Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version be614ed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/ttt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Cerebellum_S.Rmd) and HTML (docs/SCZ_2018_Brain_Cerebellum_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd be614ed sq-96 2022-05-19 update
html be614ed sq-96 2022-05-19 update
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 27353
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2535 1830 1661  982 1135 1371 1536  916 1175 1171 1678 1471  543  971  987 1200 
  17   18   19   20   21   22 
1981  337 2002  917   48  906 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 23734
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8677
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0088825 0.0002955 
 gene   snp 
12.43 10.04 
[1] 105318
[1]    8002 6309950
    gene      snp 
0.008389 0.177721 
[1] 0.01561 1.06067

Genes with highest PIPs

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12
        genename region_tag susie_pip    mu2       PVE      z num_intron
5397      R3HDM2      12_36    0.9739  44.06 4.190e-04  6.634         10
854   BUB1B-PAK6      15_14    0.9156  30.33 2.452e-04 -5.588          4
4518      NPIPA1      16_15    0.9142  24.97 2.005e-04  4.689          3
3632   LINC00320       21_6    0.8839  29.24 2.240e-04 -5.336          3
1449       CLCN3      4_110    0.7913  29.64 1.762e-04  5.470          1
2078      DPYSL3       5_86    0.7675  21.98 1.229e-04  4.157          1
4586       NTRK3      15_41    0.7571  24.66 1.310e-04  4.457          2
1318       CENPM      22_17    0.7509  57.80 3.094e-04 -6.506          1
765         BDNF      11_19    0.7364  23.81 1.415e-04  4.348          3
1952        DHPS      19_10    0.7273  24.50 1.241e-04 -4.396          3
6899       THAP8      19_25    0.7268  22.04 1.105e-04 -3.840          1
6497      SPECC1      17_16    0.7238  25.92 1.289e-04 -4.822          1
3563       LAMA5      20_36    0.7061  23.61 1.554e-04  4.603         24
6429      SNRPA1      15_50    0.6840  21.86 1.028e-04 -3.896          6
360       ANAPC7      12_67    0.6619  37.61 1.771e-04  6.385          7
151        ACTG1      17_46    0.6582  25.43 1.074e-04 -4.250          2
849       BTN3A1       6_20    0.6374 146.39 5.732e-04 13.091          8
1700 CTB-31O20.2       19_2    0.6348  22.98 8.791e-05  4.456          1
1109       CASP2       7_89    0.6145  20.64 7.400e-05 -3.889          1
7160      TRANK1       3_27    0.6112  39.04 1.565e-04 -6.365          8
     num_sqtl
5397       12
854         5
4518        3
3632        3
1449        2
2078        1
4586        2
1318        1
765         3
1952        3
6899        1
6497        1
3563       38
6429        7
360         7
151         4
849         8
1700        1
1109        1
7160        8

Genes with highest PVE

       genename region_tag susie_pip    mu2       PVE       z num_intron
849      BTN3A1       6_20    0.6374 146.39 0.0005732  13.091          8
468        APOM       6_26    0.2337 623.03 0.0005094  11.590          3
5397     R3HDM2      12_36    0.9739  44.06 0.0004190   6.634         10
1318      CENPM      22_17    0.7509  57.80 0.0003094  -6.506          1
854  BUB1B-PAK6      15_14    0.9156  30.33 0.0002452  -5.588          4
7547       VWA7       6_26    0.1940 627.25 0.0002242  11.553          1
3632  LINC00320       21_6    0.8839  29.24 0.0002240  -5.336          3
4518     NPIPA1      16_15    0.9142  24.97 0.0002005   4.689          3
360      ANAPC7      12_67    0.6619  37.61 0.0001771   6.385          7
1449      CLCN3      4_110    0.7913  29.64 0.0001762   5.470          1
6119      SF3B1      2_117    0.4372  45.88 0.0001728   7.053          5
299        AKT3      1_128    0.5124  35.61 0.0001595   6.350          6
7160     TRANK1       3_27    0.6112  39.04 0.0001565  -6.365          8
3563      LAMA5      20_36    0.7061  23.61 0.0001554   4.603         24
4179       MSH5       6_26    0.1588 627.91 0.0001503 -11.538          3
469      APOPT1      14_54    0.4092  43.21 0.0001444   7.429          6
765        BDNF      11_19    0.7364  23.81 0.0001415   4.348          3
4586      NTRK3      15_41    0.7571  24.66 0.0001310   4.457          2
6497     SPECC1      17_16    0.7238  25.92 0.0001289  -4.822          1
1952       DHPS      19_10    0.7273  24.50 0.0001241  -4.396          3
     num_sqtl
849         8
468         3
5397       12
1318        1
854         5
7547        1
3632        3
4518        3
360         7
1449        2
6119        5
299         7
7160        8
3563       38
4179        3
469         7
765         3
4586        2
6497        1
1952        3

Comparing z scores and PIPs

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12
[1] 0.02124
         genename region_tag susie_pip    mu2       PVE       z num_intron
849        BTN3A1       6_20 6.374e-01 146.39 5.732e-04  13.091          8
4876        PGBD1       6_22 3.519e-02 160.95 2.473e-06  13.087          5
468          APOM       6_26 2.337e-01 623.03 5.094e-04  11.590          3
7547         VWA7       6_26 1.940e-01 627.25 2.242e-04  11.553          1
7489         VARS       6_26 1.402e-01 623.95 1.165e-04 -11.548          2
4179         MSH5       6_26 1.588e-01 627.91 1.503e-04 -11.538          3
1888         DDR1       6_25 1.531e-01 105.86 2.397e-05 -11.175          3
7490        VARS2       6_25 1.076e-01 104.74 1.161e-05  11.137          2
979      C6orf136       6_25 3.795e-02  87.21 2.386e-06 -11.031          2
2623        FLOT1       6_25 2.776e-02  87.22 3.503e-06 -10.981          7
850        BTN3A2       6_20 1.254e-01  94.96 9.019e-06 -10.694          3
2841         GNL1       6_25 2.920e-03  78.25 6.334e-09 -10.645          1
7183       TRIM39       6_25 7.839e-03  82.27 4.800e-08 -10.616          1
716          BAG6       6_26 1.491e-09 498.08 1.051e-20  10.247          6
5195         PPT2       6_26 3.900e-12 464.25 1.341e-25 -10.061         10
5261        PRRT1       6_26 2.706e-12 462.51 3.216e-26 -10.018          1
2909        GPSM3       6_26 8.360e-14 414.68 2.752e-29  -9.377          1
1203       CCHCR1       6_25 1.796e-02  69.57 2.332e-07  -9.358         17
7105         TNXB       6_26 1.527e-13 452.13 1.000e-28   9.001          6
5832 RP5-874C20.8       6_22 1.377e-02  53.73 3.284e-07   8.672          6
     num_sqtl
849         8
4876        6
468         3
7547        1
7489        2
4179        3
1888        3
7490        2
979         2
2623        7
850         5
2841        1
7183        1
716         7
5195       12
5261        1
2909        1
1203       30
7105        7
5832        6

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 29
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12
                                                               Term Overlap
1              morphogenesis of a polarized epithelium (GO:0001738)    2/12
2 positive regulation of neuron projection development (GO:0010976)    3/88
3    cellular response to nerve growth factor stimulus (GO:1990090)    2/22
4  positive regulation of cell projection organization (GO:0031346)   3/117
  Adjusted.P.value             Genes
1          0.03944       LAMA5;ACTG1
2          0.04111 BDNF;NTRK3;DPYSL3
3          0.04560        BDNF;NTRK3
4          0.04737 BDNF;NTRK3;DPYSL3
[1] "GO_Cellular_Component_2021"

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                       Description      FDR Ratio BgRatio
78                   Electroencephalogram abnormal 0.009968  1/15  1/9703
97                             Short upturned nose 0.009968  1/15  1/9703
159                       Abnormality of the pinna 0.009968  1/15  1/9703
176   Progressive sensorineural hearing impairment 0.009968  1/15  1/9703
177                                   Pointed chin 0.009968  1/15  1/9703
178                         Long palpebral fissure 0.009968  1/15  1/9703
182                Deafness, Autosomal Dominant 20 0.009968  1/15  1/9703
183 TOBACCO ADDICTION, SUSCEPTIBILITY TO (finding) 0.009968  2/15 12/9703
185                                  Long philtrum 0.009968  1/15  1/9703
186                       Thin upper lip vermilion 0.009968  1/15  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 5 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
be614ed sq-96 2022-05-19
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 59
#significance threshold for TWAS
print(sig_thresh)
[1] 4.518
#number of ctwas genes
length(ctwas_genes)
[1] 4
#number of TWAS genes
length(twas_genes)
[1] 170
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename   region_tag susie_pip  mu2        PVE        z          num_intron
[8] num_sqtl  
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.17692 
#specificity
print(specificity)
 ctwas   TWAS 
0.9997 0.9815 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.5000 0.1353 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1