Last updated: 2021-05-23

Checks: 6 1

Knit directory: wildlife-bacteria/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210129) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9ecc095. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store
    Ignored:    output/plots/.DS_Store
    Ignored:    output/plots/QC/.DS_Store
    Ignored:    output/plots/boxplots_select_taxa/.DS_Store
    Ignored:    output/plots/heatmaps/.DS_Store
    Ignored:    output/plots/maps/.DS_Store
    Ignored:    output/plots/tax_prev_abund/.DS_Store

Untracked files:
    Untracked:  NCBI_data/
    Untracked:  analysis/microbiome-viz-extra.Rmd
    Untracked:  analysis/phylogeny.Rmd
    Untracked:  analysis/tois.Rmd
    Untracked:  data/dada2/
    Untracked:  data/dada2_tois/
    Untracked:  data/taxa_trees/
    Untracked:  data/tmp/
    Untracked:  output/beta-div-statistics.txt
    Untracked:  output/supp_table_pos.xlsx
    Untracked:  tmp/

Unstaged changes:
    Modified:   README.md
    Modified:   analysis/QIIME2.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/index.Rmd
    Modified:   analysis/microbiome-viz.Rmd
    Modified:   analysis/phyloseq.Rmd
    Modified:   analysis/site-map.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/site-map.Rmd) and HTML (docs/site-map.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html a69dea3 siobhon-egan 2021-04-24 Build site.
Rmd 6ebcc5d siobhon-egan 2021-04-24 updates
html 6ebcc5d siobhon-egan 2021-04-24 updates

Map usingozmaps

#ozmaps data not on CRAN
#devtools::install_github("mdsumner/ozmaps.data")

Load libraries

pkgs <- c("ozmaps", "sf", "sp", "dplyr", "rgdal",
          "raster", "ggplot2", "viridis", "readr",
          "paletteer", "rmapshaper", "ggrepel",
          "tidyverse", "ozmaps.data", "readxl")
lapply(pkgs, require, character.only = TRUE)

Import data

site_map <- read_excel("data/site_map.xlsx")
site_map_lab = column_to_rownames(site_map, var = "Site name")

site_map <- read_excel(“data/site_map.xlsx”, col_types = c(“text”, “text”, “numeric”, “numeric”, “text”, “numeric”))

Ozmaps

package data

Simple Aus map

ozmap()

Plot of states

sf_oz <- ozmap_data("states")
if (utils::packageVersion("paletteer") < '1.0.0') {
 pal <- paletteer::paletteer_d(package = "ochRe", palette = "namatjira_qual")
} else {
  pal <- paletteer::paletteer_d(palette = "ochRe::namatjira_qual")
} 

mycols = c("#a19a11", "#D3D3D3", "#D3D3D3", "#D3D3D3", "#D3D3D3", "#D3D3D3", "#D3D3D3", "#365350", "#a19a11", "#3f4482")
opal <- colorRampPalette(pal)
nmjr <- opal(nrow(sf_oz))
plot(st_geometry(sf_oz), col = mycols)

Plot the ABS layers (from 2016).

ozmap("abs_ced", col = opal(nrow(abs_ced)))

Plot of map with city regions abs_gccsa

citycols = c("#D3D3D3", "#3f4482",  "#D3D3D3",  "#D3D3D3",  "#D3D3D3",  "#D3D3D3",  "#D3D3D3",  "#D3D3D3",  "#3f4482",  "#D3D3D3",  "#D3D3D3",  "#D3D3D3",  "#D3D3D3",  "#D3D3D3",  "#D3D3D3",  "#D3D3D3")
plot(st_transform(abs_gccsa, LCC), main = "Greater Capital City Statistical Areas", col = citycols)

Enlarge northern beaches

library(dplyr)
kbor <- abs_lga %>% dplyr::filter(grepl("Northern Beaches", NAME))
bb <- st_bbox(kbor)

layout(matrix(c(1, 1, 1, 2, 2, 2, 2, 2, 2), nrow = 3))
plot(kbor, reset = FALSE, main = "Northern Beaches (NSW)")
rect(bb["xmin"], bb["ymin"], bb["xmax"], bb["ymax"])
library(mapdata)
#> Loading required package: maps
par(mar = rep(0, 4))
plot(c(110, 160), c(-45, -5), type = "n", asp = 1/cos(mean(bb[c(2, 4)]) * pi/180), axes = FALSE, xlab = "", ylab = "")
plot = maps::map(database = "worldHires", regions = "australia", xlim = c(110, 160), ylim = c(-45, -5), add = TRUE)
rect(bb["xmin"], bb["ymin"], bb["xmax"], bb["ymax"])


buffer <- 0.11
min_lon <- 110
max_lon <- 160
min_lat <- -45
max_lat <- -5

geo_bounds <- c(left = min_lon, bottom = min_lat, right = max_lon, top = max_lat)

Tutorial

here

oz_states <- ozmaps::ozmap_states
ggplot(oz_states) + 
  geom_sf() + 
  coord_sf()

oz_states <- ozmaps::ozmap_states %>% filter(NAME != "Other Territories")
oz_votes <- rmapshaper::ms_simplify(ozmaps::abs_ced)
ggplot() + 
  geom_sf(data = oz_states, mapping = aes(fill = NAME), show.legend = FALSE) +
  geom_sf(data = oz_votes, fill = NA) + 
  coord_sf()

# large map
map1 = ggplot() + 
  geom_sf(data = oz_votes) + 
  geom_sf(data = oz_states, colour = "black", fill = "NA") + 
  geom_point(data = site_map_lab, mapping = aes(x = lon, y = lat, color = Site, shape=Site, size= Size)) + 
  coord_sf() + theme_classic() + theme(legend.position = "none", axis.title.x = element_blank(), axis.title.y = element_blank()) + scale_color_manual(values=c("#E69F00", "#56B4E9")) + scale_shape_manual(values=c(8, 16)) + xlim (114,155)

# base map for inserts
map2 = ggplot() + 
  geom_sf(data = oz_votes)  +
  geom_sf(data = oz_states, colour = "black", fill = "NA") + 
  geom_point(data = site_map_lab, mapping = aes(x = lon, y = lat, color = Site, shape=Site, size= Size)) + 
  coord_sf() + theme_classic() + theme(legend.position = "none", axis.title.x = element_blank(), axis.title.y = element_blank()) + scale_color_manual(values=c("#999999", "#E69F00"))

# zoom in on Sydney region
map3 = map2 + coord_sf(xlim = c(150, 152), ylim = c(-35, -33.0)) + theme(legend.position = "none") + theme(axis.title.x = element_blank(), axis.title.y = element_blank())
map4 = map2 + coord_sf(xlim = c(115, 117), ylim = c(-32.5, -31)) + theme(legend.position = "none") + theme(axis.title.x = element_blank(), axis.title.y = element_blank())

ggsave("map_base.pdf", plot = map1, path = "output/plots", width = 30, height = 15, units = "cm")
ggsave("map_NSW.pdf", plot = map3, path = "output/plots", width = 10, height = 10, units = "cm")
ggsave("map_WA.pdf", plot = map4, path = "output/plots", width = 10, height = 10, units = "cm")

Capital cities

oz_capitals <- tibble::tribble( 
  ~city,           ~lat,     ~lon,
  "Sydney",    -33.8688, 151.2093,  
  "Melbourne", -37.8136, 144.9631, 
  "Brisbane",  -27.4698, 153.0251, 
  "Adelaide",  -34.9285, 138.6007, 
  "Perth",     -31.9505, 115.8605, 
  "Hobart",    -42.8821, 147.3272, 
  "Canberra",  -35.2809, 149.1300, 
  "Darwin",    -12.4634, 130.8456, 
)

Alternative

Following tutorial at this link

Load libraries

pkgs <- c("sp", "dplyr", "rgdal", 
          "raster", "ggplot2", "readxl",
          "viridis", "readr")
lapply(pkgs, require, character.only = TRUE)

Load your point data file

site_map <- read_excel("data/site_map.xlsx")

Make map of Australia

Create buffer around your data points

# Make boundaries
buffer <- 0.11
min_lon <- 110
max_lon <- 160
min_lat <- -45
max_lat <- -5

geo_bounds <- c(left = min_lon, bottom = min_lat, right = max_lon, top = max_lat)


# Now map with boundaries
Sites.grid <- expand.grid(lon_bound = c(geo_bounds[1], geo_bounds[3]), 
                       lat_bound = c(geo_bounds[2], geo_bounds[4]))
coordinates(Sites.grid) <- ~ lon_bound + lat_bound

Load mapping files Downloaded from GEODATA COAST 100K 2004 shapefiles available here

Aus <- readOGR(dsn = "~/Documents/Programs/R/Maps/Rpackage_Geodata-coast/australia",layer = "cstauscd_r")

Remove coastline clutter from map

Aus_coast <- subset(Aus, FEAT_CODE != "sea")
plot <- plot(Aus_coast)

Now apply boundaries to the map without coastline

Aus_crop <- crop(Aus_coast, extent(Sites.grid))
plot(Aus_crop)

Plot map with axis

aus_plot1 <- ggplot() + 
 geom_polygon(data = Aus_crop, aes(x=long, y=lat, group=group), fill = "gray98", colour="black") +
 coord_equal() +
 labs(x="Longitude", y="Latitude") +
 theme_classic()
aus_plot2 = aus_plot1 + geom_point(data = site_map, aes (x=lon, y=lat, color=Site, stroke=1)) +
  geom_text(label=(site_map$Site)) +  scale_color_brewer(palette = "Set1") + theme_classic()
ggsave("aus_plot2.pdf", plot = aus_plot2, path = "output/plots", width = 15, height = 15, units = "cm")

Test

tutorial

# load library
library(OpenStreetMap)
# extract map
AustraliaMap <- openmap(c(-8,110),
    c(-45,160),
#   type = "osm",
#   type = "esri",
    type = "nps",
    minNumTiles=7)
plot(AustraliaMap)
library(DT)
opt <- c("osm", "osm-bw","maptoolkit-topo", "waze", "bing", "stamen-toner", "stamen-terrain", "stamen-watercolor", "osm-german", "osm-wanderreitkarte", "mapbox", "esri", "esri-topo", "nps", "apple-iphoto", "skobbler", "hillshade", "opencyclemap", "osm-transport", "osm-public-transport", "osm-bbike", "osm-bbike-german")
opt <- data.frame(opt)
# extract map
queensland1 <- openmap(c(-8,135),
    c(-30,160),
    type = "osm",
    minNumTiles=6)
queensland2 <- openmap(c(-8,135),
    c(-30,160),
    type = "esri",
    minNumTiles=6)
# plot maps
par(mfrow = c(1, 2)) # display plots in 1 row/2 columns
plot(queensland1); plot(queensland2); par(mfrow = c(1, 1)) # restore original settings

Leaflet here

# load package
library(leaflet)
# load library
m <- leaflet() %>% setView(lng = 153.05, lat = -27.45, zoom = 12)
# display map
m %>% addTiles()
# add ERSI theme
esri <- grep("^Esri", providers, value = TRUE)
m %>% addTiles() %>% addLayersControl(baseGroups = names(esri))


leaflet(data = site_map) %>% addTiles() %>%
  addMarkers(~lon, ~lat, icon=oceanIcons)