Last updated: 2019-08-07

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20190513)

    The command set.seed(20190513) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 9d81722

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/ALL_anom.Rda
        Ignored:    data/ALL_clim.Rda
        Ignored:    data/ERA5_lhf.Rda
        Ignored:    data/ERA5_lwr.Rda
        Ignored:    data/ERA5_qnet.Rda
        Ignored:    data/ERA5_qnet_anom.Rda
        Ignored:    data/ERA5_qnet_clim.Rda
        Ignored:    data/ERA5_shf.Rda
        Ignored:    data/ERA5_swr.Rda
        Ignored:    data/ERA5_t2m.Rda
        Ignored:    data/ERA5_t2m_anom.Rda
        Ignored:    data/ERA5_t2m_clim.Rda
        Ignored:    data/ERA5_u.Rda
        Ignored:    data/ERA5_u_anom.Rda
        Ignored:    data/ERA5_u_clim.Rda
        Ignored:    data/ERA5_v.Rda
        Ignored:    data/ERA5_v_anom.Rda
        Ignored:    data/ERA5_v_clim.Rda
        Ignored:    data/GLORYS_mld.Rda
        Ignored:    data/GLORYS_mld_anom.Rda
        Ignored:    data/GLORYS_mld_clim.Rda
        Ignored:    data/GLORYS_u.Rda
        Ignored:    data/GLORYS_u_anom.Rda
        Ignored:    data/GLORYS_u_clim.Rda
        Ignored:    data/GLORYS_v.Rda
        Ignored:    data/GLORYS_v_anom.Rda
        Ignored:    data/GLORYS_v_clim.Rda
        Ignored:    data/NAPA_clim_U.Rda
        Ignored:    data/NAPA_clim_V.Rda
        Ignored:    data/NAPA_clim_W.Rda
        Ignored:    data/NAPA_clim_emp_ice.Rda
        Ignored:    data/NAPA_clim_emp_oce.Rda
        Ignored:    data/NAPA_clim_fmmflx.Rda
        Ignored:    data/NAPA_clim_mldkz5.Rda
        Ignored:    data/NAPA_clim_mldr10_1.Rda
        Ignored:    data/NAPA_clim_qemp_oce.Rda
        Ignored:    data/NAPA_clim_qla_oce.Rda
        Ignored:    data/NAPA_clim_qns.Rda
        Ignored:    data/NAPA_clim_qsb_oce.Rda
        Ignored:    data/NAPA_clim_qt.Rda
        Ignored:    data/NAPA_clim_runoffs.Rda
        Ignored:    data/NAPA_clim_ssh.Rda
        Ignored:    data/NAPA_clim_sss.Rda
        Ignored:    data/NAPA_clim_sst.Rda
        Ignored:    data/NAPA_clim_taum.Rda
        Ignored:    data/NAPA_clim_vars.Rda
        Ignored:    data/NAPA_clim_vecs.Rda
        Ignored:    data/OAFlux.Rda
        Ignored:    data/OISST_sst.Rda
        Ignored:    data/OISST_sst_anom.Rda
        Ignored:    data/OISST_sst_clim.Rda
        Ignored:    data/node_mean_all_anom.Rda
        Ignored:    data/packet_all.Rda
        Ignored:    data/packet_all_anom.Rda
        Ignored:    data/packet_nolab.Rda
        Ignored:    data/packet_nolab14.Rda
        Ignored:    data/packet_nolabgsl.Rda
        Ignored:    data/packet_nolabmod.Rda
        Ignored:    data/som_all.Rda
        Ignored:    data/som_all_anom.Rda
        Ignored:    data/som_nolab.Rda
        Ignored:    data/som_nolab14.Rda
        Ignored:    data/som_nolab_16.Rda
        Ignored:    data/som_nolab_9.Rda
        Ignored:    data/som_nolabgsl.Rda
        Ignored:    data/som_nolabmod.Rda
        Ignored:    data/synoptic_states.Rda
        Ignored:    data/synoptic_vec_states.Rda
    
    Unstaged changes:
        Modified:   code/workflow.R
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 9a9fa7d robwschlegel 2019-08-01 A more in depth dive into the potential criteria to meet for the SOM model
    html aa82e6e robwschlegel 2019-07-31 Build site.
    Rmd 51ed681 robwschlegel 2019-07-25 Completed anoms for OISST
    Rmd 0b6f065 robwschlegel 2019-07-25 Push before beginning to write code for loading entire obs/reanalysis products into memory for clim calculations
    html 7792f24 robwschlegel 2019-07-24 Build site.
    Rmd bcee698 robwschlegel 2019-07-24 Edited the polygon and sst prep vignettes while redoing methodology.
    html 7cc8ec3 robwschlegel 2019-07-24 Build site.
    Rmd 463b89a robwschlegel 2019-07-24 Edited the polygon and sst prep vignettes while redoing methodology.
    html 81e961d robwschlegel 2019-07-09 Build site.
    Rmd 7ff9b8b robwschlegel 2019-06-17 More work on the talk
    html c23c50b robwschlegel 2019-06-10 Build site.
    html 028d3cc robwschlegel 2019-06-10 Build site.
    html c61a15f robwschlegel 2019-06-06 Build site.
    html 6dd6da8 robwschlegel 2019-06-06 Build site.
    Rmd 25e7e9a robwschlegel 2019-06-05 SOM pipeline nearly finished
    Rmd 94ce8f6 robwschlegel 2019-06-04 Functions for creating data packets are up and running
    Rmd 65301ed robwschlegel 2019-05-30 Push before getting rid of some testing structure
    Rmd 2c3f68c robwschlegel 2019-05-28 Working on the variable prep vignette
    html 5cb8e8f robwschlegel 2019-05-28 Build site.
    html c09b4f7 robwschlegel 2019-05-24 Build site.
    Rmd 5dc8bd9 robwschlegel 2019-05-24 Finished initial creation of SST prep vignette.
    Rmd e008b23 robwschlegel 2019-05-24 Push before changing
    Rmd 5b6f248 robwschlegel 2019-05-23 More SST clomp work
    Rmd 5c2b406 robwschlegel 2019-05-23 Commit before changes
    html d544295 robwschlegel 2019-05-23 Build site.
    Rmd 9cb3efa robwschlegel 2019-05-23 Updating work done on the polygon prep vignette.

Introduction

Building on the work performed in the Polygon preparation vignette, we will now create grouped SST time series for the regions in our study area. We will do this by finding which NOAA OISST pixels fall within each of the region polygons. Also note that throughout this vignette (and this entire project) we will use the climatology period of 1993 – 2018 as this is the shortest time limiting us by the data products used for the various abiotic variables needed for the SOM.

# Packages used in this vignette
library(jsonlite, lib.loc = "../R-packages/")
library(tidyverse) # Base suite of functions
library(heatwaveR, lib.loc = "../R-packages/") # For detecting MHWs
# cat(paste0("heatwaveR version = ", packageDescription("heatwaveR")$Version))
library(FNN) # For fastest nearest neighbour searches
# library(ncdf4) # For opening and working with NetCDF files
library(tidync, lib.loc = "../R-packages/") # For a more tidy approach to managing NetCDF data
library(SDMTools) # For finding points within polygons
library(lubridate) # For convenient date manipulation

# Set number of cores
doMC::registerDoMC(cores = 50)

# Disable scientific notation for numeric values
  # I just find it annoying
options(scipen = 999)

# Corners of the study area
NWA_corners <- readRDS("data/NWA_corners.Rda")

# Individual regions
NWA_coords <- readRDS("data/NWA_coords_cabot.Rda")

# The base map
map_base <- ggplot2::fortify(maps::map(fill = TRUE, col = "grey80", plot = FALSE)) %>%
  dplyr::rename(lon = long) %>%
  mutate(group = ifelse(lon > 180, group+9999, group),
         lon = ifelse(lon > 180, lon-360, lon)) %>% 
  select(-region, -subregion)

Pixel prep

Up first we take the lon/lat grid from the 1/4 degree daily NOAA OISST product and find which points fall within each region. We will save this information to allow us to then easily pull out the desired pixels from the cube of OISST data.

# Load NAPA bathymetry
# NAPA_bathy <- readRDS("data/NAPA_bathy.Rda")# %>% 
  # mutate(index = paste0(lon, lat))
OISST_grid <- data.frame(expand.grid(c(seq(0.125, 179.875, by = 0.25), seq(-179.875, -0.125, by = 0.25)),
                                        seq(-89.875, 89.875, by = 0.25)))
colnames(OISST_grid) <- c("lon", "lat")
# saveRDS(OISST_grid, "data/OISST_grid.Rda")

# Trim down OISST grid for faster processing
OISST_grid_region <- OISST_grid %>% 
  filter(lon >= min(NWA_coords$lon),
         lon <= max(NWA_coords$lon),
         lat >= min(NWA_coords$lat),
         lat <= max(NWA_coords$lat))
# saveRDS(OISST_grid_region, "data/OISST_grid_region.Rda")

# Function for finding and cleaning up points within a given region polygon
pnts_in_region <- function(region_in){
  region_sub <- NWA_coords %>% 
    filter(region == region_in)
  coords_in <- pnt.in.poly(pnts = OISST_grid_region[1:2], poly.pnts = region_sub[2:3]) %>% 
    filter(pip == 1) %>% 
    dplyr::select(-pip) %>% 
    mutate(region = region_in)
  return(coords_in)
}

# Run the function
NWA_info <- plyr::ldply(unique(NWA_coords$region), pnts_in_region)
# saveRDS(NWA_info, "data/NWA_info.Rda")

# Visualise to ensure success
ggplot(NWA_coords, aes(x = lon, y = lat)) +
  geom_polygon(aes(fill = region), alpha = 0.2) +
  geom_point(data = NWA_info, aes(colour = region)) +
  geom_polygon(data = map_base, aes(group = group), show.legend = F) +
    coord_cartesian(xlim = NWA_corners[1:2],
                  ylim = NWA_corners[3:4]) +
  labs(x = NULL, y = NULL)

Expand here to see past versions of pixel-regions-1.png:
Version Author Date
aa82e6e robwschlegel 2019-07-31
7792f24 robwschlegel 2019-07-24
7cc8ec3 robwschlegel 2019-07-24
5cb8e8f robwschlegel 2019-05-28
c09b4f7 robwschlegel 2019-05-24

SST prep

With the OISST pixels successfully assigned to regions based on their thermal properties we now need to go about clumping these SST pixels into one mean time series per region.

# The OISST data location
OISST_files <- dir("../../data/OISST", full.names = T)

# The files with data in the study area
OISST_files_sub <- data.frame(files = OISST_files,
                              lon = c(seq(0.125, 179.875, by = 0.25), seq(-179.875, -0.125, by = 0.25))) %>% 
  filter(lon >= min(NWA_info$lon), lon <= max(NWA_info$lon)) %>% 
  mutate(files = as.character(files))

# Function for loading the individual OISST NetCDF files and subsetting SST accordingly
# file_name <- OISST_files_sub$files[1]
load_OISST_sub <- function(file_name, coords = NWA_info){
  res <- tidync(file_name) %>%
    hyper_filter(lat = dplyr::between(lat, min(coords$lat), max(coords$lat)),
                 time = dplyr::between(time, as.integer(as.Date("1993-01-01")),
                                       as.integer(as.Date("2018-12-31")))) %>%
    hyper_tibble() %>% 
    mutate(time = as.Date(time, origin = "1970-01-01")) %>% 
    dplyr::rename(temp = sst, t = time) %>% 
    select(lon, lat, t, temp) %>% 
    left_join(coords, by = c("lon", "lat")) %>% 
    filter(!is.na(region))
  # return(res)
}

# Clomp'em 
system.time(
  OISST_region <- plyr::ldply(OISST_files_sub$files,
                           .fun = load_OISST_sub,
                           .parallel = TRUE) %>% 
    group_by(region, t) %>% 
    summarise(temp = mean(temp, na.rm = T))
) # 18 seconds

# Save
# saveRDS(OISST_region, "data/OISST_region.Rda")

MHW detection

With our clumped SST time series ready the last step in this vignette is to detect the MHWs within each.

# Load the time series data
OISST_region <- readRDS("data/OISST_region.Rda")

# Calculate base results
system.time(
OISST_region_MHW <- OISST_region %>%
  group_by(region) %>%
  nest() %>%
  mutate(clims = map(data, ts2clm,
                     climatologyPeriod = c("1993-01-01", "2018-12-31")),
         events = map(clims, detect_event),
         cats = map(events, category, S = FALSE)) %>%
  select(-data, -clims)
) # 2 seconds
# saveRDS(OISST_region_MHW, "data/OISST_region_MHW.Rda")

With the MHWs detected, let’s visualise the results to ensure everything worked as expected.

# Load MHW results
OISST_region_MHW <- readRDS("data/OISST_region_MHW.Rda")

# Events
OISST_MHW_event <- OISST_region_MHW %>%
  select(-cats) %>%
  unnest(events) %>%
  filter(row_number() %% 2 == 0) %>%
  unnest(events)

event_lolli_plot <- ggplot(data = OISST_MHW_event , aes(x = date_peak, y = intensity_max)) + 
        geom_lolli(colour = "salmon", colour_n = "red", n = 3) + 
  labs(x = "Peak Date", y = "Max. Intensity (°C)") +
  # scale_y_continuous(expand = c(0, 0))+
  facet_wrap(~region)
# ggsave(plot = event_lolli_plot, filename = "output/event_lolli_plot.pdf", height = 7, width = 13)

# Visualise
event_lolli_plot

Expand here to see past versions of MHW-vis-1.png:
Version Author Date
7cc8ec3 robwschlegel 2019-07-24
81e961d robwschlegel 2019-07-09
6dd6da8 robwschlegel 2019-06-06
c09b4f7 robwschlegel 2019-05-24

Everything appears to check out. Up next in the Variable preparation vignette we will go through the steps necessary to build the data that will be fed into our self-organising maps as seen in the Self-organising map (SOM) analysis vignette.

References

Session information

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/openblas-base/libblas.so.3
LAPACK: /usr/lib/libopenblasp-r0.2.18.so

locale:
 [1] LC_CTYPE=en_CA.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_CA.UTF-8        LC_COLLATE=en_CA.UTF-8    
 [5] LC_MONETARY=en_CA.UTF-8    LC_MESSAGES=en_CA.UTF-8   
 [7] LC_PAPER=en_CA.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_CA.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bindrcpp_0.2.2   lubridate_1.7.4  SDMTools_1.1-221 tidync_0.2.1    
 [5] FNN_1.1.2.1      heatwaveR_0.4.0  forcats_0.3.0    stringr_1.3.1   
 [9] dplyr_0.7.6      purrr_0.2.5      readr_1.1.1      tidyr_0.8.1     
[13] tibble_1.4.2     ggplot2_3.0.0    tidyverse_1.2.1  jsonlite_1.6    

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      lattice_0.20-35   assertthat_0.2.0 
 [4] rprojroot_1.3-2   digest_0.6.16     foreach_1.4.4    
 [7] R6_2.2.2          cellranger_1.1.0  plyr_1.8.4       
[10] backports_1.1.2   evaluate_0.11     httr_1.3.1       
[13] pillar_1.3.0      rlang_0.2.2       lazyeval_0.2.1   
[16] readxl_1.1.0      ncmeta_0.0.4      rstudioapi_0.7   
[19] data.table_1.12.2 whisker_0.3-2     R.utils_2.7.0    
[22] R.oo_1.22.0       rmarkdown_1.10    labeling_0.3     
[25] htmlwidgets_1.3   munsell_0.5.0     broom_0.5.0      
[28] compiler_3.6.1    modelr_0.1.2      pkgconfig_2.0.2  
[31] htmltools_0.3.6   tidyselect_0.2.4  workflowr_1.1.1  
[34] codetools_0.2-15  doMC_1.3.5        viridisLite_0.3.0
[37] crayon_1.3.4      withr_2.1.2       R.methodsS3_1.7.1
[40] grid_3.6.1        nlme_3.1-137      gtable_0.2.0     
[43] git2r_0.23.0      magrittr_1.5      scales_1.0.0     
[46] ncdf4_1.16.1      cli_1.0.0         stringi_1.2.4    
[49] xml2_1.2.0        iterators_1.0.10  tools_3.6.1      
[52] glue_1.3.0        RNetCDF_1.9-1     maps_3.3.0       
[55] hms_0.4.2         parallel_3.6.1    yaml_2.2.0       
[58] colorspace_1.3-2  rvest_0.3.2       plotly_4.9.0     
[61] knitr_1.20        bindr_0.1.1       haven_1.1.2      

This reproducible R Markdown analysis was created with workflowr 1.1.1