Last updated: 2021-08-03

Checks: 7 0

Knit directory: Multispectral HCC/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210728) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7d62e48. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/figure/
    Ignored:    code/
    Ignored:    data/
    Ignored:    old/
    Ignored:    output/

Untracked files:
    Untracked:  Rplots.pdf
    Untracked:  analysis/cores.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/tcga.Rmd) and HTML (docs/tcga.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7d62e48 Jovan Tanevski 2021-08-03 hclust and leiden on quantile normalized data
html 55fb7fc Jovan Tanevski 2021-08-02 Build site.
Rmd a152862 Jovan Tanevski 2021-08-02 add NMF based analysis
html c25dcca Jovan Tanevski 2021-08-02 Build site.
Rmd 21cf743 Jovan Tanevski 2021-08-02 rank normalization, leiden analysis, diff exp
html a386eaa Jovan Tanevski 2021-07-28 Build site.
Rmd 9ab4acc Jovan Tanevski 2021-07-28 Build site.
Rmd bd05dbf Jovan Tanevski 2021-07-28 add expression profiles
html e45bf1d Jovan Tanevski 2021-07-28 Build site.
Rmd dcab1bf Jovan Tanevski 2021-07-28 set figure output to svg
html 33e71a0 Jovan Tanevski 2021-07-28 Build site.
Rmd bb998b8 Jovan Tanevski 2021-07-28 hclust with factoextra
html 1cb80af Jovan Tanevski 2021-07-28 Build site.
Rmd d0b6e0f Jovan Tanevski 2021-07-28 add pca to tcga analysis
html d73f586 Jovan Tanevski 2021-07-28 Build site.
Rmd c4324f5 Jovan Tanevski 2021-07-28 add umap
html 0bfae68 Jovan Tanevski 2021-07-28 Build site.
Rmd 82e3712 Jovan Tanevski 2021-07-28 add basic hclust

Setup

Load required libraries.

library(tidyverse)
library(skimr)
library(uwot)
library(factoextra)
library(cowplot)
library(FNN)
library(igraph)
library(leiden)
library(limma)
library(NMF)

Read filtered TCGA RRPA data and display summary statistics.

tcga.raw <- read_csv("data/TCGA-RPPA-LIHC_selected.csv", col_types = cols()) %>%
  select(-TumorType) %>%
  column_to_rownames("SampleID")

skim(tcga.raw)
Data summary
Name tcga.raw
Number of rows 184
Number of columns 12
_______________________
Column type frequency:
numeric 12
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
P53 0 1 -1.13 0.46 -2.54 -1.40 -0.96 -0.76 -0.51 ▁▂▂▅▇
AKT_pS473 0 1 -0.63 0.71 -2.76 -1.02 -0.41 -0.15 0.96 ▁▂▃▇▁
AKT_pT308 0 1 0.07 0.42 -1.16 -0.07 0.09 0.22 1.72 ▁▃▇▁▁
BETACATENIN 0 1 1.50 0.72 -1.30 1.08 1.51 1.87 3.70 ▁▁▇▅▁
JNK_pT183Y185 0 1 -0.21 0.29 -1.14 -0.36 -0.17 -0.04 0.48 ▁▂▇▇▂
MEK1_pS217S221 0 1 -0.17 0.36 -0.82 -0.35 -0.23 -0.10 2.58 ▇▃▁▁▁
P38_pT180Y182 0 1 0.49 0.57 -1.45 0.31 0.50 0.72 2.95 ▁▂▇▁▁
P70S6K_pT389 0 1 -1.21 0.75 -3.22 -1.58 -0.95 -0.65 1.09 ▂▃▇▃▁
PDK1_pS241 0 1 0.40 0.31 -0.56 0.23 0.37 0.55 1.62 ▁▇▇▂▁
S6_pS235S236 0 1 -0.72 0.75 -3.53 -1.06 -0.67 -0.36 1.12 ▁▁▅▇▂
YAP_pS127 0 1 2.21 0.61 0.68 1.78 2.10 2.54 4.05 ▁▇▇▂▁
TRANSGLUTAMINASE 0 1 -0.42 0.56 -1.24 -0.83 -0.59 -0.20 2.72 ▇▃▁▁▁

Quantile normalization and rank normalization for NMF as suggested in https://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/LIHC/RPPA_Clustering_CNMF/nozzle.html

sorted.means <- apply(tcga.raw, 1, sort) %>% colMeans()
names(sorted.means) <- rank(sorted.means)
tcga.norm <- mutate_all(tcga.raw, ~ sorted.means[as.character(rank(.))])

skim(tcga.norm)
Data summary
Name tcga.norm
Number of rows 184
Number of columns 12
_______________________
Column type frequency:
numeric 12
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
P53 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
AKT_pS473 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
AKT_pT308 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
BETACATENIN 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
JNK_pT183Y185 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
MEK1_pS217S221 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
P38_pT180Y182 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
P70S6K_pT389 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
PDK1_pS241 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
S6_pS235S236 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
YAP_pS127 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
TRANSGLUTAMINASE 0 1 0.01 0.2 -0.68 -0.1 0.06 0.13 0.63 ▁▃▇▆▁
tcga.rank <- mutate_all(tcga.raw, rank)

Dimensionality reduction

tcga.pca <- prcomp(tcga.norm)
summary(tcga.pca)
Importance of components:
                          PC1    PC2    PC3     PC4     PC5     PC6     PC7
Standard deviation     0.4038 0.2522 0.2157 0.19762 0.19025 0.16939 0.15692
Proportion of Variance 0.3550 0.1385 0.1013 0.08504 0.07882 0.06248 0.05362
Cumulative Proportion  0.3550 0.4935 0.5948 0.67980 0.75862 0.82110 0.87472
                           PC8     PC9    PC10    PC11    PC12
Standard deviation     0.13833 0.13333 0.09990 0.08501 0.05844
Proportion of Variance 0.04166 0.03871 0.02173 0.01574 0.00744
Cumulative Proportion  0.91638 0.95509 0.97683 0.99256 1.00000
tcga.umap <- umap(tcga.norm, n_neighbors = 10, n_epochs = 1000)

Hierarchical clustering

Perform hierarchical clustering of the data and plot the resulting dendrogram

tcga.hclust <- eclust(tcga.norm, "hclust", k = 6)
Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
"none")` instead.
fviz_dend(tcga.hclust, rect = TRUE)
Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
"none")` instead.

Version Author Date
c25dcca Jovan Tanevski 2021-08-02
a386eaa Jovan Tanevski 2021-07-28
#fviz_gap_stat(tcga.hclust$gap_stat)

fviz_silhouette(tcga.hclust) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
  cluster size ave.sil.width
1       1   82          0.18
2       2   21          0.00
3       3   20          0.12
4       4   21          0.14
5       5   33          0.00
6       6    7         -0.01

Version Author Date
c25dcca Jovan Tanevski 2021-08-02

Plot in 2D PCA and UMAP

fviz_pca_ind(tcga.pca, geom = "point", col.ind = as.factor(tcga.hclust$cluster)) +
  theme_classic()

Version Author Date
c25dcca Jovan Tanevski 2021-08-02
tcga.umap.clus <-
  tcga.umap %>%
  cbind(tcga.hclust$cluster) %>%
  `colnames<-`(c("U1", "U2", "Cluster")) %>%
  as_tibble() %>%
  mutate_at("Cluster", as.factor)

ggplot(tcga.umap.clus, aes(x = U1, y = U2, color = Cluster)) +
  geom_point() +
  theme_classic()

Version Author Date
c25dcca Jovan Tanevski 2021-08-02

Expression profiles per cluster

tcga.clustered <- tcga.raw %>%
  mutate(Cluster = as.factor(tcga.hclust$cluster)) %>%
  pivot_longer(names_to = "Marker", values_to = "Z", -Cluster)

profiles <- seq_len(tcga.hclust$nbclust) %>% map(~
ggplot(
  tcga.clustered %>% filter(Cluster == .x),
  aes(x = Marker, y = Z, color = Marker)
) +
  stat_summary(fun.data = mean_sdl, show.legend = FALSE) +
  ylim(-3, 3) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)))

plot_grid(plotlist = profiles, labels = paste("Cluster", seq_len(tcga.hclust$nbclust)))
Warning: Removed 2 rows containing non-finite values (stat_summary).
Warning: Removed 23 rows containing non-finite values (stat_summary).
Warning: Removed 4 rows containing missing values (geom_segment).
Warning: Removed 3 rows containing non-finite values (stat_summary).
Warning: Removed 2 rows containing missing values (geom_segment).
Warning: Removed 1 rows containing non-finite values (stat_summary).
Warning: Removed 2 rows containing non-finite values (stat_summary).
Warning: Removed 1 rows containing missing values (geom_segment).
Warning: Removed 2 rows containing non-finite values (stat_summary).
Warning: Removed 3 rows containing missing values (geom_segment).

Version Author Date
c25dcca Jovan Tanevski 2021-08-02

Differential expression analysis with limma.

design <- model.matrix(~0 + as.factor(tcga.hclust$cluster))
colnames(design) <- paste0("Cluster", seq_len(tcga.hclust$nbclust))

tcga.hclust.limma <- lmFit(t(tcga.raw), design = design)

tcga.hclust.eb <- eBayes(tcga.hclust.limma)

topTable(tcga.hclust.eb)
                 Cluster1   Cluster2    Cluster3    Cluster4    Cluster5
P53           -0.81853456 -1.9728291 -1.34957363 -0.74815702 -1.35906356
YAP_pS127      2.02647828  3.0339519  2.09697253  1.93563539  2.41272242
P70S6K_pT389  -0.76752424 -2.4629435 -1.57688878 -0.55839403 -1.53985816
BETACATENIN    1.52521648  1.9768320  1.95573186  0.99194015  1.17977279
AKT_pS473     -0.27169830 -1.8269418 -1.02160833 -0.17498966 -1.05301660
PDK1_pS241     0.27956272  0.6802625  0.61401976  0.19940906  0.47342995
S6_pS235S236  -0.49873009 -1.6585656 -1.28105258 -0.34080340 -0.63892664
JNK_pT183Y185 -0.08655255 -0.6563026 -0.34991835 -0.05875654 -0.19999888
AKT_pT308      0.14372226 -0.4067163 -0.13355154  0.19638602 -0.04363602
P38_pT180Y182  0.57219116  0.1158460  0.01588039  0.88070826  0.47681020
                Cluster6     AveExpr         F       P.Value     adj.P.Val
P53           -1.6953849 -1.13026525 942.06423 3.292798e-134 3.951358e-133
YAP_pS127      2.0694465  2.20966288 571.85237 2.802263e-115 1.681358e-114
P70S6K_pT389  -2.1136125 -1.21485575 317.89567  1.172629e-93  4.690517e-93
BETACATENIN    1.5628928  1.50217041 171.13854  4.393233e-72  1.317970e-71
AKT_pS473      0.5060157 -0.63021426 142.44966  4.903972e-66  1.176953e-65
PDK1_pS241     0.6285290  0.40054637  83.80991  9.596449e-50  1.919290e-49
S6_pS235S236  -0.4666669 -0.72203758  55.91764  8.970505e-39  1.537801e-38
JNK_pT183Y185 -0.4861532 -0.21258126  52.37781  3.885665e-37  5.828498e-37
AKT_pT308      1.3833306  0.07032927  43.95006  6.024275e-33  8.032366e-33
P38_pT180Y182  0.7721723  0.48535253  35.13690  4.890317e-28  5.868380e-28
tests.hclust <- decideTests(tcga.hclust.eb)

tests.hclust@.Data
                 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6
P53                    -1       -1       -1       -1       -1       -1
AKT_pS473              -1       -1       -1        0       -1        1
AKT_pT308               1       -1       -1        1        0        1
BETACATENIN             1        1        1        1        1        1
JNK_pT183Y185          -1       -1       -1        0       -1       -1
MEK1_pS217S221         -1        0       -1        0        0       -1
P38_pT180Y182           1        0        0        1        1        1
P70S6K_pT389           -1       -1       -1       -1       -1       -1
PDK1_pS241              1        1        1        1        1        1
S6_pS235S236           -1       -1       -1       -1       -1        0
YAP_pS127               1        1        1        1        1        1
TRANSGLUTAMINASE       -1       -1       -1       -1        0        0
summary(tests.hclust)
       Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6
Down          7        7        8        4        5        4
NotSig        0        2        1        3        3        2
Up            5        3        3        5        4        6

Similarity and graph based clustering

Calculate leiden clustering based on weighted shared nearest neighbor graph

tcga.knn <- knn.index(tcga.norm, 10)
jaccard.cuttoff <- 0.1

snn <- seq_len(nrow(tcga.knn) - 1) %>% map_dfr(\(id){
  to <- seq(id + 1, nrow(tcga.knn))
  jaccard <- to %>%
    map_dbl(~ length(intersect(tcga.knn[id, ], tcga.knn[.x, ])) /
      length(union(tcga.knn[id, ], tcga.knn[.x, ])))
  
  tibble(from = id, to = to, weight = jaccard) %>% filter(jaccard >= jaccard.cuttoff)
})

leiden.clusters <- graph_from_data_frame(snn, directed = FALSE) %>% leiden()

Plot in 2D PCA and UMAP

fviz_pca_ind(tcga.pca, geom = "point", col.ind = as.factor(leiden.clusters)) +
  theme_classic()

Version Author Date
55fb7fc Jovan Tanevski 2021-08-02
c25dcca Jovan Tanevski 2021-08-02
ggplot(tcga.umap.clus %>% mutate(Cluster = as.factor(leiden.clusters)), aes(x = U1, y = U2, color = Cluster, shape = Cluster)) +
  geom_point() +
  theme_classic()

Version Author Date
55fb7fc Jovan Tanevski 2021-08-02
c25dcca Jovan Tanevski 2021-08-02

Expression profiles per cluster

tcga.clustered <- tcga.raw %>%
  mutate(Cluster = as.factor(leiden.clusters)) %>%
  pivot_longer(names_to = "Marker", values_to = "Z", -Cluster)

profiles <- seq_len(max(leiden.clusters)) %>% map(~
ggplot(
  tcga.clustered %>% filter(Cluster == .x),
  aes(x = Marker, y = Z, color = Marker)
) +
  stat_summary(fun.data = mean_sdl, show.legend = FALSE) +
  ylim(-3, 3) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)))

plot_grid(plotlist = profiles, labels = paste("Cluster", seq_len(max(leiden.clusters))))
Warning: Removed 27 rows containing non-finite values (stat_summary).
Warning: Removed 3 rows containing missing values (geom_segment).
Warning: Removed 3 rows containing non-finite values (stat_summary).
Warning: Removed 2 rows containing non-finite values (stat_summary).
Warning: Removed 1 rows containing non-finite values (stat_summary).

Version Author Date
55fb7fc Jovan Tanevski 2021-08-02
c25dcca Jovan Tanevski 2021-08-02

Differential expression analysis

design <- model.matrix(~0 + as.factor(leiden.clusters))
colnames(design) <- paste0("Cluster", seq_len(max(leiden.clusters)))

tcga.leiden.limma <- lmFit(t(tcga.raw), design = design)

tcga.leiden.eb <- eBayes(tcga.leiden.limma)

topTable(tcga.hclust.eb)
                 Cluster1   Cluster2    Cluster3    Cluster4    Cluster5
P53           -0.81853456 -1.9728291 -1.34957363 -0.74815702 -1.35906356
YAP_pS127      2.02647828  3.0339519  2.09697253  1.93563539  2.41272242
P70S6K_pT389  -0.76752424 -2.4629435 -1.57688878 -0.55839403 -1.53985816
BETACATENIN    1.52521648  1.9768320  1.95573186  0.99194015  1.17977279
AKT_pS473     -0.27169830 -1.8269418 -1.02160833 -0.17498966 -1.05301660
PDK1_pS241     0.27956272  0.6802625  0.61401976  0.19940906  0.47342995
S6_pS235S236  -0.49873009 -1.6585656 -1.28105258 -0.34080340 -0.63892664
JNK_pT183Y185 -0.08655255 -0.6563026 -0.34991835 -0.05875654 -0.19999888
AKT_pT308      0.14372226 -0.4067163 -0.13355154  0.19638602 -0.04363602
P38_pT180Y182  0.57219116  0.1158460  0.01588039  0.88070826  0.47681020
                Cluster6     AveExpr         F       P.Value     adj.P.Val
P53           -1.6953849 -1.13026525 942.06423 3.292798e-134 3.951358e-133
YAP_pS127      2.0694465  2.20966288 571.85237 2.802263e-115 1.681358e-114
P70S6K_pT389  -2.1136125 -1.21485575 317.89567  1.172629e-93  4.690517e-93
BETACATENIN    1.5628928  1.50217041 171.13854  4.393233e-72  1.317970e-71
AKT_pS473      0.5060157 -0.63021426 142.44966  4.903972e-66  1.176953e-65
PDK1_pS241     0.6285290  0.40054637  83.80991  9.596449e-50  1.919290e-49
S6_pS235S236  -0.4666669 -0.72203758  55.91764  8.970505e-39  1.537801e-38
JNK_pT183Y185 -0.4861532 -0.21258126  52.37781  3.885665e-37  5.828498e-37
AKT_pT308      1.3833306  0.07032927  43.95006  6.024275e-33  8.032366e-33
P38_pT180Y182  0.7721723  0.48535253  35.13690  4.890317e-28  5.868380e-28
tests.leiden <- decideTests(tcga.leiden.eb)

tests.leiden@.Data
                 Cluster1 Cluster2 Cluster3 Cluster4
P53                    -1       -1       -1       -1
AKT_pS473              -1       -1       -1       -1
AKT_pT308              -1        1        0        1
BETACATENIN             1        1        1        1
JNK_pT183Y185          -1       -1       -1        0
MEK1_pS217S221         -1       -1       -1        0
P38_pT180Y182           1        1        1        1
P70S6K_pT389           -1       -1       -1       -1
PDK1_pS241              1        1        1        1
S6_pS235S236           -1       -1       -1       -1
YAP_pS127               1        1        1        1
TRANSGLUTAMINASE       -1       -1       -1       -1
summary(tests.leiden)
       Cluster1 Cluster2 Cluster3 Cluster4
Down          8        7        7        5
NotSig        0        0        1        2
Up            4        5        4        5

Consensus NMF

tcga.nmf.rank <- nmfEstimateRank(as.matrix(t(tcga.rank)), seq(2,12), nrun = 10)

plot(tcga.nmf.rank)
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
55fb7fc Jovan Tanevski 2021-08-02
tcga.nmf <- nmf(as.matrix(t(tcga.rank)), 6, nrun = 10)

Extract basis of NMF (signature of cluster)

basismap(tcga.nmf)

Version Author Date
55fb7fc Jovan Tanevski 2021-08-02

Extract coefficients of NMF (soft clustering of samples)

coefmap(tcga.nmf)

Version Author Date
55fb7fc Jovan Tanevski 2021-08-02

Check for signs of overfitting

consensusmap(tcga.nmf)

Version Author Date
55fb7fc Jovan Tanevski 2021-08-02

Assign clusters

nmf.clusters <- apply(tcga.nmf@fit@H, 2, which.max)

Plot in 2D PCA and UMAP

fviz_pca_ind(tcga.pca, geom = "point", col.ind = as.factor(nmf.clusters)) +
  theme_classic()

Version Author Date
55fb7fc Jovan Tanevski 2021-08-02
ggplot(tcga.umap.clus %>% mutate(Cluster = as.factor(nmf.clusters)), aes(x = U1, y = U2, color = Cluster)) +
  geom_point() +
  theme_classic()

Version Author Date
55fb7fc Jovan Tanevski 2021-08-02

Differential expression analysis

design <- model.matrix(~0 + as.factor(nmf.clusters))
colnames(design) <- paste0("Cluster", seq_len(max(nmf.clusters)))

tcga.nmf.limma <- lmFit(t(tcga.raw), design = design)

tcga.nmf.eb <- eBayes(tcga.nmf.limma)

topTable(tcga.nmf.eb)
                   Cluster1   Cluster2    Cluster3    Cluster4   Cluster5
YAP_pS127         2.1669466  2.6346838  1.97932489  2.50812401  1.8835078
P53              -1.4304623 -1.5385675 -0.76462047 -1.42192857 -1.2592257
BETACATENIN       1.0289145  1.6266837  1.39191141  2.21519980  0.8743556
P70S6K_pT389     -1.7313384 -1.9147869 -0.67579019 -1.66431017 -1.4321143
PDK1_pS241        0.2869675  0.6233431  0.22696575  0.61545120  0.4634347
AKT_pS473        -1.0510982 -0.2240496 -0.16760173 -1.14207558 -1.1754947
S6_pS235S236      0.3211474 -1.0115932 -0.47211361 -1.33119424 -0.9696062
P38_pT180Y182     0.1560010  0.4185472  0.62130407  0.04148853  0.1819230
JNK_pT183Y185    -0.2805842 -0.4033670 -0.05755174 -0.40469993  0.0600595
TRANSGLUTAMINASE  0.2117830 -0.2387284 -0.54528210 -0.41489845 -0.1489069
                   Cluster6    AveExpr         F       P.Value     adj.P.Val
YAP_pS127         2.3801914  2.2096629 484.08011 1.575811e-109 1.890974e-108
P53              -1.4474868 -1.1302653 408.09012 3.513724e-103 2.108234e-102
BETACATENIN       1.0729739  1.5021704 222.63071  2.327240e-81  9.308961e-81
P70S6K_pT389     -1.5678306 -1.2148558 168.63789  7.569716e-72  2.270915e-71
PDK1_pS241        0.5326748  0.4005464  87.42230  4.067236e-51  9.761367e-51
AKT_pS473        -1.0879843 -0.6302143  67.80680  6.084641e-44  1.216928e-43
S6_pS235S236     -0.8043381 -0.7220376  59.92689  1.183764e-40  2.029309e-40
P38_pT180Y182     1.0238573  0.4853525  48.26332  3.152630e-35  4.728945e-35
JNK_pT183Y185    -0.3560675 -0.2125813  38.41788  5.351536e-30  7.135381e-30
TRANSGLUTAMINASE -0.4989314 -0.4221190  23.90494  8.492965e-21  1.019156e-20
tests.nmf <- decideTests(tcga.nmf.eb)

tests.nmf@.Data
                 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6
P53                    -1       -1       -1       -1       -1       -1
AKT_pS473              -1        0       -1       -1       -1       -1
AKT_pT308               0        1        1       -1        0        0
BETACATENIN             1        1        1        1        1        1
JNK_pT183Y185          -1       -1       -1       -1        0       -1
MEK1_pS217S221          0       -1       -1       -1        1        0
P38_pT180Y182           0        1        1        0        0        1
P70S6K_pT389           -1       -1       -1       -1       -1       -1
PDK1_pS241              1        1        1        1        1        1
S6_pS235S236            0       -1       -1       -1       -1       -1
YAP_pS127               1        1        1        1        1        1
TRANSGLUTAMINASE        0        0       -1       -1        0       -1
summary(tests.nmf)
       Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6
Down          4        5        7        8        4        6
NotSig        5        2        0        1        4        2
Up            3        5        5        3        4        4

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] RColorBrewer_1.1-2  doParallel_1.0.16   iterators_1.0.13   
 [4] foreach_1.5.1       NMF_0.23.0          Biobase_2.52.0     
 [7] BiocGenerics_0.38.0 cluster_2.1.2       rngtools_1.5       
[10] pkgmaker_0.32.2     registry_0.5-1      limma_3.48.1       
[13] leiden_0.3.9        igraph_1.2.6        FNN_1.1.3          
[16] cowplot_1.1.1       factoextra_1.0.7    uwot_0.1.10        
[19] Matrix_1.3-4        skimr_2.1.3         forcats_0.5.1      
[22] stringr_1.4.0       dplyr_1.0.7         purrr_0.3.4        
[25] readr_2.0.0         tidyr_1.1.3         tibble_3.1.3       
[28] ggplot2_3.3.5       tidyverse_1.3.1     workflowr_1.6.2    

loaded via a namespace (and not attached):
  [1] readxl_1.3.1        backports_1.2.1     Hmisc_4.5-0        
  [4] plyr_1.8.6          repr_1.1.3          splines_4.1.0      
  [7] gridBase_0.4-7      digest_0.6.27       htmltools_0.5.1.1  
 [10] viridis_0.6.1       fansi_0.5.0         checkmate_2.0.0    
 [13] magrittr_2.0.1      tzdb_0.1.2          openxlsx_4.2.4     
 [16] modelr_0.1.8        vroom_1.5.3         jpeg_0.1-9         
 [19] colorspace_2.0-2    rvest_1.0.1         ggrepel_0.9.1      
 [22] haven_2.4.1         xfun_0.24           crayon_1.4.1       
 [25] jsonlite_1.7.2      survival_3.2-11     glue_1.4.2         
 [28] gtable_0.3.0        car_3.0-11          abind_1.4-5        
 [31] scales_1.1.1        DBI_1.1.1           rstatix_0.7.0      
 [34] Rcpp_1.0.7          htmlTable_2.2.1     viridisLite_0.4.0  
 [37] xtable_1.8-4        reticulate_1.20     foreign_0.8-81     
 [40] bit_4.0.4           Formula_1.2-4       htmlwidgets_1.5.3  
 [43] httr_1.4.2          ellipsis_0.3.2      pkgconfig_2.0.3    
 [46] farver_2.1.0        nnet_7.3-16         sass_0.4.0         
 [49] dbplyr_2.1.1        utf8_1.2.2          tidyselect_1.1.1   
 [52] labeling_0.4.2      rlang_0.4.11        reshape2_1.4.4     
 [55] later_1.2.0         munsell_0.5.0       cellranger_1.1.0   
 [58] tools_4.1.0         cli_3.0.1           generics_0.1.0     
 [61] broom_0.7.9         evaluate_0.14       yaml_2.2.1         
 [64] knitr_1.33          bit64_4.0.5         fs_1.5.0           
 [67] zip_2.2.0           dendextend_1.15.1   whisker_0.4        
 [70] xml2_1.3.2          compiler_4.1.0      rstudioapi_0.13    
 [73] curl_4.3.2          png_0.1-7           ggsignif_0.6.2     
 [76] reprex_2.0.0        bslib_0.2.5.1       stringi_1.7.3      
 [79] highr_0.9           RSpectra_0.16-0     lattice_0.20-44    
 [82] vctrs_0.3.8         pillar_1.6.2        lifecycle_1.0.0    
 [85] jquerylib_0.1.4     data.table_1.14.0   httpuv_1.6.1       
 [88] R6_2.5.0            latticeExtra_0.6-29 promises_1.2.0.1   
 [91] gridExtra_2.3       rio_0.5.27          codetools_0.2-18   
 [94] assertthat_0.2.1    rprojroot_2.0.2     withr_2.4.2        
 [97] hms_1.1.0           grid_4.1.0          rpart_4.1-15       
[100] rmarkdown_2.9       carData_3.0-4       git2r_0.28.0       
[103] ggpubr_0.4.0        lubridate_1.7.10    base64enc_0.1-3