Last updated: 2022-05-19
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version be614ed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_54.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/SCZ_2018_Brain_Amygdala_S.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex_S.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
Modified: analysis/ttt.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
) and HTML (docs/SCZ_2018_Brain_Cerebellum_S.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | be614ed | sq-96 | 2022-05-19 | update |
html | be614ed | sq-96 | 2022-05-19 | update |
Rmd | 7d08c9b | sq-96 | 2022-05-18 | update |
html | 7d08c9b | sq-96 | 2022-05-18 | update |
Rmd | 2749be9 | sq-96 | 2022-05-12 | update |
html | 2749be9 | sq-96 | 2022-05-12 | update |
html | 011327d | sq-96 | 2022-05-12 | update |
Rmd | 6c6abbd | sq-96 | 2022-05-12 | update |
library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)
#number of imputed weights
nrow(qclist_all)
[1] 27353
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2535 1830 1661 982 1135 1371 1536 916 1175 1171 1678 1471 543 971 987 1200
17 18 19 20 21 22
1981 337 2002 917 48 906
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 23734
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8677
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
gene snp
0.0088825 0.0002955
gene snp
12.43 10.04
[1] 105318
[1] 8002 6309950
gene snp
0.008389 0.177721
[1] 0.01561 1.06067
genename region_tag susie_pip mu2 PVE z num_intron
5397 R3HDM2 12_36 0.9739 44.06 4.190e-04 6.634 10
854 BUB1B-PAK6 15_14 0.9156 30.33 2.452e-04 -5.588 4
4518 NPIPA1 16_15 0.9142 24.97 2.005e-04 4.689 3
3632 LINC00320 21_6 0.8839 29.24 2.240e-04 -5.336 3
1449 CLCN3 4_110 0.7913 29.64 1.762e-04 5.470 1
2078 DPYSL3 5_86 0.7675 21.98 1.229e-04 4.157 1
4586 NTRK3 15_41 0.7571 24.66 1.310e-04 4.457 2
1318 CENPM 22_17 0.7509 57.80 3.094e-04 -6.506 1
765 BDNF 11_19 0.7364 23.81 1.415e-04 4.348 3
1952 DHPS 19_10 0.7273 24.50 1.241e-04 -4.396 3
6899 THAP8 19_25 0.7268 22.04 1.105e-04 -3.840 1
6497 SPECC1 17_16 0.7238 25.92 1.289e-04 -4.822 1
3563 LAMA5 20_36 0.7061 23.61 1.554e-04 4.603 24
6429 SNRPA1 15_50 0.6840 21.86 1.028e-04 -3.896 6
360 ANAPC7 12_67 0.6619 37.61 1.771e-04 6.385 7
151 ACTG1 17_46 0.6582 25.43 1.074e-04 -4.250 2
849 BTN3A1 6_20 0.6374 146.39 5.732e-04 13.091 8
1700 CTB-31O20.2 19_2 0.6348 22.98 8.791e-05 4.456 1
1109 CASP2 7_89 0.6145 20.64 7.400e-05 -3.889 1
7160 TRANK1 3_27 0.6112 39.04 1.565e-04 -6.365 8
num_sqtl
5397 12
854 5
4518 3
3632 3
1449 2
2078 1
4586 2
1318 1
765 3
1952 3
6899 1
6497 1
3563 38
6429 7
360 7
151 4
849 8
1700 1
1109 1
7160 8
genename region_tag susie_pip mu2 PVE z num_intron
849 BTN3A1 6_20 0.6374 146.39 0.0005732 13.091 8
468 APOM 6_26 0.2337 623.03 0.0005094 11.590 3
5397 R3HDM2 12_36 0.9739 44.06 0.0004190 6.634 10
1318 CENPM 22_17 0.7509 57.80 0.0003094 -6.506 1
854 BUB1B-PAK6 15_14 0.9156 30.33 0.0002452 -5.588 4
7547 VWA7 6_26 0.1940 627.25 0.0002242 11.553 1
3632 LINC00320 21_6 0.8839 29.24 0.0002240 -5.336 3
4518 NPIPA1 16_15 0.9142 24.97 0.0002005 4.689 3
360 ANAPC7 12_67 0.6619 37.61 0.0001771 6.385 7
1449 CLCN3 4_110 0.7913 29.64 0.0001762 5.470 1
6119 SF3B1 2_117 0.4372 45.88 0.0001728 7.053 5
299 AKT3 1_128 0.5124 35.61 0.0001595 6.350 6
7160 TRANK1 3_27 0.6112 39.04 0.0001565 -6.365 8
3563 LAMA5 20_36 0.7061 23.61 0.0001554 4.603 24
4179 MSH5 6_26 0.1588 627.91 0.0001503 -11.538 3
469 APOPT1 14_54 0.4092 43.21 0.0001444 7.429 6
765 BDNF 11_19 0.7364 23.81 0.0001415 4.348 3
4586 NTRK3 15_41 0.7571 24.66 0.0001310 4.457 2
6497 SPECC1 17_16 0.7238 25.92 0.0001289 -4.822 1
1952 DHPS 19_10 0.7273 24.50 0.0001241 -4.396 3
num_sqtl
849 8
468 3
5397 12
1318 1
854 5
7547 1
3632 3
4518 3
360 7
1449 2
6119 5
299 7
7160 8
3563 38
4179 3
469 7
765 3
4586 2
6497 1
1952 3
[1] 0.02124
genename region_tag susie_pip mu2 PVE z num_intron
849 BTN3A1 6_20 6.374e-01 146.39 5.732e-04 13.091 8
4876 PGBD1 6_22 3.519e-02 160.95 2.473e-06 13.087 5
468 APOM 6_26 2.337e-01 623.03 5.094e-04 11.590 3
7547 VWA7 6_26 1.940e-01 627.25 2.242e-04 11.553 1
7489 VARS 6_26 1.402e-01 623.95 1.165e-04 -11.548 2
4179 MSH5 6_26 1.588e-01 627.91 1.503e-04 -11.538 3
1888 DDR1 6_25 1.531e-01 105.86 2.397e-05 -11.175 3
7490 VARS2 6_25 1.076e-01 104.74 1.161e-05 11.137 2
979 C6orf136 6_25 3.795e-02 87.21 2.386e-06 -11.031 2
2623 FLOT1 6_25 2.776e-02 87.22 3.503e-06 -10.981 7
850 BTN3A2 6_20 1.254e-01 94.96 9.019e-06 -10.694 3
2841 GNL1 6_25 2.920e-03 78.25 6.334e-09 -10.645 1
7183 TRIM39 6_25 7.839e-03 82.27 4.800e-08 -10.616 1
716 BAG6 6_26 1.491e-09 498.08 1.051e-20 10.247 6
5195 PPT2 6_26 3.900e-12 464.25 1.341e-25 -10.061 10
5261 PRRT1 6_26 2.706e-12 462.51 3.216e-26 -10.018 1
2909 GPSM3 6_26 8.360e-14 414.68 2.752e-29 -9.377 1
1203 CCHCR1 6_25 1.796e-02 69.57 2.332e-07 -9.358 17
7105 TNXB 6_26 1.527e-13 452.13 1.000e-28 9.001 6
5832 RP5-874C20.8 6_22 1.377e-02 53.73 3.284e-07 8.672 6
num_sqtl
849 8
4876 6
468 3
7547 1
7489 2
4179 3
1888 3
7490 2
979 2
2623 7
850 5
2841 1
7183 1
716 7
5195 12
5261 1
2909 1
1203 30
7105 7
5832 6
#number of genes for gene set enrichment
length(genes)
[1] 29
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Term Overlap
1 morphogenesis of a polarized epithelium (GO:0001738) 2/12
2 positive regulation of neuron projection development (GO:0010976) 3/88
3 cellular response to nerve growth factor stimulus (GO:1990090) 2/22
4 positive regulation of cell projection organization (GO:0031346) 3/117
Adjusted.P.value Genes
1 0.03944 LAMA5;ACTG1
2 0.04111 BDNF;NTRK3;DPYSL3
3 0.04560 BDNF;NTRK3
4 0.04737 BDNF;NTRK3;DPYSL3
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR Ratio BgRatio
78 Electroencephalogram abnormal 0.009968 1/15 1/9703
97 Short upturned nose 0.009968 1/15 1/9703
159 Abnormality of the pinna 0.009968 1/15 1/9703
176 Progressive sensorineural hearing impairment 0.009968 1/15 1/9703
177 Pointed chin 0.009968 1/15 1/9703
178 Long palpebral fissure 0.009968 1/15 1/9703
182 Deafness, Autosomal Dominant 20 0.009968 1/15 1/9703
183 TOBACCO ADDICTION, SUSCEPTIBILITY TO (finding) 0.009968 2/15 12/9703
185 Long philtrum 0.009968 1/15 1/9703
186 Thin upper lip vermilion 0.009968 1/15 1/9703
Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Warning: ggrepel: 5 unlabeled data points (too many overlaps). Consider
increasing max.overlaps
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 59
#significance threshold for TWAS
print(sig_thresh)
[1] 4.518
#number of ctwas genes
length(ctwas_genes)
[1] 4
#number of TWAS genes
length(twas_genes)
[1] 170
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename region_tag susie_pip mu2 PVE z num_intron
[8] num_sqtl
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.01538 0.17692
#specificity
print(specificity)
ctwas TWAS
0.9997 0.9815
#precision / PPV
print(precision)
ctwas TWAS
0.5000 0.1353
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.3 tidyverse_1.3.1 tibble_3.1.7
[9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.1.1
[13] ggplot2_3.3.5 dplyr_1.0.7 reticulate_1.25 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.10 doParallel_1.0.16 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 doRNG_1.8.2
[9] bslib_0.2.5.1 utf8_1.2.1 R6_2.5.0 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.2 ggrastr_1.0.1
[17] tidyselect_1.1.1 processx_3.5.2 curl_4.3.2 compiler_4.1.0
[21] git2r_0.28.0 rvest_1.0.0 cli_3.0.0 Cairo_1.5-15
[25] xml2_1.3.2 labeling_0.4.2 sass_0.4.0 scales_1.1.1
[29] callr_3.7.0 systemfonts_1.0.4 apcluster_1.4.9 digest_0.6.27
[33] rmarkdown_2.9 svglite_2.0.0 pkgconfig_2.0.3 htmltools_0.5.1.1
[37] dbplyr_2.1.1 highr_0.9 rlang_1.0.2 rstudioapi_0.13
[41] jquerylib_0.1.4 farver_2.1.0 generics_0.1.0 jsonlite_1.7.2
[45] magrittr_2.0.1 Matrix_1.3-3 ggbeeswarm_0.6.0 Rcpp_1.0.7
[49] munsell_0.5.0 fansi_0.5.0 lifecycle_1.0.0 stringi_1.6.2
[53] whisker_0.4 yaml_2.2.1 plyr_1.8.6 grid_4.1.0
[57] ggrepel_0.9.1 parallel_4.1.0 promises_1.2.0.1 crayon_1.4.1
[61] lattice_0.20-44 haven_2.4.1 hms_1.1.0 knitr_1.33
[65] ps_1.6.0 pillar_1.7.0 igraph_1.2.6 rjson_0.2.20
[69] rngtools_1.5 reshape2_1.4.4 codetools_0.2-18 reprex_2.0.0
[73] glue_1.4.2 evaluate_0.14 getPass_0.2-2 modelr_0.1.8
[77] data.table_1.14.0 png_0.1-7 vctrs_0.3.8 httpuv_1.6.1
[81] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[85] xfun_0.24 broom_0.7.8 later_1.2.0 iterators_1.0.13
[89] beeswarm_0.4.0 ellipsis_0.3.2 here_1.0.1