensor_1.5            
 [22] listenv_0.8.0          labeling_0.4.2         git2r_0.30.1          
 [25] GenomeInfoDbData_1.2.6 polyclip_1.10-0        farver_2.1.0          
 [28] bit64_4.0.5            rprojroot_2.0.3        parallelly_1.31.1     
 [31] vctrs_0.4.1            generics_0.1.2         xfun_0.30             
 [34] R6_2.5.1               bitops_1.0-7           spatstat.utils_2.3-1  
 [37] DelayedArray_0.18.0    assertthat_0.2.1       promises_1.2.0.1      
 [40] scales_1.2.0           vroom_1.5.7            rgeos_0.5-9           
 [43] gtable_0.3.0           globals_0.15.0         goftest_1.2-3         
 [46] workflowr_1.7.0        rlang_1.0.2            splines_4.1.0         
 [49] rstatix_0.7.0          lazyeval_0.2.2         spatstat.geom_2.4-0   
 [52] broom_0.8.0            yaml_2.3.5             reshape2_1.4.4        
 [55] abind_1.4-5            modelr_0.1.8           backports_1.4.1       
 [58] httpuv_1.6.5           tools_4.1.0            ellipsis_0.3.2        
 [61] spatstat.core_2.4-2    jquerylib_0.1.4        RColorBrewer_1.1-3    
 [64] ggridges_0.5.3         Rcpp_1.0.8.3           plyr_1.8.7            
 [67] zlibbioc_1.38.0        RCurl_1.98-1.6         rpart_4.1.16          
 [70] deldir_1.0-6           pbapply_1.5-0          cowplot_1.1.1         
 [73] zoo_1.8-10             haven_2.5.0            ggrepel_0.9.1         
 [76] cluster_2.1.3          fs_1.5.2               RSpectra_0.16-1       
 [79] data.table_1.14.2      scattermore_0.8        lmtest_0.9-40         
 [82] reprex_2.0.1           RANN_2.6.1             whisker_0.4           
 [85] fitdistrplus_1.1-8     hms_1.1.1              patchwork_1.1.1       
 [88] mime_0.12              evaluate_0.15          xtable_1.8-4          
 [91] readxl_1.4.0           gridExtra_2.3          compiler_4.1.0        
 [94] KernSmooth_2.23-20     crayon_1.5.1           htmltools_0.5.2       
 [97] mgcv_1.8-40            later_1.3.0            tzdb_0.3.0            
[100] lubridate_1.8.0        DBI_1.1.2              dbplyr_2.1.1          
[103] MASS_7.3-57            Matrix_1.4-1           car_3.0-13            
[106] cli_3.3.0              igraph_1.3.1           pkgconfig_2.0.3       
[109] plotly_4.10.0          spatstat.sparse_2.1-1  xml2_1.3.3            
[112] bslib_0.3.1            XVector_0.32.0         rvest_1.0.2           
[115] digest_0.6.29          sctransform_0.3.3      RcppAnnoy_0.0.19      
[118] spatstat.data_2.2-0    rmarkdown_2.14         cellranger_1.1.0      
[121] leiden_0.3.10          uwot_0.1.11            shiny_1.7.1           
[124] lifecycle_1.0.1        nlme_3.1-157           jsonlite_1.8.0        
[127] carData_3.0-5          limma_3.48.3           viridisLite_0.4.0     
[130] fansi_1.0.3            pillar_1.7.0           lattice_0.20-45       
[133] fastmap_1.1.0          httr_1.4.3             survival_3.3-1        
[136] glue_1.6.2             png_0.1-7              bit_4.0.4             
[139] stringi_1.7.6          sass_0.4.1             irlba_2.3.5           
[142] future.apply_1.9.0