Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bcaadf3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/ttt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd) and HTML (docs/SCZ_2018_Brain_Cerebellar_Hemisphere_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bcaadf3 sq-96 2022-05-19 update
html bcaadf3 sq-96 2022-05-19 update
Rmd be614ed sq-96 2022-05-19 update
html be614ed sq-96 2022-05-19 update
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 26564
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2520 1814 1594  973 1137 1377 1526  911 1106 1166 1579 1419  520  921  928 1179 
  17   18   19   20   21   22 
1880  325 1895  891   51  852 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 23201
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8734
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0103642 0.0002912 
 gene   snp 
12.00 10.12 
[1] 105318
[1]    7860 6309950
    gene      snp 
0.009283 0.176540 
[1] 0.03488 1.05335

Genes with highest PIPs

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
       genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
6205     SLC8B1      12_68    1.5477 28.59 0.0005738 -4.047         11       12
3667       LRP8       1_33    1.2607 32.55 0.0003761  4.820         11       11
7425      WDR27      6_111    1.1795 17.37 0.0001185  2.338         30       41
2396   FAM177A1       14_9    1.1555 24.30 0.0002576 -4.872         12       13
2719     GIGYF2      2_137    1.0940 56.96 0.0005633 -8.128          6        6
5293     R3HDM2      12_36    1.0731 43.83 0.0004526  6.634          9       11
4759     PDXDC1      16_15    1.0670 29.62 0.0001711  3.879         23       25
3651     LPCAT4      15_10    0.9950 25.36 0.0002297  4.892          3        4
2718     GIGYF1       7_62    0.9927 26.42 0.0002425 -5.266          5        5
1156     CCDC57      17_47    0.9837 18.98 0.0001239 -3.061         34       44
842  BUB1B-PAK6      15_14    0.9466 29.86 0.0002496 -5.588          2        2
3512      LAMA5      20_37    0.9462 28.70 0.0001979 -4.211         25       32
151      ACTR1B       2_57    0.9438 19.16 0.0001576  3.978          9        9
4686       PATJ       1_39    0.9400 22.53 0.0001571  2.798         15       17
1039     CAMKK2      12_74    0.9338 35.78 0.0002086  4.159          6        8
5994      SF3B1      2_117    0.9204 45.85 0.0003612 -7.053          3        3
4104     MRPS33       7_87    0.9200 20.70 0.0001602 -4.304          5        5
1478      CNOT1      16_31    0.9167 35.98 0.0002567  6.282         10       11
6749      THAP8      19_25    0.9103 19.03 0.0001497  3.847          2        2
5281    PYROXD2      10_62    0.9087 21.98 0.0001517 -3.852          9       10
4549      NUP50      22_20    0.8804 18.64 0.0001329 -3.850          5        5
6287     SNRPA1      15_50    0.8782 21.98 0.0001513 -3.913          5        6
6009       SGCE       7_58    0.8780 20.72 0.0001455  4.413          6        6
294        AKT3      1_128    0.8712 35.12 0.0002321  6.266          6        6
1275      CECR2       22_2    0.8629 18.61 0.0001295 -3.928          4        4
4513      NTRK3      15_41    0.8602 24.09 0.0001557  4.457          3        3
1754       CUL9       6_33    0.8557 31.85 0.0001747  4.961         11       12
6940       TNK2      3_120    0.8483 27.71 0.0001251  3.409         16       16
7078    TSNARE1       8_93    0.8348 34.12 0.0001825  6.364         10       10
680      B3GAT1      11_84    0.8323 23.80 0.0001477  4.394          4        6
7567    ZDHHC20       13_2    0.8099 25.00 0.0001495 -4.832          3        4
1631      CRTAP       3_24    0.8018 20.88 0.0001249  3.929          2        2

Genes with highest PVE

       genename region_tag susie_pip    mu2       PVE       z num_intron
456        APOM       6_26    0.4404 626.01 0.0011520  11.590          3
7339       VARS       6_26    0.3832 628.56 0.0008763 -11.620          2
837      BTN3A1       6_20    0.7245 145.15 0.0006369  13.091          7
6205     SLC8B1      12_68    1.5477  28.59 0.0005738  -4.047         11
2719     GIGYF2      2_137    1.0940  56.96 0.0005633  -8.128          6
5293     R3HDM2      12_36    1.0731  43.83 0.0004526   6.634          9
3667       LRP8       1_33    1.2607  32.55 0.0003761   4.820         11
5994      SF3B1      2_117    0.9204  45.85 0.0003612  -7.053          3
2396   FAM177A1       14_9    1.1555  24.30 0.0002576  -4.872         12
1478      CNOT1      16_31    0.9167  35.98 0.0002567   6.282         10
842  BUB1B-PAK6      15_14    0.9466  29.86 0.0002496  -5.588          2
2718     GIGYF1       7_62    0.9927  26.42 0.0002425  -5.266          5
294        AKT3      1_128    0.8712  35.12 0.0002321   6.266          6
3651     LPCAT4      15_10    0.9950  25.36 0.0002297   4.892          3
1039     CAMKK2      12_74    0.9338  35.78 0.0002086   4.159          6
3512      LAMA5      20_37    0.9462  28.70 0.0001979  -4.211         25
7005     TRANK1       3_27    0.7567  38.76 0.0001973  -6.365          6
7078    TSNARE1       8_93    0.8348  34.12 0.0001825   6.364         10
1754       CUL9       6_33    0.8557  31.85 0.0001747   4.961         11
4759     PDXDC1      16_15    1.0670  29.62 0.0001711   3.879         23
     num_sqtl
456         4
7339        2
837         8
6205       12
2719        6
5293       11
3667       11
5994        3
2396       13
1478       11
842         2
2718        5
294         6
3651        4
1039        8
3512       32
7005        6
7078       10
1754       12
4759       25

Comparing z scores and PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] 0.02176
     genename region_tag susie_pip    mu2       PVE       z num_intron num_sqtl
7606  ZKSCAN3       6_22 6.184e-02 160.21 3.269e-06 -13.135          4        4
837    BTN3A1       6_20 7.245e-01 145.15 6.369e-04  13.091          7        8
4797    PGBD1       6_22 1.027e-01 159.13 7.726e-06 -13.087          5        7
7339     VARS       6_26 3.832e-01 628.56 8.763e-04 -11.620          2        2
456      APOM       6_26 4.404e-01 626.01 1.152e-03  11.590          3        4
1851     DDR1       6_25 3.515e-01 101.78 1.165e-04 -11.175          4        4
964  C6orf136       6_24 1.205e-01  80.18 1.105e-05 -11.031          2        2
2559    FLOT1       6_24 3.515e-01  78.83 9.198e-05  10.981          8        8
838    BTN3A2       6_20 1.534e-01  94.90 1.064e-05 -10.743          5        7
1781  CYP21A2       6_26 5.976e-06 607.99 2.062e-13 -10.513          1        2
699      BAG6       6_26 5.908e-09 500.57 1.659e-19  10.247          9        9
835    BTN2A1       6_20 1.490e-01  84.19 6.335e-06  10.110          7        7
5104     PPT2       6_26 5.412e-12 466.36 1.297e-25  10.061          7        9
2138    EGFL8       6_26 4.315e-12 465.72 8.227e-26  10.036          6        7
5165    PRRT1       6_26 3.762e-12 464.63 6.243e-26 -10.018          1        1
2850    GPSM3       6_26 2.356e-13 416.63 2.196e-28  -9.377          2        2
1176   CCHCR1       6_25 9.102e-02  59.77 1.948e-06  -9.032         11       18
6952     TNXB       6_26 2.108e-13 454.39 1.918e-28   9.001          4        5
3026  HLA-DMA       6_27 1.797e-01  70.57 1.141e-05   8.860          5        6
7849  ZSCAN23       6_22 1.294e-02  46.07 7.324e-08  -8.541          1        1

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 135
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                               Description     FDR Ratio  BgRatio
13             Balo's Concentric Sclerosis 0.05674  1/84   1/9703
40  Diffuse Cerebral Sclerosis of Schilder 0.05674  1/84   1/9703
90             Profound Mental Retardation 0.05674  5/84 139/9703
100               Acute monocytic leukemia 0.05674  3/84  26/9703
101            Leukemia, Myelocytic, Acute 0.05674  6/84 173/9703
112                                Measles 0.05674  1/84   1/9703
116       Mental Retardation, Psychosocial 0.05674  5/84 139/9703
132                    Nicotine Dependence 0.05674  2/84  14/9703
154                          Schizophrenia 0.05674 17/84 883/9703
158                     Status Epilepticus 0.05674  4/84  68/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
       description size overlap      FDR       database
1 Bipolar Disorder  136      13 0.001345 disease_GLAD4U
2    Schizophrenia  165      13 0.005978 disease_GLAD4U
3 Mental Disorders  247      15 0.017847 disease_GLAD4U
                                                                                     userId
1         AS3MT;BDNF;CAMKK2;DLG1;GABBR2;ITIH4;NT5C2;NTRK3;SDCCAG8;SYNE1;TCF4;TRANK1;TSNARE1
2           AHI1;AS3MT;BDNF;CAMKK2;DLG1;ITIH4;NT5C2;NTRK3;SDCCAG8;SYNE1;TCF4;TRANK1;TSNARE1
3 ADAM10;AHI1;AS3MT;BDNF;GABBR2;ITIH4;LRP8;MEF2C;NT5C2;NTRK3;SGCE;SYNE1;TCF4;TRANK1;TSNARE1

PIP Manhattan Plot

Warning: Removed 2 rows containing missing values (geom_point).

Warning: Removed 2 rows containing missing values (geom_point).
Warning: Removed 2 rows containing missing values (geom_label_repel).
Warning: ggrepel: 93 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 59
#significance threshold for TWAS
print(sig_thresh)
[1] 4.514
#number of ctwas genes
length(ctwas_genes)
[1] 32
#number of TWAS genes
length(twas_genes)
[1] 171
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
151    ACTR1B       2_57    0.9438 19.16 0.0001576  3.978          9        9
680    B3GAT1      11_84    0.8323 23.80 0.0001477  4.394          4        6
1039   CAMKK2      12_74    0.9338 35.78 0.0002086  4.159          6        8
1156   CCDC57      17_47    0.9837 18.98 0.0001239 -3.061         34       44
1275    CECR2       22_2    0.8629 18.61 0.0001295 -3.928          4        4
1631    CRTAP       3_24    0.8018 20.88 0.0001249  3.929          2        2
3512    LAMA5      20_37    0.9462 28.70 0.0001979 -4.211         25       32
4104   MRPS33       7_87    0.9200 20.70 0.0001602 -4.304          5        5
4513    NTRK3      15_41    0.8602 24.09 0.0001557  4.457          3        3
4549    NUP50      22_20    0.8804 18.64 0.0001329 -3.850          5        5
4686     PATJ       1_39    0.9400 22.53 0.0001571  2.798         15       17
4759   PDXDC1      16_15    1.0670 29.62 0.0001711  3.879         23       25
5281  PYROXD2      10_62    0.9087 21.98 0.0001517 -3.852          9       10
6009     SGCE       7_58    0.8780 20.72 0.0001455  4.413          6        6
6205   SLC8B1      12_68    1.5477 28.59 0.0005738 -4.047         11       12
6287   SNRPA1      15_50    0.8782 21.98 0.0001513 -3.913          5        6
6749    THAP8      19_25    0.9103 19.03 0.0001497  3.847          2        2
6940     TNK2      3_120    0.8483 27.71 0.0001251  3.409         16       16
7425    WDR27      6_111    1.1795 17.37 0.0001185  2.338         30       41
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.05385 0.13077 
#specificity
print(specificity)
 ctwas   TWAS 
0.9968 0.9803 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.21875 0.09942 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1