Last updated: 2022-05-19
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version bcaadf3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_54.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/SCZ_2018_Brain_Amygdala_S.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex_S.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
Modified: analysis/ttt.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
) and HTML (docs/SCZ_2018_Brain_Cerebellar_Hemisphere_S.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | bcaadf3 | sq-96 | 2022-05-19 | update |
html | bcaadf3 | sq-96 | 2022-05-19 | update |
Rmd | be614ed | sq-96 | 2022-05-19 | update |
html | be614ed | sq-96 | 2022-05-19 | update |
Rmd | 7d08c9b | sq-96 | 2022-05-18 | update |
html | 7d08c9b | sq-96 | 2022-05-18 | update |
Rmd | 2749be9 | sq-96 | 2022-05-12 | update |
html | 2749be9 | sq-96 | 2022-05-12 | update |
html | 011327d | sq-96 | 2022-05-12 | update |
Rmd | 6c6abbd | sq-96 | 2022-05-12 | update |
library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)
#number of imputed weights
nrow(qclist_all)
[1] 26564
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2520 1814 1594 973 1137 1377 1526 911 1106 1166 1579 1419 520 921 928 1179
17 18 19 20 21 22
1880 325 1895 891 51 852
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 23201
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8734
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
gene snp
0.0103642 0.0002912
gene snp
12.00 10.12
[1] 105318
[1] 7860 6309950
gene snp
0.009283 0.176540
[1] 0.03488 1.05335
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
6205 SLC8B1 12_68 1.5477 28.59 0.0005738 -4.047 11 12
3667 LRP8 1_33 1.2607 32.55 0.0003761 4.820 11 11
7425 WDR27 6_111 1.1795 17.37 0.0001185 2.338 30 41
2396 FAM177A1 14_9 1.1555 24.30 0.0002576 -4.872 12 13
2719 GIGYF2 2_137 1.0940 56.96 0.0005633 -8.128 6 6
5293 R3HDM2 12_36 1.0731 43.83 0.0004526 6.634 9 11
4759 PDXDC1 16_15 1.0670 29.62 0.0001711 3.879 23 25
3651 LPCAT4 15_10 0.9950 25.36 0.0002297 4.892 3 4
2718 GIGYF1 7_62 0.9927 26.42 0.0002425 -5.266 5 5
1156 CCDC57 17_47 0.9837 18.98 0.0001239 -3.061 34 44
842 BUB1B-PAK6 15_14 0.9466 29.86 0.0002496 -5.588 2 2
3512 LAMA5 20_37 0.9462 28.70 0.0001979 -4.211 25 32
151 ACTR1B 2_57 0.9438 19.16 0.0001576 3.978 9 9
4686 PATJ 1_39 0.9400 22.53 0.0001571 2.798 15 17
1039 CAMKK2 12_74 0.9338 35.78 0.0002086 4.159 6 8
5994 SF3B1 2_117 0.9204 45.85 0.0003612 -7.053 3 3
4104 MRPS33 7_87 0.9200 20.70 0.0001602 -4.304 5 5
1478 CNOT1 16_31 0.9167 35.98 0.0002567 6.282 10 11
6749 THAP8 19_25 0.9103 19.03 0.0001497 3.847 2 2
5281 PYROXD2 10_62 0.9087 21.98 0.0001517 -3.852 9 10
4549 NUP50 22_20 0.8804 18.64 0.0001329 -3.850 5 5
6287 SNRPA1 15_50 0.8782 21.98 0.0001513 -3.913 5 6
6009 SGCE 7_58 0.8780 20.72 0.0001455 4.413 6 6
294 AKT3 1_128 0.8712 35.12 0.0002321 6.266 6 6
1275 CECR2 22_2 0.8629 18.61 0.0001295 -3.928 4 4
4513 NTRK3 15_41 0.8602 24.09 0.0001557 4.457 3 3
1754 CUL9 6_33 0.8557 31.85 0.0001747 4.961 11 12
6940 TNK2 3_120 0.8483 27.71 0.0001251 3.409 16 16
7078 TSNARE1 8_93 0.8348 34.12 0.0001825 6.364 10 10
680 B3GAT1 11_84 0.8323 23.80 0.0001477 4.394 4 6
7567 ZDHHC20 13_2 0.8099 25.00 0.0001495 -4.832 3 4
1631 CRTAP 3_24 0.8018 20.88 0.0001249 3.929 2 2
genename region_tag susie_pip mu2 PVE z num_intron
456 APOM 6_26 0.4404 626.01 0.0011520 11.590 3
7339 VARS 6_26 0.3832 628.56 0.0008763 -11.620 2
837 BTN3A1 6_20 0.7245 145.15 0.0006369 13.091 7
6205 SLC8B1 12_68 1.5477 28.59 0.0005738 -4.047 11
2719 GIGYF2 2_137 1.0940 56.96 0.0005633 -8.128 6
5293 R3HDM2 12_36 1.0731 43.83 0.0004526 6.634 9
3667 LRP8 1_33 1.2607 32.55 0.0003761 4.820 11
5994 SF3B1 2_117 0.9204 45.85 0.0003612 -7.053 3
2396 FAM177A1 14_9 1.1555 24.30 0.0002576 -4.872 12
1478 CNOT1 16_31 0.9167 35.98 0.0002567 6.282 10
842 BUB1B-PAK6 15_14 0.9466 29.86 0.0002496 -5.588 2
2718 GIGYF1 7_62 0.9927 26.42 0.0002425 -5.266 5
294 AKT3 1_128 0.8712 35.12 0.0002321 6.266 6
3651 LPCAT4 15_10 0.9950 25.36 0.0002297 4.892 3
1039 CAMKK2 12_74 0.9338 35.78 0.0002086 4.159 6
3512 LAMA5 20_37 0.9462 28.70 0.0001979 -4.211 25
7005 TRANK1 3_27 0.7567 38.76 0.0001973 -6.365 6
7078 TSNARE1 8_93 0.8348 34.12 0.0001825 6.364 10
1754 CUL9 6_33 0.8557 31.85 0.0001747 4.961 11
4759 PDXDC1 16_15 1.0670 29.62 0.0001711 3.879 23
num_sqtl
456 4
7339 2
837 8
6205 12
2719 6
5293 11
3667 11
5994 3
2396 13
1478 11
842 2
2718 5
294 6
3651 4
1039 8
3512 32
7005 6
7078 10
1754 12
4759 25
[1] 0.02176
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
7606 ZKSCAN3 6_22 6.184e-02 160.21 3.269e-06 -13.135 4 4
837 BTN3A1 6_20 7.245e-01 145.15 6.369e-04 13.091 7 8
4797 PGBD1 6_22 1.027e-01 159.13 7.726e-06 -13.087 5 7
7339 VARS 6_26 3.832e-01 628.56 8.763e-04 -11.620 2 2
456 APOM 6_26 4.404e-01 626.01 1.152e-03 11.590 3 4
1851 DDR1 6_25 3.515e-01 101.78 1.165e-04 -11.175 4 4
964 C6orf136 6_24 1.205e-01 80.18 1.105e-05 -11.031 2 2
2559 FLOT1 6_24 3.515e-01 78.83 9.198e-05 10.981 8 8
838 BTN3A2 6_20 1.534e-01 94.90 1.064e-05 -10.743 5 7
1781 CYP21A2 6_26 5.976e-06 607.99 2.062e-13 -10.513 1 2
699 BAG6 6_26 5.908e-09 500.57 1.659e-19 10.247 9 9
835 BTN2A1 6_20 1.490e-01 84.19 6.335e-06 10.110 7 7
5104 PPT2 6_26 5.412e-12 466.36 1.297e-25 10.061 7 9
2138 EGFL8 6_26 4.315e-12 465.72 8.227e-26 10.036 6 7
5165 PRRT1 6_26 3.762e-12 464.63 6.243e-26 -10.018 1 1
2850 GPSM3 6_26 2.356e-13 416.63 2.196e-28 -9.377 2 2
1176 CCHCR1 6_25 9.102e-02 59.77 1.948e-06 -9.032 11 18
6952 TNXB 6_26 2.108e-13 454.39 1.918e-28 9.001 4 5
3026 HLA-DMA 6_27 1.797e-01 70.57 1.141e-05 8.860 5 6
7849 ZSCAN23 6_22 1.294e-02 46.07 7.324e-08 -8.541 1 1
#number of genes for gene set enrichment
length(genes)
[1] 135
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR Ratio BgRatio
13 Balo's Concentric Sclerosis 0.05674 1/84 1/9703
40 Diffuse Cerebral Sclerosis of Schilder 0.05674 1/84 1/9703
90 Profound Mental Retardation 0.05674 5/84 139/9703
100 Acute monocytic leukemia 0.05674 3/84 26/9703
101 Leukemia, Myelocytic, Acute 0.05674 6/84 173/9703
112 Measles 0.05674 1/84 1/9703
116 Mental Retardation, Psychosocial 0.05674 5/84 139/9703
132 Nicotine Dependence 0.05674 2/84 14/9703
154 Schizophrenia 0.05674 17/84 883/9703
158 Status Epilepticus 0.05674 4/84 68/9703
Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
description size overlap FDR database
1 Bipolar Disorder 136 13 0.001345 disease_GLAD4U
2 Schizophrenia 165 13 0.005978 disease_GLAD4U
3 Mental Disorders 247 15 0.017847 disease_GLAD4U
userId
1 AS3MT;BDNF;CAMKK2;DLG1;GABBR2;ITIH4;NT5C2;NTRK3;SDCCAG8;SYNE1;TCF4;TRANK1;TSNARE1
2 AHI1;AS3MT;BDNF;CAMKK2;DLG1;ITIH4;NT5C2;NTRK3;SDCCAG8;SYNE1;TCF4;TRANK1;TSNARE1
3 ADAM10;AHI1;AS3MT;BDNF;GABBR2;ITIH4;LRP8;MEF2C;NT5C2;NTRK3;SGCE;SYNE1;TCF4;TRANK1;TSNARE1
Warning: Removed 2 rows containing missing values (geom_point).
Warning: Removed 2 rows containing missing values (geom_point).
Warning: Removed 2 rows containing missing values (geom_label_repel).
Warning: ggrepel: 93 unlabeled data points (too many overlaps). Consider
increasing max.overlaps
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 59
#significance threshold for TWAS
print(sig_thresh)
[1] 4.514
#number of ctwas genes
length(ctwas_genes)
[1] 32
#number of TWAS genes
length(twas_genes)
[1] 171
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
151 ACTR1B 2_57 0.9438 19.16 0.0001576 3.978 9 9
680 B3GAT1 11_84 0.8323 23.80 0.0001477 4.394 4 6
1039 CAMKK2 12_74 0.9338 35.78 0.0002086 4.159 6 8
1156 CCDC57 17_47 0.9837 18.98 0.0001239 -3.061 34 44
1275 CECR2 22_2 0.8629 18.61 0.0001295 -3.928 4 4
1631 CRTAP 3_24 0.8018 20.88 0.0001249 3.929 2 2
3512 LAMA5 20_37 0.9462 28.70 0.0001979 -4.211 25 32
4104 MRPS33 7_87 0.9200 20.70 0.0001602 -4.304 5 5
4513 NTRK3 15_41 0.8602 24.09 0.0001557 4.457 3 3
4549 NUP50 22_20 0.8804 18.64 0.0001329 -3.850 5 5
4686 PATJ 1_39 0.9400 22.53 0.0001571 2.798 15 17
4759 PDXDC1 16_15 1.0670 29.62 0.0001711 3.879 23 25
5281 PYROXD2 10_62 0.9087 21.98 0.0001517 -3.852 9 10
6009 SGCE 7_58 0.8780 20.72 0.0001455 4.413 6 6
6205 SLC8B1 12_68 1.5477 28.59 0.0005738 -4.047 11 12
6287 SNRPA1 15_50 0.8782 21.98 0.0001513 -3.913 5 6
6749 THAP8 19_25 0.9103 19.03 0.0001497 3.847 2 2
6940 TNK2 3_120 0.8483 27.71 0.0001251 3.409 16 16
7425 WDR27 6_111 1.1795 17.37 0.0001185 2.338 30 41
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.05385 0.13077
#specificity
print(specificity)
ctwas TWAS
0.9968 0.9803
#precision / PPV
print(precision)
ctwas TWAS
0.21875 0.09942
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.3 tidyverse_1.3.1 tibble_3.1.7
[9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.1.1
[13] ggplot2_3.3.5 dplyr_1.0.7 reticulate_1.25 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.10 doParallel_1.0.16 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 doRNG_1.8.2
[9] bslib_0.2.5.1 utf8_1.2.1 R6_2.5.0 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.2 ggrastr_1.0.1
[17] tidyselect_1.1.1 processx_3.5.2 curl_4.3.2 compiler_4.1.0
[21] git2r_0.28.0 rvest_1.0.0 cli_3.0.0 Cairo_1.5-15
[25] xml2_1.3.2 labeling_0.4.2 sass_0.4.0 scales_1.1.1
[29] callr_3.7.0 systemfonts_1.0.4 apcluster_1.4.9 digest_0.6.27
[33] rmarkdown_2.9 svglite_2.0.0 pkgconfig_2.0.3 htmltools_0.5.1.1
[37] dbplyr_2.1.1 highr_0.9 rlang_1.0.2 rstudioapi_0.13
[41] jquerylib_0.1.4 farver_2.1.0 generics_0.1.0 jsonlite_1.7.2
[45] magrittr_2.0.1 Matrix_1.3-3 ggbeeswarm_0.6.0 Rcpp_1.0.7
[49] munsell_0.5.0 fansi_0.5.0 lifecycle_1.0.0 stringi_1.6.2
[53] whisker_0.4 yaml_2.2.1 plyr_1.8.6 grid_4.1.0
[57] ggrepel_0.9.1 parallel_4.1.0 promises_1.2.0.1 crayon_1.4.1
[61] lattice_0.20-44 haven_2.4.1 hms_1.1.0 knitr_1.33
[65] ps_1.6.0 pillar_1.7.0 igraph_1.2.6 rjson_0.2.20
[69] rngtools_1.5 reshape2_1.4.4 codetools_0.2-18 reprex_2.0.0
[73] glue_1.4.2 evaluate_0.14 getPass_0.2-2 modelr_0.1.8
[77] data.table_1.14.0 png_0.1-7 vctrs_0.3.8 httpuv_1.6.1
[81] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[85] xfun_0.24 broom_0.7.8 later_1.2.0 iterators_1.0.13
[89] beeswarm_0.4.0 ellipsis_0.3.2 here_1.0.1