Last updated: 2022-02-26

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5c37a5d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/Glucose_Adipose_Subcutaneous.Rmd
    Untracked:  analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Untracked:  analysis/Splicing_Test.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Amygdala_S.Rmd
    Modified:   analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellum_S.Rmd
    Modified:   analysis/BMI_Brain_Cortex.Rmd
    Modified:   analysis/BMI_Brain_Cortex_S.Rmd
    Modified:   analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/BMI_Brain_Hippocampus_S.Rmd
    Modified:   analysis/BMI_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/LDL_Liver_S.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/T2D_Pancreas.Rmd) and HTML (docs/T2D_Pancreas.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5c37a5d sq-96 2022-02-26 update
html 3fa3a64 sq-96 2022-02-26 Build site.
Rmd 0e6a2f2 sq-96 2022-02-26 update
html 91f38fa sq-96 2022-02-13 Build site.
Rmd eb13ecf sq-96 2022-02-13 update
html e6bc169 sq-96 2022-02-13 Build site.
Rmd 87fee8b sq-96 2022-02-13 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 7605
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
748 581 480 310 401 436 387 270 287 327 513 475 161 273 282 292 407 119 367 228 
 21  22 
 92 169 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 4452
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.5854

Check convergence of parameters

Version Author Date
3fa3a64 sq-96 2022-02-26
e6bc169 sq-96 2022-02-13
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0123097 0.0003667 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
8.181 8.890 
#report sample size
print(sample_size)
[1] 62892
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]    7605 5017190
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01218 0.26008 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.06992 1.44417

Genes with highest PIPs

       genename region_tag susie_pip   mu2       PVE      z num_eqtl
5708      SCRN2      17_28    0.8107 23.10 0.0002977 -4.970        2
3452       ARG1       6_87    0.7825 28.71 0.0003572 -5.418        2
8741    ONECUT1      15_22    0.7596 27.19 0.0003284  5.079        1
10062   ARL6IP4      12_75    0.7433 36.01 0.0004257  5.620        1
11158     PARVA       11_9    0.7138 21.89 0.0002484 -3.862        2
2227     DNASE2      19_10    0.7083 19.09 0.0002150 -3.744        1
4461     ZNF236      18_45    0.7059 20.70 0.0002323 -4.378        1
7604    CFAP221       2_69    0.6764 20.29 0.0002183 -4.050        2
10527      GSAP       7_49    0.6505 24.56 0.0002541 -4.185        1
183        GIPR      19_32    0.6326 36.32 0.0003653 -6.632        1
1451    CWF19L1      10_64    0.6280 33.14 0.0003309 -5.803        2
12493 LINC01184       5_78    0.5774 20.30 0.0001864  3.793        1
4519      TUBG1      17_25    0.5616 23.49 0.0002098  5.268        2
6236      CRIP3       6_33    0.5552 21.66 0.0001912  4.545        2
2221      MIER2       19_1    0.5414 23.96 0.0002063  3.684        1
6019      MRPS5       2_57    0.5399 21.72 0.0001865 -3.737        1
11243    ZNF251       8_94    0.5343 24.42 0.0002075 -4.886        1
1411      TYRO3      15_15    0.5096 23.09 0.0001871  4.866        1
3830     KBTBD4      11_29    0.4950 25.44 0.0002003 -5.098        1
12664 LINC01933       5_89    0.4651 20.74 0.0001534  3.780        1

Genes with largest effect sizes

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
6795      JAZF1       7_23 0.0253350 147.34 5.935e-05 -13.082        2
474       BCAR1      16_40 0.0891404  58.62 8.308e-05  -7.720        1
10584     ARAP1      11_41 0.0192136  57.43 1.754e-05   7.886        1
6345     CDKN2B       9_16 0.0874433  55.91 7.773e-05  -8.192        1
13639 LINC01126       2_27 0.0310930  53.94 2.667e-05  -8.377        1
10742   NCR3LG1      11_12 0.0210812  51.25 1.718e-05  -7.370        1
7991     NKX6-3       8_36 0.4571379  42.55 3.093e-04  -6.781        2
9232      PEAK1      15_36 0.4152426  40.39 2.667e-04   6.885        1
7192     ATP5G1      17_28 0.0676819  39.63 4.264e-05   6.400        1
11440     RBM20      10_70 0.0002241  38.43 1.369e-07  -3.000        1
7194       SNF8      17_28 0.0573206  37.71 3.437e-05   6.300        1
1291      P2RX7      12_74 0.2975092  37.49 1.773e-04   5.484        2
10224     BMP8A       1_24 0.0347387  37.42 2.067e-05   6.296        1
7087      AP3S2      15_41 0.3727948  37.36 2.215e-04   6.356        1
183        GIPR      19_32 0.6326493  36.32 3.653e-04  -6.632        1
10062   ARL6IP4      12_75 0.7433361  36.01 4.257e-04   5.620        1
10674    HAPLN4      19_15 0.0946101  35.81 5.387e-05   5.347        1
11533      MICB       6_25 0.0933549  33.28 4.940e-05   5.546        2
1451    CWF19L1      10_64 0.6279579  33.14 3.309e-04  -5.803        2
8540       TAP1       6_27 0.0647764  32.27 3.323e-05  -5.575        1

Genes with highest PVE

      genename region_tag susie_pip   mu2       PVE      z num_eqtl
10062  ARL6IP4      12_75    0.7433 36.01 0.0004257  5.620        1
183       GIPR      19_32    0.6326 36.32 0.0003653 -6.632        1
3452      ARG1       6_87    0.7825 28.71 0.0003572 -5.418        2
1451   CWF19L1      10_64    0.6280 33.14 0.0003309 -5.803        2
8741   ONECUT1      15_22    0.7596 27.19 0.0003284  5.079        1
7991    NKX6-3       8_36    0.4571 42.55 0.0003093 -6.781        2
5708     SCRN2      17_28    0.8107 23.10 0.0002977 -4.970        2
9232     PEAK1      15_36    0.4152 40.39 0.0002667  6.885        1
10527     GSAP       7_49    0.6505 24.56 0.0002541 -4.185        1
11158    PARVA       11_9    0.7138 21.89 0.0002484 -3.862        2
4461    ZNF236      18_45    0.7059 20.70 0.0002323 -4.378        1
7087     AP3S2      15_41    0.3728 37.36 0.0002215  6.356        1
7604   CFAP221       2_69    0.6764 20.29 0.0002183 -4.050        2
2227    DNASE2      19_10    0.7083 19.09 0.0002150 -3.744        1
4519     TUBG1      17_25    0.5616 23.49 0.0002098  5.268        2
11243   ZNF251       8_94    0.5343 24.42 0.0002075 -4.886        1
2221     MIER2       19_1    0.5414 23.96 0.0002063  3.684        1
3830    KBTBD4      11_29    0.4950 25.44 0.0002003 -5.098        1
6236     CRIP3       6_33    0.5552 21.66 0.0001912  4.545        2
1411     TYRO3      15_15    0.5096 23.09 0.0001871  4.866        1

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
6795      JAZF1       7_23   0.02534 147.34 5.935e-05 -13.082        2
13639 LINC01126       2_27   0.03109  53.94 2.667e-05  -8.377        1
6345     CDKN2B       9_16   0.08744  55.91 7.773e-05  -8.192        1
10584     ARAP1      11_41   0.01921  57.43 1.754e-05   7.886        1
474       BCAR1      16_40   0.08914  58.62 8.308e-05  -7.720        1
10742   NCR3LG1      11_12   0.02108  51.25 1.718e-05  -7.370        1
9232      PEAK1      15_36   0.41524  40.39 2.667e-04   6.885        1
7991     NKX6-3       8_36   0.45714  42.55 3.093e-04  -6.781        2
183        GIPR      19_32   0.63265  36.32 3.653e-04  -6.632        1
7192     ATP5G1      17_28   0.06768  39.63 4.264e-05   6.400        1
7087      AP3S2      15_41   0.37279  37.36 2.215e-04   6.356        1
7194       SNF8      17_28   0.05732  37.71 3.437e-05   6.300        1
10224     BMP8A       1_24   0.03474  37.42 2.067e-05   6.296        1
1451    CWF19L1      10_64   0.62796  33.14 3.309e-04  -5.803        2
10062   ARL6IP4      12_75   0.74334  36.01 4.257e-04   5.620        1
3128      NRBP1       2_16   0.02609  31.31 1.298e-05  -5.595        1
8540       TAP1       6_27   0.06478  32.27 3.323e-05  -5.575        1
11533      MICB       6_25   0.09335  33.28 4.940e-05   5.546        2
3134      PPM1G       2_16   0.02637  30.93 1.297e-05  -5.544        1
1291      P2RX7      12_74   0.29751  37.49 1.773e-04   5.484        2

Comparing z scores and PIPs

[1] 0.00618
       genename region_tag susie_pip    mu2       PVE       z num_eqtl
6795      JAZF1       7_23   0.02534 147.34 5.935e-05 -13.082        2
13639 LINC01126       2_27   0.03109  53.94 2.667e-05  -8.377        1
6345     CDKN2B       9_16   0.08744  55.91 7.773e-05  -8.192        1
10584     ARAP1      11_41   0.01921  57.43 1.754e-05   7.886        1
474       BCAR1      16_40   0.08914  58.62 8.308e-05  -7.720        1
10742   NCR3LG1      11_12   0.02108  51.25 1.718e-05  -7.370        1
9232      PEAK1      15_36   0.41524  40.39 2.667e-04   6.885        1
7991     NKX6-3       8_36   0.45714  42.55 3.093e-04  -6.781        2
183        GIPR      19_32   0.63265  36.32 3.653e-04  -6.632        1
7192     ATP5G1      17_28   0.06768  39.63 4.264e-05   6.400        1
7087      AP3S2      15_41   0.37279  37.36 2.215e-04   6.356        1
7194       SNF8      17_28   0.05732  37.71 3.437e-05   6.300        1
10224     BMP8A       1_24   0.03474  37.42 2.067e-05   6.296        1
1451    CWF19L1      10_64   0.62796  33.14 3.309e-04  -5.803        2
10062   ARL6IP4      12_75   0.74334  36.01 4.257e-04   5.620        1
3128      NRBP1       2_16   0.02609  31.31 1.298e-05  -5.595        1
8540       TAP1       6_27   0.06478  32.27 3.323e-05  -5.575        1
11533      MICB       6_25   0.09335  33.28 4.940e-05   5.546        2
3134      PPM1G       2_16   0.02637  30.93 1.297e-05  -5.544        1
1291      P2RX7      12_74   0.29751  37.49 1.773e-04   5.484        2

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 18
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                                     Description     FDR Ratio
50 CORTICAL DYSPLASIA, COMPLEX, WITH OTHER BRAIN MALFORMATIONS 4 0.03041  1/10
53                SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 17 0.03041  1/10
32                                              Hyperargininemia 0.04052  1/10
11                                                 Hair Diseases 0.04557  1/10
1                           Amino Acid Metabolism, Inborn Errors 0.06042  1/10
2                                                     Asbestosis 0.06042  1/10
4                                                    Body Weight 0.06042  1/10
10                     Glomerulonephritis, Membranoproliferative 0.06042  1/10
13                                        Immune System Diseases 0.06042  1/10
15                                                 Leishmaniasis 0.06042  1/10
   BgRatio
50  1/9703
53  1/9703
32  2/9703
11  3/9703
1  13/9703
2  14/9703
4  15/9703
10  7/9703
13  7/9703
15  9/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 72
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 27
#significance threshold for TWAS
print(sig_thresh)
[1] 4.507
#number of ctwas genes
length(ctwas_genes)
[1] 18
#number of TWAS genes
length(twas_genes)
[1] 47
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
       genename region_tag susie_pip   mu2       PVE      z num_eqtl
6019      MRPS5       2_57    0.5399 21.72 0.0001865 -3.737        1
12493 LINC01184       5_78    0.5774 20.30 0.0001864  3.793        1
10527      GSAP       7_49    0.6505 24.56 0.0002541 -4.185        1
11158     PARVA       11_9    0.7138 21.89 0.0002484 -3.862        2
4461     ZNF236      18_45    0.7059 20.70 0.0002323 -4.378        1
2221      MIER2       19_1    0.5414 23.96 0.0002063  3.684        1
2227     DNASE2      19_10    0.7083 19.09 0.0002150 -3.744        1
7604    CFAP221       2_69    0.6764 20.29 0.0002183 -4.050        2
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01389 0.01389 
#specificity
print(specificity)
 ctwas   TWAS 
0.9978 0.9939 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.05556 0.02128 

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1      forcats_0.5.1     stringr_1.4.0     dplyr_1.0.7      
 [5] purrr_0.3.4       readr_2.1.1       tidyr_1.1.4       tidyverse_1.3.1  
 [9] tibble_3.1.6      WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0      
[13] cowplot_1.0.0     ggplot2_3.3.5     workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] fs_1.5.2          lubridate_1.8.0   bit64_4.0.5       doParallel_1.0.17
 [5] httr_1.4.2        rprojroot_2.0.2   tools_3.6.1       backports_1.4.1  
 [9] doRNG_1.8.2       utf8_1.2.2        R6_2.5.1          vipor_0.4.5      
[13] DBI_1.1.2         colorspace_2.0-2  withr_2.4.3       ggrastr_1.0.1    
[17] tidyselect_1.1.1  bit_4.0.4         curl_4.3.2        compiler_3.6.1   
[21] git2r_0.26.1      rvest_1.0.2       cli_3.1.0         Cairo_1.5-12.2   
[25] xml2_1.3.3        labeling_0.4.2    scales_1.1.1      apcluster_1.4.8  
[29] digest_0.6.29     rmarkdown_2.11    svglite_1.2.2     pkgconfig_2.0.3  
[33] htmltools_0.5.2   dbplyr_2.1.1      fastmap_1.1.0     highr_0.9        
[37] rlang_1.0.1       rstudioapi_0.13   RSQLite_2.2.8     jquerylib_0.1.4  
[41] farver_2.1.0      generics_0.1.1    jsonlite_1.7.2    vroom_1.5.7      
[45] magrittr_2.0.2    Matrix_1.2-18     ggbeeswarm_0.6.0  Rcpp_1.0.8       
[49] munsell_0.5.0     fansi_1.0.2       gdtools_0.1.9     lifecycle_1.0.1  
[53] stringi_1.7.6     whisker_0.3-2     yaml_2.2.1        plyr_1.8.6       
[57] grid_3.6.1        blob_1.2.2        ggrepel_0.9.1     parallel_3.6.1   
[61] promises_1.0.1    crayon_1.5.0      lattice_0.20-38   haven_2.4.3      
[65] hms_1.1.1         knitr_1.36        pillar_1.6.4      igraph_1.2.10    
[69] rjson_0.2.20      rngtools_1.5.2    reshape2_1.4.4    codetools_0.2-16 
[73] reprex_2.0.1      glue_1.6.2        evaluate_0.14     data.table_1.14.2
[77] modelr_0.1.8      vctrs_0.3.8       tzdb_0.2.0        httpuv_1.5.1     
[81] foreach_1.5.2     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] cachem_1.0.6      xfun_0.29         broom_0.7.10      later_0.8.0      
[89] iterators_1.0.14  beeswarm_0.2.3    memoise_2.0.1     ellipsis_0.3.2