Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version be614ed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/ttt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd) and HTML (docs/SCZ_2018_Brain_Putamen_basal_ganglia_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd be614ed sq-96 2022-05-19 update
html be614ed sq-96 2022-05-19 update
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 18714
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1715 1341 1135  747  753  935 1084  644  764  833 1148 1001  362  676  630  762 
  17   18   19   20   21   22 
1314  271 1307  672   31  589 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 16516
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8825
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0072380 0.0003126 
 gene   snp 
10.69 10.43 
[1] 105318
[1]    6949 6309950
    gene      snp 
0.005105 0.195372 
[1] 0.00773 1.07231

Genes with highest PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
      genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
1823    DPYSL3       5_86    0.7896 22.79 1.349e-04 -4.157          1        1
4063     NTRK3      15_41    0.7005 23.92 1.116e-04 -4.457          3        3
5640    SNRPA1      15_50    0.6971 22.06 1.029e-04 -3.967          2        3
256       AKT3      1_128    0.6929 34.91 1.725e-04 -6.350          5        6
6023     THAP8      19_25    0.6774 23.53 1.025e-04 -3.847          1        1
1711      DHPS      19_10    0.6765 24.97 1.085e-04 -4.396          1        1
2431    GIGYF1       7_62    0.6584 27.41 1.241e-04  5.266          2        2
3135     LAMA5      20_36    0.6480 24.08 1.173e-04 -4.335          9       12
2785     HSPA9       5_82    0.6443 26.65 1.051e-04  5.633          1        1
2512     GON4L       1_76    0.6243 26.65 9.861e-05  4.084          1        1
5295   SDCCAG8      1_128    0.5865 27.40 1.003e-04  5.377          6        9
1704      DGKZ      11_28    0.5830 47.17 1.522e-04  7.216          1        1
4522     PP2D1       3_14    0.5698 24.44 8.728e-05  4.056          3        4
982      CASP2       7_89    0.5457 21.12 5.970e-05 -3.889          1        1
616       B9D1      17_16    0.5416 28.14 8.362e-05  5.282          2        2
2149  FAM177A1       14_9    0.5184 23.94 1.052e-04 -4.872         12       15
3201 LINC00320       21_6    0.5044 28.61 1.423e-04 -5.336          5        5
6486    UQCRC2      16_19    0.5021 22.81 5.461e-05  4.716          1        1
1622     DBF4B      17_26    0.4839 22.11 5.213e-05 -3.890          5        5
912    CACNA1G      17_29    0.4733 24.11 5.128e-05  3.916          1        1

Genes with highest PVE

      genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
256       AKT3      1_128    0.6929 34.91 1.725e-04 -6.350          5        6
1704      DGKZ      11_28    0.5830 47.17 1.522e-04  7.216          1        1
3201 LINC00320       21_6    0.5044 28.61 1.423e-04 -5.336          5        5
5376     SF3B1      2_117    0.4000 44.94 1.384e-04 -7.053          4        4
1823    DPYSL3       5_86    0.7896 22.79 1.349e-04 -4.157          1        1
2431    GIGYF1       7_62    0.6584 27.41 1.241e-04  5.266          2        2
3135     LAMA5      20_36    0.6480 24.08 1.173e-04 -4.335          9       12
402     APOPT1      14_54    0.3448 46.84 1.166e-04 -7.431          6        9
4063     NTRK3      15_41    0.7005 23.92 1.116e-04 -4.457          3        3
1711      DHPS      19_10    0.6765 24.97 1.085e-04 -4.396          1        1
2149  FAM177A1       14_9    0.5184 23.94 1.052e-04 -4.872         12       15
2785     HSPA9       5_82    0.6443 26.65 1.051e-04  5.633          1        1
3373    MAD1L1        7_3    0.4288 54.63 1.046e-04  7.478          4        4
5640    SNRPA1      15_50    0.6971 22.06 1.029e-04 -3.967          2        3
6023     THAP8      19_25    0.6774 23.53 1.025e-04 -3.847          1        1
5295   SDCCAG8      1_128    0.5865 27.40 1.003e-04  5.377          6        9
2512     GON4L       1_76    0.6243 26.65 9.861e-05  4.084          1        1
3297      LRP8       1_33    0.3432 32.81 9.243e-05 -4.820          6        6
4522     PP2D1       3_14    0.5698 24.44 8.728e-05  4.056          3        4
669       BDNF      11_19    0.4443 22.57 8.486e-05 -4.348          3        3

Comparing z scores and PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] 0.01597
         genename region_tag susie_pip    mu2       PVE       z num_intron
401          APOM       6_26 8.867e-05 215.80 3.305e-11  11.590          3
623          BAG6       6_26 8.867e-05 215.80 1.620e-11 -11.590          5
6535        VARS2       6_25 6.847e-02 101.95 4.538e-06 -11.137          1
868      C6orf136       6_24 3.597e-02  79.99 1.965e-06  11.031          2
2294        FLOT1       6_24 2.962e-02  78.65 3.534e-06 -10.981          6
1602      CYP21A2       6_26 3.944e-06 179.01 2.643e-14 -10.736          1
741        BTN3A2       6_20 2.139e-02  91.47 5.834e-07 -10.717          4
2555        GPSM3       6_26 1.931e-06 120.46 8.532e-15  -9.377          2
1061       CCHCR1       6_25 1.748e-02  61.89 3.341e-07  -9.272         10
1655         DDR1       6_25 1.253e-02  68.37 1.019e-07   9.016          1
1915        EGFL8       6_26 1.209e-05 121.04 1.683e-13  -8.953          2
4052        NT5C2      10_66 2.050e-01  47.24 6.387e-05  -8.668          9
3383        MAIP1      2_118 2.500e-01  44.44 2.637e-05  -7.980          1
494         AS3MT      10_66 1.817e-01  40.78 2.566e-05   7.907          4
5139 RP5-874C20.8       6_22 8.584e-03  37.09 5.064e-08  -7.603          3
3373       MAD1L1        7_3 4.288e-01  54.63 1.046e-04   7.478          4
6941      ZSCAN16       6_22 1.289e-02  53.72 7.344e-08  -7.468          3
402        APOPT1      14_54 3.448e-01  46.84 1.166e-04  -7.431          6
3081         KLC1      14_54 1.050e-01  49.40 8.432e-06   7.382          6
1704         DGKZ      11_28 5.830e-01  47.17 1.522e-04   7.216          1
     num_sqtl
401         3
623         5
6535        1
868         2
2294        6
1602        2
741         5
2555        2
1061       15
1655        1
1915        3
4052       11
3383        1
494         5
5139        4
3373        4
6941        3
402         9
3081        6
1704        1

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 18
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
                                                                                                  Term
1                                                                        U2 snRNA binding (GO:0030620)
2                                                            dihydropyrimidinase activity (GO:0004157)
3                                                                    neurotrophin binding (GO:0043121)
4 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amides (GO:0016812)
5            cysteine-type endopeptidase activity involved in apoptotic signaling pathway (GO:0097199)
6                                                          diacylglycerol kinase activity (GO:0004143)
7                                                                         filamin binding (GO:0031005)
8           cysteine-type endopeptidase activity involved in execution phase of apoptosis (GO:0097200)
9                      cysteine-type endopeptidase activity involved in apoptotic process (GO:0097153)
  Overlap Adjusted.P.value  Genes
1     1/5          0.03802 SNRPA1
2     1/6          0.03802 DPYSL3
3     1/8          0.03802  NTRK3
4    1/10          0.03802 DPYSL3
5    1/10          0.03802  CASP2
6    1/11          0.03802   DGKZ
7    1/11          0.03802 DPYSL3
8    1/13          0.03929  CASP2
9    1/15          0.04026  CASP2

DisGeNET enrichment analysis for genes with PIP>0.5

                                                          Description     FDR
28                                      Electroencephalogram abnormal 0.01021
74                                            SENIOR-LOKEN SYNDROME 7 0.01021
76                                            MECKEL SYNDROME, TYPE 9 0.01021
77               MITOCHONDRIAL COMPLEX III DEFICIENCY, NUCLEAR TYPE 5 0.01021
79                                            Intellectual Disability 0.01021
80                                           BARDET-BIEDL SYNDROME 16 0.01021
82 MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 2 0.01021
84                                                 EVEN-PLUS SYNDROME 0.01021
85                                           ANEMIA, SIDEROBLASTIC, 4 0.01021
88                                                JOUBERT SYNDROME 27 0.01021
   Ratio  BgRatio
28  1/11   1/9703
74  1/11   1/9703
76  1/11   1/9703
77  1/11   1/9703
79  4/11 447/9703
80  1/11   1/9703
82  1/11   1/9703
84  1/11   1/9703
85  1/11   1/9703
88  1/11   1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 53
#significance threshold for TWAS
print(sig_thresh)
[1] 4.488
#number of ctwas genes
length(ctwas_genes)
[1] 0
#number of TWAS genes
length(twas_genes)
[1] 111
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename   region_tag susie_pip  mu2        PVE        z          num_intron
[8] num_sqtl  
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
 ctwas   TWAS 
0.0000 0.1077 
#specificity
print(specificity)
 ctwas   TWAS 
1.0000 0.9859 
#precision / PPV
print(precision)
 ctwas   TWAS 
   NaN 0.1261 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1