Last updated: 2022-05-19
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version be614ed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_54.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/SCZ_2018_Brain_Amygdala_S.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex_S.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
Modified: analysis/ttt.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
) and HTML (docs/SCZ_2018_Brain_Putamen_basal_ganglia_S.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | be614ed | sq-96 | 2022-05-19 | update |
html | be614ed | sq-96 | 2022-05-19 | update |
Rmd | 7d08c9b | sq-96 | 2022-05-18 | update |
html | 7d08c9b | sq-96 | 2022-05-18 | update |
Rmd | 2749be9 | sq-96 | 2022-05-12 | update |
html | 2749be9 | sq-96 | 2022-05-12 | update |
html | 011327d | sq-96 | 2022-05-12 | update |
Rmd | 6c6abbd | sq-96 | 2022-05-12 | update |
library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)
#number of imputed weights
nrow(qclist_all)
[1] 18714
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1715 1341 1135 747 753 935 1084 644 764 833 1148 1001 362 676 630 762
17 18 19 20 21 22
1314 271 1307 672 31 589
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 16516
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8825
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
gene snp
0.0072380 0.0003126
gene snp
10.69 10.43
[1] 105318
[1] 6949 6309950
gene snp
0.005105 0.195372
[1] 0.00773 1.07231
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
1823 DPYSL3 5_86 0.7896 22.79 1.349e-04 -4.157 1 1
4063 NTRK3 15_41 0.7005 23.92 1.116e-04 -4.457 3 3
5640 SNRPA1 15_50 0.6971 22.06 1.029e-04 -3.967 2 3
256 AKT3 1_128 0.6929 34.91 1.725e-04 -6.350 5 6
6023 THAP8 19_25 0.6774 23.53 1.025e-04 -3.847 1 1
1711 DHPS 19_10 0.6765 24.97 1.085e-04 -4.396 1 1
2431 GIGYF1 7_62 0.6584 27.41 1.241e-04 5.266 2 2
3135 LAMA5 20_36 0.6480 24.08 1.173e-04 -4.335 9 12
2785 HSPA9 5_82 0.6443 26.65 1.051e-04 5.633 1 1
2512 GON4L 1_76 0.6243 26.65 9.861e-05 4.084 1 1
5295 SDCCAG8 1_128 0.5865 27.40 1.003e-04 5.377 6 9
1704 DGKZ 11_28 0.5830 47.17 1.522e-04 7.216 1 1
4522 PP2D1 3_14 0.5698 24.44 8.728e-05 4.056 3 4
982 CASP2 7_89 0.5457 21.12 5.970e-05 -3.889 1 1
616 B9D1 17_16 0.5416 28.14 8.362e-05 5.282 2 2
2149 FAM177A1 14_9 0.5184 23.94 1.052e-04 -4.872 12 15
3201 LINC00320 21_6 0.5044 28.61 1.423e-04 -5.336 5 5
6486 UQCRC2 16_19 0.5021 22.81 5.461e-05 4.716 1 1
1622 DBF4B 17_26 0.4839 22.11 5.213e-05 -3.890 5 5
912 CACNA1G 17_29 0.4733 24.11 5.128e-05 3.916 1 1
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
256 AKT3 1_128 0.6929 34.91 1.725e-04 -6.350 5 6
1704 DGKZ 11_28 0.5830 47.17 1.522e-04 7.216 1 1
3201 LINC00320 21_6 0.5044 28.61 1.423e-04 -5.336 5 5
5376 SF3B1 2_117 0.4000 44.94 1.384e-04 -7.053 4 4
1823 DPYSL3 5_86 0.7896 22.79 1.349e-04 -4.157 1 1
2431 GIGYF1 7_62 0.6584 27.41 1.241e-04 5.266 2 2
3135 LAMA5 20_36 0.6480 24.08 1.173e-04 -4.335 9 12
402 APOPT1 14_54 0.3448 46.84 1.166e-04 -7.431 6 9
4063 NTRK3 15_41 0.7005 23.92 1.116e-04 -4.457 3 3
1711 DHPS 19_10 0.6765 24.97 1.085e-04 -4.396 1 1
2149 FAM177A1 14_9 0.5184 23.94 1.052e-04 -4.872 12 15
2785 HSPA9 5_82 0.6443 26.65 1.051e-04 5.633 1 1
3373 MAD1L1 7_3 0.4288 54.63 1.046e-04 7.478 4 4
5640 SNRPA1 15_50 0.6971 22.06 1.029e-04 -3.967 2 3
6023 THAP8 19_25 0.6774 23.53 1.025e-04 -3.847 1 1
5295 SDCCAG8 1_128 0.5865 27.40 1.003e-04 5.377 6 9
2512 GON4L 1_76 0.6243 26.65 9.861e-05 4.084 1 1
3297 LRP8 1_33 0.3432 32.81 9.243e-05 -4.820 6 6
4522 PP2D1 3_14 0.5698 24.44 8.728e-05 4.056 3 4
669 BDNF 11_19 0.4443 22.57 8.486e-05 -4.348 3 3
[1] 0.01597
genename region_tag susie_pip mu2 PVE z num_intron
401 APOM 6_26 8.867e-05 215.80 3.305e-11 11.590 3
623 BAG6 6_26 8.867e-05 215.80 1.620e-11 -11.590 5
6535 VARS2 6_25 6.847e-02 101.95 4.538e-06 -11.137 1
868 C6orf136 6_24 3.597e-02 79.99 1.965e-06 11.031 2
2294 FLOT1 6_24 2.962e-02 78.65 3.534e-06 -10.981 6
1602 CYP21A2 6_26 3.944e-06 179.01 2.643e-14 -10.736 1
741 BTN3A2 6_20 2.139e-02 91.47 5.834e-07 -10.717 4
2555 GPSM3 6_26 1.931e-06 120.46 8.532e-15 -9.377 2
1061 CCHCR1 6_25 1.748e-02 61.89 3.341e-07 -9.272 10
1655 DDR1 6_25 1.253e-02 68.37 1.019e-07 9.016 1
1915 EGFL8 6_26 1.209e-05 121.04 1.683e-13 -8.953 2
4052 NT5C2 10_66 2.050e-01 47.24 6.387e-05 -8.668 9
3383 MAIP1 2_118 2.500e-01 44.44 2.637e-05 -7.980 1
494 AS3MT 10_66 1.817e-01 40.78 2.566e-05 7.907 4
5139 RP5-874C20.8 6_22 8.584e-03 37.09 5.064e-08 -7.603 3
3373 MAD1L1 7_3 4.288e-01 54.63 1.046e-04 7.478 4
6941 ZSCAN16 6_22 1.289e-02 53.72 7.344e-08 -7.468 3
402 APOPT1 14_54 3.448e-01 46.84 1.166e-04 -7.431 6
3081 KLC1 14_54 1.050e-01 49.40 8.432e-06 7.382 6
1704 DGKZ 11_28 5.830e-01 47.17 1.522e-04 7.216 1
num_sqtl
401 3
623 5
6535 1
868 2
2294 6
1602 2
741 5
2555 2
1061 15
1655 1
1915 3
4052 11
3383 1
494 5
5139 4
3373 4
6941 3
402 9
3081 6
1704 1
#number of genes for gene set enrichment
length(genes)
[1] 18
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
Term
1 U2 snRNA binding (GO:0030620)
2 dihydropyrimidinase activity (GO:0004157)
3 neurotrophin binding (GO:0043121)
4 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amides (GO:0016812)
5 cysteine-type endopeptidase activity involved in apoptotic signaling pathway (GO:0097199)
6 diacylglycerol kinase activity (GO:0004143)
7 filamin binding (GO:0031005)
8 cysteine-type endopeptidase activity involved in execution phase of apoptosis (GO:0097200)
9 cysteine-type endopeptidase activity involved in apoptotic process (GO:0097153)
Overlap Adjusted.P.value Genes
1 1/5 0.03802 SNRPA1
2 1/6 0.03802 DPYSL3
3 1/8 0.03802 NTRK3
4 1/10 0.03802 DPYSL3
5 1/10 0.03802 CASP2
6 1/11 0.03802 DGKZ
7 1/11 0.03802 DPYSL3
8 1/13 0.03929 CASP2
9 1/15 0.04026 CASP2
Description FDR
28 Electroencephalogram abnormal 0.01021
74 SENIOR-LOKEN SYNDROME 7 0.01021
76 MECKEL SYNDROME, TYPE 9 0.01021
77 MITOCHONDRIAL COMPLEX III DEFICIENCY, NUCLEAR TYPE 5 0.01021
79 Intellectual Disability 0.01021
80 BARDET-BIEDL SYNDROME 16 0.01021
82 MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 2 0.01021
84 EVEN-PLUS SYNDROME 0.01021
85 ANEMIA, SIDEROBLASTIC, 4 0.01021
88 JOUBERT SYNDROME 27 0.01021
Ratio BgRatio
28 1/11 1/9703
74 1/11 1/9703
76 1/11 1/9703
77 1/11 1/9703
79 4/11 447/9703
80 1/11 1/9703
82 1/11 1/9703
84 1/11 1/9703
85 1/11 1/9703
88 1/11 1/9703
Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 53
#significance threshold for TWAS
print(sig_thresh)
[1] 4.488
#number of ctwas genes
length(ctwas_genes)
[1] 0
#number of TWAS genes
length(twas_genes)
[1] 111
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename region_tag susie_pip mu2 PVE z num_intron
[8] num_sqtl
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.0000 0.1077
#specificity
print(specificity)
ctwas TWAS
1.0000 0.9859
#precision / PPV
print(precision)
ctwas TWAS
NaN 0.1261
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.3 tidyverse_1.3.1 tibble_3.1.7
[9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.1.1
[13] ggplot2_3.3.5 dplyr_1.0.7 reticulate_1.25 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.10 doParallel_1.0.16 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 doRNG_1.8.2
[9] bslib_0.2.5.1 utf8_1.2.1 R6_2.5.0 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.2 ggrastr_1.0.1
[17] tidyselect_1.1.1 processx_3.5.2 curl_4.3.2 compiler_4.1.0
[21] git2r_0.28.0 rvest_1.0.0 cli_3.0.0 Cairo_1.5-15
[25] xml2_1.3.2 labeling_0.4.2 sass_0.4.0 scales_1.1.1
[29] callr_3.7.0 systemfonts_1.0.4 apcluster_1.4.9 digest_0.6.27
[33] rmarkdown_2.9 svglite_2.0.0 pkgconfig_2.0.3 htmltools_0.5.1.1
[37] dbplyr_2.1.1 highr_0.9 rlang_1.0.2 rstudioapi_0.13
[41] jquerylib_0.1.4 farver_2.1.0 generics_0.1.0 jsonlite_1.7.2
[45] magrittr_2.0.1 Matrix_1.3-3 ggbeeswarm_0.6.0 Rcpp_1.0.7
[49] munsell_0.5.0 fansi_0.5.0 lifecycle_1.0.0 stringi_1.6.2
[53] whisker_0.4 yaml_2.2.1 plyr_1.8.6 grid_4.1.0
[57] ggrepel_0.9.1 parallel_4.1.0 promises_1.2.0.1 crayon_1.4.1
[61] lattice_0.20-44 haven_2.4.1 hms_1.1.0 knitr_1.33
[65] ps_1.6.0 pillar_1.7.0 igraph_1.2.6 rjson_0.2.20
[69] rngtools_1.5 reshape2_1.4.4 codetools_0.2-18 reprex_2.0.0
[73] glue_1.4.2 evaluate_0.14 getPass_0.2-2 modelr_0.1.8
[77] data.table_1.14.0 png_0.1-7 vctrs_0.3.8 httpuv_1.6.1
[81] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[85] xfun_0.24 broom_0.7.8 later_1.2.0 iterators_1.0.13
[89] beeswarm_0.4.0 ellipsis_0.3.2 here_1.0.1