Last updated: 2024-12-20
Checks: 7 0
Knit directory: KODAMA-Analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20240618)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 16e454f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/figure/
Untracked files:
Untracked: KODAMA.svg
Untracked: Rplots.pdf
Untracked: code/Acinar_Cell_Carcinoma.ipynb
Untracked: code/Adenocarcinoma.ipynb
Untracked: code/Adjacent_normal_section.ipynb
Untracked: code/DLFPC_preprocessing.R
Untracked: code/DLPFC - BANKSY.R
Untracked: code/DLPFC - BASS.R
Untracked: code/DLPFC - BAYESPACE.R
Untracked: code/DLPFC - Nonspatial.R
Untracked: code/DLPFC - PRECAST.R
Untracked: code/DLPFC_comparison.R
Untracked: code/DLPFC_results_analysis.R
Untracked: code/VisiumHD-CRC.ipynb
Untracked: data/DLFPC-Br5292-input.RData
Untracked: data/DLFPC-Br5595-input.RData
Untracked: data/DLFPC-Br8100-input.RData
Untracked: data/DLPFC-general.RData
Untracked: data/spots_classification_ALL.csv
Untracked: data/trajectories.RData
Untracked: data/trajectories_VISIUMHD.RData
Untracked: output/BANSKY-results.RData
Untracked: output/BASS-results.RData
Untracked: output/BayesSpace-results.RData
Untracked: output/CRC-image.RData
Untracked: output/CRC-image2.RData
Untracked: output/DL.RData
Untracked: output/DLFPC-All-2.RData
Untracked: output/DLFPC-All.RData
Untracked: output/DLFPC-Br5292.RData
Untracked: output/DLFPC-Br5595.RData
Untracked: output/DLFPC-Br8100.RData
Untracked: output/DLPFC1.svg
Untracked: output/DLPFC_all_cluster.svg
Untracked: output/Figure 1 - boxplot.pdf
Untracked: output/Figure 2 - DLPFC 10.pdf
Untracked: output/KODAMA-results.RData
Untracked: output/KODAMA_DLPFC_All_original.svg
Untracked: output/KODAMA_DLPFC_Br5595.svg
Untracked: output/KODAMA_DLPFC_Br5595_slide.svg
Untracked: output/MERFISH.RData
Untracked: output/Nonspatial-results.RData
Untracked: output/PRECAST-results.RData
Untracked: output/Prostate.RData
Untracked: output/VisiumHD3.RData
Untracked: output/image.RData
Untracked: remove.RData
Untracked: remove2.RData
Unstaged changes:
Deleted: analysis/D1.Rmd
Deleted: analysis/DLPFC-12.Rmd
Deleted: analysis/DLPFC-4.Rmd
Deleted: analysis/DLPFC1.Rmd
Deleted: analysis/DLPFC10.Rmd
Deleted: analysis/DLPFC2.Rmd
Deleted: analysis/DLPFC3.Rmd
Deleted: analysis/DLPFC4.Rmd
Deleted: analysis/DLPFC5.Rmd
Deleted: analysis/DLPFC6.Rmd
Deleted: analysis/DLPFC7.Rmd
Deleted: analysis/DLPFC8.Rmd
Deleted: analysis/DLPFC9.Rmd
Deleted: analysis/Du1.Rmd
Deleted: analysis/Du10.Rmd
Deleted: analysis/Du11.Rmd
Deleted: analysis/Du12.Rmd
Deleted: analysis/Du13.Rmd
Deleted: analysis/Du14.Rmd
Deleted: analysis/Du15.Rmd
Deleted: analysis/Du16.Rmd
Deleted: analysis/Du17.Rmd
Deleted: analysis/Du18.Rmd
Deleted: analysis/Du19.Rmd
Deleted: analysis/Du2.Rmd
Deleted: analysis/Du20.Rmd
Deleted: analysis/Du3.Rmd
Deleted: analysis/Du4.Rmd
Deleted: analysis/Du5.Rmd
Deleted: analysis/Du6.Rmd
Deleted: analysis/Du7.Rmd
Deleted: analysis/Du8.Rmd
Deleted: analysis/Du9.Rmd
Modified: analysis/Giotto.Rmd
Deleted: analysis/STARmap.Rmd
Modified: analysis/VisiumHD.Rmd
Modified: code/VisiumHD_CRC_download.sh
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/DLPFC.Rmd
) and HTML
(docs/DLPFC.html
) files. If you’ve configured a remote Git
repository (see ?wflow_git_remote
), click on the hyperlinks
in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 16e454f | Stefano Cacciatore | 2024-12-20 | Start my new project |
html | 7b2cb8c | Stefano Cacciatore | 2024-12-16 | Build site. |
Rmd | 8a5f6c8 | Stefano Cacciatore | 2024-12-16 | Start my new project |
html | 374d5f0 | Stefano Cacciatore | 2024-12-14 | Build site. |
Rmd | 6efcd94 | Stefano Cacciatore | 2024-12-14 | Start my new project |
html | f6bab12 | Stefano Cacciatore | 2024-10-19 | Build site. |
Rmd | 3490a11 | Stefano Cacciatore | 2024-10-19 | Start my new project |
Rmd | 43ad12f | Stefano Cacciatore | 2024-10-18 | Start my new project |
Rmd | 2c73e5e | Stefano Cacciatore | 2024-10-18 | Start my new project |
Rmd | d75807e | Stefano Cacciatore | 2024-10-17 | Start my new project |
html | ede33d2 | Stefano Cacciatore | 2024-10-17 | Build site. |
Rmd | 1ec4751 | Stefano Cacciatore | 2024-10-17 | Start my new project |
html | 773f9ef | Stefano Cacciatore | 2024-10-16 | Build site. |
Rmd | df98881 | Stefano Cacciatore | 2024-10-16 | Start my new project |
Rmd | 47b0163 | Stefano Cacciatore | 2024-10-15 | Start my new project |
html | fd8d092 | Stefano Cacciatore | 2024-10-15 | Build site. |
Rmd | e31e3e8 | Stefano Cacciatore | 2024-10-15 | Start my new project |
html | 1edc32b | Stefano Cacciatore | 2024-10-11 | Build site. |
Rmd | eaad1a0 | Stefano Cacciatore | 2024-10-11 | Start my new project |
html | c9d54ee | Stefano Cacciatore | 2024-10-11 | Build site. |
Rmd | fa049de | Stefano Cacciatore | 2024-10-11 | Start my new project |
Rmd | 454b8fc | Stefano Cacciatore | 2024-10-11 | Start my new project |
html | 1352d91 | Stefano Cacciatore | 2024-10-10 | Build site. |
Rmd | 1b119a0 | Stefano Cacciatore | 2024-10-10 | Start my new project |
html | 6038af1 | Stefano Cacciatore | 2024-10-09 | Build site. |
Rmd | d141628 | Stefano Cacciatore | 2024-10-09 | Start my new project |
html | d1192e9 | Stefano Cacciatore | 2024-08-12 | Build site. |
html | 3374e66 | Stefano Cacciatore | 2024-08-06 | Build site. |
html | 35ce733 | Stefano Cacciatore | 2024-08-03 | Build site. |
Rmd | 06f7055 | Stefano Cacciatore | 2024-08-02 | Start my new project |
Rmd | 7be8f59 | tkcaccia | 2024-07-15 | updates |
Rmd | f8ca54a | tkcaccia | 2024-07-14 | update |
html | f8ca54a | tkcaccia | 2024-07-14 | update |
html | 3ea09a6 | GitHub | 2024-07-08 | Update DLPFC.html |
html | 93915d8 | GitHub | 2024-07-04 | Update DLPFC.html |
html | ee4ee17 | GitHub | 2024-06-19 | Add files via upload |
Rmd | 615fc05 | GitHub | 2024-06-19 | Add files via upload |
Here, we apply KODAMA to analyze the human dorsolateral prefrontal cortex (DLPFC) data by 10x Visium from Maynard et al., 2021. The links to download the raw data and H&E full resolution images can be found in the LieberInstitute/spatialLIBD github page.
library("nnSVG")
library("scater")
library("scran")
library("scry")
library("SPARK")
library("harmony")
library("Seurat")
library("spatialLIBD")
library("KODAMAextra")
library("mclust")
library("slingshot")
library("irlba")
library("Rnanoflann")
library("ggpubr")
spe <- fetch_data(type = 'spe')
n.cores=40
splitting = 100
spatial.resolution = 0.3
aa_noise=3
gene_number=2000
graph = 20
seed=543210
set.seed(seed)
ID=unlist(lapply(strsplit(rownames(colData(spe)),"-"),function(x) x[1]))
samples=colData(spe)$sample_id
rownames(colData(spe))=paste(ID,samples,sep="-")
txtfile=paste(splitting,spatial.resolution,aa_noise,2,gene_number,sep="_")
sample_names=c("151507",
"151508",
"151509",
"151510",
"151669",
"151670",
"151671",
"151672",
"151673",
"151674",
"151675",
"151676")
subject_names= c("Br5292","Br5595", "Br8100")
metaData = SingleCellExperiment::colData(spe)
expr = SingleCellExperiment::counts(spe)
sample_names <- paste0("sample_", unique(colData(spe)$sample_id))
sample_names <- unique(colData(spe)$sample_id)
dim(spe)
[1] 33538 47681
# identify mitochondrial genes
is_mito <- grepl("(^MT-)|(^mt-)", rowData(spe)$gene_name)
table(is_mito)
is_mito
FALSE TRUE
33525 13
# calculate per-spot QC metrics
spe <- addPerCellQC(spe, subsets = list(mito = is_mito))
# select QC thresholds
qc_lib_size <- colData(spe)$sum < 500
qc_detected <- colData(spe)$detected < 250
qc_mito <- colData(spe)$subsets_mito_percent > 30
qc_cell_count <- colData(spe)$cell_count > 12
# spots to discard
discard <- qc_lib_size | qc_detected | qc_mito | qc_cell_count
table(discard)
discard
FALSE TRUE
46653 1028
colData(spe)$discard <- discard
# filter low-quality spots
spe <- spe[, !colData(spe)$discard]
dim(spe)
[1] 33538 46653
spe <- filter_genes(
spe,
filter_genes_ncounts = 2, #ncounts
filter_genes_pcspots = 0.5,
filter_mito = TRUE
)
dim(spe)
[1] 6623 46653
sel= !is.na(colData(spe)$layer_guess_reordered)
spe = spe[,sel]
dim(spe)
[1] 6623 46318
spe <- computeLibraryFactors(spe)
spe <- logNormCounts(spe)
subjects=colData(spe)$subject
labels=as.factor(colData(spe)$layer_guess_reordered)
xy=as.matrix(spatialCoords(spe))
samples=colData(spe)$sample_id
cols_cluster <- c("#0000b6", "#81b29a", "#f2cc8f","#e07a5f",
"#cc00b6", "#81ccff", "#33b233")
plot_slide(xy,samples,labels,col=cols_cluster)
png
2
The identification of genes that display spatial expression patterns is performed using the SPARKX method (Zhu et al. (2021)). The genes are ranked based on the median value of the logarithm value of the p-value obtained in each slide individually.
top=multi_SPARKX(spe,n.cores=n.cores)
Warning in asMethod(object): sparse->dense coercion: allocating vector of size
2.3 GiB
data=as.matrix(t(logcounts(spe)[top[1:gene_number],]))
samples=colData(spe)$sample_id
labels=as.factor(colData(spe)$layer_guess_reordered)
names(labels)=rownames(colData(spe))
subjects=colData(spe)$subject
subject_names="Br5595"
nclusters=5
spe_sub <- spe[, colData(spe)$subject == subject_names]
# subjects=colData(spe_sub)$subject
dim(spe_sub)
[1] 6623 14646
# spe_sub <- runPCA(spe_sub, 50,subset_row = top[1:gene_number], scale=TRUE)
#pca=reducedDim(spe_sub,type = "PCA")[,1:50]
spe_sub <- spe[, colData(spe)$subject == subject_names]
sel= subjects == subject_names
data_Br5595=data[sel,top[1:gene_number]]
RNA.scaled=scale(data_Br5595)
pca_results <- irlba(A = RNA.scaled, nv = 50)
pca_Br5595 <- pca_results$u %*% diag(pca_results$d)[,1:50]
rownames(pca_Br5595)=rownames(data_Br5595)
colnames(pca_Br5595)=paste("PC",1:50,sep="")
labels=as.factor(colData(spe_sub)$layer_guess_reordered)
names(labels)=rownames(colData(spe_sub))
xy=as.matrix(spatialCoords(spe_sub))
rownames(xy)=rownames(colData(spe_sub))
samples=colData(spe_sub)$sample_id
plot(pca_Br5595, pch=20,col=as.factor(colData(spe_sub)$sample_id))
set.seed(seed)
kk=KODAMA.matrix.parallel(pca_Br5595,
spatial = xy,
samples=samples,
FUN= "fastpls" ,
landmarks = 100000,
splitting = splitting,
ncomp = 50,
spatial.resolution = spatial.resolution,
n.cores=n.cores,
seed = seed)
Calculating Network
Calculating Network spatial
socket cluster with 40 nodes on host 'localhost'
================================================================================
Finished parallel computation
[1] "Calculation of dissimilarity matrix..."
================================================================================
print("KODAMA finished")
[1] "KODAMA finished"
config=umap.defaults
config$n_threads = n.cores
config$n_sgd_threads = "auto"
kk_UMAP=KODAMA.visualization(kk,method="UMAP",config=config)
plot(kk_UMAP,pch=20,col=cols_cluster[labels])
png
2
# Graph-based clustering
g <- bluster::makeSNNGraph(as.matrix(kk_UMAP), k = 20)
g_walk <- igraph::cluster_walktrap(g)
clu <- as.character(igraph::cut_at(g_walk, no = 2))
plot(kk_UMAP,pch=20,col=cols_cluster[as.factor(clu)])
Version | Author | Date |
---|---|---|
7b2cb8c | Stefano Cacciatore | 2024-12-16 |
374d5f0 | Stefano Cacciatore | 2024-12-14 |
fd8d092 | Stefano Cacciatore | 2024-10-15 |
c9d54ee | Stefano Cacciatore | 2024-10-11 |
1352d91 | Stefano Cacciatore | 2024-10-10 |
6038af1 | Stefano Cacciatore | 2024-10-09 |
35ce733 | Stefano Cacciatore | 2024-08-03 |
f8ca54a | tkcaccia | 2024-07-14 |
plot_slide(xy,as.factor(samples),clu,col=cols_cluster)
Version | Author | Date |
---|---|---|
7b2cb8c | Stefano Cacciatore | 2024-12-16 |
png
2
FB=names(which.min(table(clu)))
selFB=clu!=FB
# kk_UMAP=kk_UMAP[selFB,]
# labels=labels[selFB]
# samples=samples[selFB]
# xy=xy[selFB,]
g <- bluster::makeSNNGraph(as.matrix(kk_UMAP[selFB,]), k = graph)
g_walk <- igraph::cluster_walktrap(g)
clu <- as.character(igraph::cut_at(g_walk, no = nclusters))
plot(kk_UMAP[selFB,],pch=20,col=as.factor(clu))
Version | Author | Date |
---|---|---|
7b2cb8c | Stefano Cacciatore | 2024-12-16 |
374d5f0 | Stefano Cacciatore | 2024-12-14 |
fd8d092 | Stefano Cacciatore | 2024-10-15 |
1edc32b | Stefano Cacciatore | 2024-10-11 |
c9d54ee | Stefano Cacciatore | 2024-10-11 |
1352d91 | Stefano Cacciatore | 2024-10-10 |
6038af1 | Stefano Cacciatore | 2024-10-09 |
35ce733 | Stefano Cacciatore | 2024-08-03 |
f8ca54a | tkcaccia | 2024-07-14 |
ref=refine_SVM(xy[selFB,],clu,samples[selFB],cost=100)
[1] "151669"
[1] "151670"
[1] "151671"
[1] "151672"
u=unique(samples[selFB])
for(j in u){
sel=samples[selFB]==j
print(mclust::adjustedRandIndex(labels[selFB][sel],ref[sel]))
}
[1] 0.7433529
[1] 0.7503761
[1] 0.8065421
[1] 0.745585
###########
plot_slide(xy,samples,labels,col=cols_cluster)
Version | Author | Date |
---|---|---|
7b2cb8c | Stefano Cacciatore | 2024-12-16 |
374d5f0 | Stefano Cacciatore | 2024-12-14 |
fd8d092 | Stefano Cacciatore | 2024-10-15 |
1edc32b | Stefano Cacciatore | 2024-10-11 |
c9d54ee | Stefano Cacciatore | 2024-10-11 |
1352d91 | Stefano Cacciatore | 2024-10-10 |
35ce733 | Stefano Cacciatore | 2024-08-03 |
f8ca54a | tkcaccia | 2024-07-14 |
plot_slide(xy[selFB,],samples[selFB],ref,col=cols_cluster)
kk_UMAP_Br5595=kk_UMAP
samples_Br5595=samples
xy_Br5595=xy
labels_Br5595=labels
subject_names_Br5595=subject_names
ref_Br5595=ref
clu_Br5595=clu
save(kk_UMAP_Br5595,samples_Br5595,xy_Br5595,labels_Br5595,subject_names_Br5595,ref_Br5595,clu_Br5595,selFB,file="output/DLFPC-Br5595.RData")
save(data_Br5595,pca_Br5595,samples_Br5595,xy_Br5595,labels_Br5595,subject_names_Br5595,selFB,file="data/DLFPC-Br5595-input.RData")
subject_names="Br5292"
nclusters=7
spe_sub <- spe[, colData(spe)$subject == subject_names]
dim(spe_sub)
[1] 6623 17734
# spe_sub <- runPCA(spe_sub, 50,subset_row = top[1:gene_number], scale=TRUE)
#pca=reducedDim(spe_sub,type = "PCA")[,1:50]
spe_sub <- spe[, colData(spe)$subject == subject_names]
sel= subjects == subject_names
data_Br5292=data[sel,top[1:gene_number]]
RNA.scaled=scale(data_Br5292)
pca_results <- irlba(A = RNA.scaled, nv = 50)
pca_Br5292 <- pca_results$u %*% diag(pca_results$d)[,1:50]
rownames(pca_Br5292)=rownames(data_Br5292)
colnames(pca_Br5292)=paste("PC",1:50,sep="")
labels=as.factor(colData(spe_sub)$layer_guess_reordered)
names(labels)=rownames(colData(spe_sub))
xy=as.matrix(spatialCoords(spe_sub))
rownames(xy)=rownames(colData(spe_sub))
samples=colData(spe_sub)$sample_id
plot(pca_Br5292, pch=20,col=as.factor(colData(spe_sub)$sample_id))
set.seed(seed)
kk=KODAMA.matrix.parallel(pca_Br5292,
spatial = xy,
samples=samples,
FUN= "fastpls" ,
landmarks = 100000,
splitting = splitting,
ncomp = 50,
spatial.resolution = spatial.resolution,
n.cores=n.cores,
seed = seed)
Calculating Network
Calculating Network spatial
socket cluster with 40 nodes on host 'localhost'
================================================================================
Finished parallel computation
[1] "Calculation of dissimilarity matrix..."
================================================================================
print("KODAMA finished")
[1] "KODAMA finished"
config=umap.defaults
config$n_threads = n.cores
config$n_sgd_threads = "auto"
kk_UMAP=KODAMA.visualization(kk,method="UMAP",config=config)
plot(kk_UMAP,pch=20,col=as.factor(labels))
# Graph-based clustering
g <- bluster::makeSNNGraph(as.matrix(kk_UMAP), k = graph)
g_walk <- igraph::cluster_walktrap(g)
clu <- as.character(igraph::cut_at(g_walk, no = nclusters))
plot(kk_UMAP,pch=20,col=as.factor(clu))
ref=refine_SVM(xy,clu,samples,cost=100)
[1] "151507"
[1] "151508"
[1] "151509"
[1] "151510"
u=unique(samples)
for(j in u){
sel=samples==j
print(mclust::adjustedRandIndex(labels[sel],ref[sel]))
}
[1] 0.4462599
[1] 0.4843513
[1] 0.4496646
[1] 0.4064282
###########
g <- bluster::makeSNNGraph(as.matrix(kk_UMAP), k = graph)
g_walk <- igraph::cluster_walktrap(g)
clu <- as.character(igraph::cut_at(g_walk, no = nclusters))
ref=refine_SVM(xy,clu,samples,cost=100)
[1] "151507"
[1] "151508"
[1] "151509"
[1] "151510"
u=unique(samples)
for(j in u){
sel=samples==j
print(mclust::adjustedRandIndex(labels[sel],ref[sel]))
}
[1] 0.4462599
[1] 0.4843513
[1] 0.4496646
[1] 0.4064282
###########
plot_slide(xy,samples,labels,col=cols_cluster)
plot_slide(xy,samples,ref,col=cols_cluster)
kk_UMAP_Br5292=kk_UMAP
samples_Br5292=samples
xy_Br5292=xy
labels_Br5292=labels
subject_names_Br5292=subject_names
ref_Br5292=ref
clu_Br5292=clu
save(kk_UMAP_Br5292,pca_Br5292,samples_Br5292,xy_Br5292,subject_names_Br5292,labels_Br5292,ref_Br5292,clu_Br5292,file="output/DLFPC-Br5292.RData")
save(data_Br5292,pca_Br5292,samples_Br5292,xy_Br5292,labels_Br5292,subject_names_Br5292,file="data/DLFPC-Br5292-input.RData")
subject_names="Br8100"
nclusters=7
spe_sub <- spe[, colData(spe)$subject == subject_names]
dim(spe_sub)
[1] 6623 13938
# spe_sub <- runPCA(spe_sub, 50,subset_row = top[1:gene_number], scale=TRUE)
#pca=reducedDim(spe_sub,type = "PCA")[,1:50]
spe_sub <- spe[, colData(spe)$subject == subject_names]
sel= subjects == subject_names
data_Br8100=data[sel,top[1:gene_number]]
RNA.scaled=scale(data_Br8100)
pca_results <- irlba(A = RNA.scaled, nv = 50)
pca_Br8100 <- pca_results$u %*% diag(pca_results$d)[,1:50]
rownames(pca_Br8100)=rownames(data_Br8100)
colnames(pca_Br8100)=paste("PC",1:50,sep="")
labels=as.factor(colData(spe_sub)$layer_guess_reordered)
names(labels)=rownames(colData(spe_sub))
xy=as.matrix(spatialCoords(spe_sub))
rownames(xy)=rownames(colData(spe_sub))
samples=colData(spe_sub)$sample_id
plot(pca_Br8100, pch=20,col=as.factor(colData(spe_sub)$sample_id))
set.seed(seed)
kk=KODAMA.matrix.parallel(pca_Br8100,
spatial = xy,
samples=samples,
FUN= "fastpls" ,
landmarks = 100000,
splitting = splitting,
ncomp = 50,
spatial.resolution = spatial.resolution,
n.cores=n.cores,
seed = seed)
Calculating Network
Calculating Network spatial
socket cluster with 40 nodes on host 'localhost'
================================================================================
Finished parallel computation
[1] "Calculation of dissimilarity matrix..."
================================================================================
print("KODAMA finished")
[1] "KODAMA finished"
config=umap.defaults
config$n_threads = n.cores
config$n_sgd_threads = "auto"
kk_UMAP=KODAMA.visualization(kk,method="UMAP",config=config)
plot(kk_UMAP,pch=20,col=as.factor(labels))
# Graph-based clustering
g <- bluster::makeSNNGraph(as.matrix(kk_UMAP), k = graph)
g_walk <- igraph::cluster_walktrap(g)
clu <- as.character(igraph::cut_at(g_walk, no = nclusters))
ref=refine_SVM(xy,clu,samples,cost=100)
[1] "151673"
[1] "151674"
[1] "151675"
[1] "151676"
u=unique(samples)
for(j in u){
sel=samples==j
print(mclust::adjustedRandIndex(labels[sel],ref[sel]))
}
[1] 0.599265
[1] 0.658843
[1] 0.6486061
[1] 0.5928946
###########
g <- bluster::makeSNNGraph(as.matrix(kk_UMAP), k = graph)
g_walk <- igraph::cluster_walktrap(g)
clu <- as.character(igraph::cut_at(g_walk, no = nclusters))
plot(kk_UMAP,pch=20,col=as.factor(clu))
ref=refine_SVM(xy,clu,samples,cost=100)
[1] "151673"
[1] "151674"
[1] "151675"
[1] "151676"
u=unique(samples)
for(j in u){
sel=samples==j
print(mclust::adjustedRandIndex(labels[sel],ref[sel]))
}
[1] 0.599265
[1] 0.658843
[1] 0.6486061
[1] 0.5928946
###########
plot_slide(xy,samples,labels,col=cols_cluster)
plot_slide(xy,samples,ref,col=cols_cluster)
Version | Author | Date |
---|---|---|
7b2cb8c | Stefano Cacciatore | 2024-12-16 |
kk_UMAP_Br8100=kk_UMAP
samples_Br8100=samples
xy_Br8100=xy
labels_Br8100=labels
subject_names_Br8100=subject_names
ref_Br8100=ref
clu_Br8100=clu
save(kk_UMAP_Br8100,pca_Br8100,samples_Br8100,xy_Br8100,subject_names_Br8100,labels_Br8100,ref_Br8100,clu_Br8100,file="output/DLFPC-Br8100.RData")
save(data_Br8100,pca_Br8100,samples_Br8100,xy_Br8100,labels_Br8100,subject_names_Br8100,file="data/DLFPC-Br8100-input.RData")
results_KODAMA <- list()
results_KODAMA$clusters <- list()
results_KODAMA$labels <- list()
results_KODAMA$feature_extraction <- list()
results_KODAMA$xy <- list()
results_KODAMA$clusters=c(results_KODAMA$clusters,tapply(ref_Br5292,samples_Br5292,function(x) x))
results_KODAMA$clusters=c(results_KODAMA$clusters,tapply(ref_Br5595,samples_Br5595[selFB],function(x) x))
results_KODAMA$clusters=c(results_KODAMA$clusters,tapply(ref_Br8100,samples_Br8100,function(x) x))
results_KODAMA$labels=c(results_KODAMA$labels,tapply(labels_Br5292,samples_Br5292,function(x) x))
results_KODAMA$labels=c(results_KODAMA$labels,tapply(labels_Br5595[selFB],samples_Br5595[selFB],function(x) x))
results_KODAMA$labels=c(results_KODAMA$labels,tapply(labels_Br8100,samples_Br8100,function(x) x))
results_KODAMA$feature_extraction=c(results_KODAMA$feature_extraction,by(kk_UMAP_Br5292,samples_Br5292,function(x) x))
results_KODAMA$feature_extraction=c(results_KODAMA$feature_extraction,by(kk_UMAP_Br5595[selFB,],samples_Br5595[selFB],function(x) x))
results_KODAMA$feature_extraction=c(results_KODAMA$feature_extraction,by(kk_UMAP_Br8100,samples_Br8100,function(x) x))
results_KODAMA$xy=c(results_KODAMA$xy,by(xy_Br5292,samples_Br5292,function(x) x))
results_KODAMA$xy=c(results_KODAMA$xy,by(xy_Br5595[selFB,],samples_Br5595[selFB],function(x) x))
results_KODAMA$xy=c(results_KODAMA$xy,by(xy_Br8100,samples_Br8100,function(x) x))
save(results_KODAMA,file="output/KODAMA-results.RData")
#seurat list preprocessing
source("code/DLFPC_preprocessing.R")
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
[1] 12
PCA and HARMONY
dim(spe_sub)
[1] 6623 13938
spe <- runPCA(spe, 50,subset_row = top[1:gene_number], scale=TRUE)
subjects=colData(spe)$subject
labels=as.factor(colData(spe)$layer_guess_reordered)
xy=as.matrix(spatialCoords(spe))
samples=colData(spe)$sample_id
spe <- RunHarmony(spe, "subject",lambda=NULL)
pca=reducedDim(spe,type = "HARMONY")[,1:50]
plot(pca, pch=20,col=as.factor(colData(spe_sub)$sample_id))
KODAMA
set.seed(seed)
kk=KODAMA.matrix.parallel(pca,
spatial = xy,
samples=samples,
FUN= "fastpls" ,
landmarks = 100000,
splitting = splitting,
ncomp = 50,
spatial.resolution = spatial.resolution,
n.cores=n.cores,
seed = seed)
Calculating Network
Calculating Network spatial
socket cluster with 40 nodes on host 'localhost'
================================================================================
Finished parallel computation
[1] "Calculation of dissimilarity matrix..."
================================================================================
print("KODAMA finished")
[1] "KODAMA finished"
config=umap.defaults
config$n_threads = n.cores
config$n_sgd_threads = "auto"
kk_UMAP=KODAMA.visualization(kk,method="UMAP",config=config)
plot(kk_UMAP,pch=20,col=as.factor(labels))
CLUSTER
g <- bluster::makeSNNGraph(as.matrix(kk_UMAP), k = graph)
g_walk <- igraph::cluster_walktrap(g)
clu <- as.character(igraph::cut_at(g_walk, no = 7))
plot(kk_UMAP,pch=20,col=as.factor(clu))
plot_slide(xy,samples,clu,col=cols_cluster)
mito=colData(spe)$subsets_mito_percent
sel_local=(labels=="Layer3" | labels=="Layer4") &
(samples=="151669" | samples=="151670" | samples=="151671" | samples=="151672") &
(clu==1 | clu==6)
boxplot(mito[sel_local]~clu[sel_local],col=cols_cluster[c(1,6)] ,ylab="mito percent")
Version | Author | Date |
---|---|---|
7b2cb8c | Stefano Cacciatore | 2024-12-16 |
wilcox.test(mito[sel_local]~clu[sel_local])
Wilcoxon rank sum test with continuity correction
data: mito[sel_local] by clu[sel_local]
W = 323194, p-value = 0.01216
alternative hypothesis: true location shift is not equal to 0
CLUSTER
sel_rem=which(clu %in% names(sort(table(clu)))[1:2])
kk_UMAP_clear=kk_UMAP[-sel_rem,]
labels_clear=labels[-sel_rem]
samples_clear=samples[-sel_rem]
xy_clear=xy[-sel_rem,]
data_clear=data[-sel_rem,]
subjects_clear=subjects[-sel_rem]
clu=kmeans(kk_UMAP_clear,7,nstart = 100)$cluster
plot(kk_UMAP_clear,col=cols_cluster[labels_clear],pch=20)
svg("output/KODAMA_DLPFC_All_original.svg")
plot(kk_UMAP_clear,col=cols_cluster[labels_clear],pch=20)
dev.off()
png
2
plot(kk_UMAP_clear,col=cols_cluster[clu],pch=20)
u=unique(samples)
for(i in 1:length(u)){
sel=samples==u[i]
print(adjustedRandIndex(labels_clear[sel],clu[sel]))
}
[1] 0.5538318
[1] 0.5015062
[1] 0.4896804
[1] 0.4760243
[1] 0.3739001
[1] 0.3609056
[1] 0.4066322
[1] 0.4383128
[1] 0.548363
[1] 0.572728
[1] 0.536385
[1] 0.5275014
ref=refine_SVM(xy_clear,clu,samples_clear,cost=100)
[1] "151507"
[1] "151508"
[1] "151509"
[1] "151510"
[1] "151669"
[1] "151670"
[1] "151671"
[1] "151672"
[1] "151673"
[1] "151674"
[1] "151675"
[1] "151676"
names(ref)=rownames(data_clear)
names(labels_clear)=rownames(data_clear)
save(labels_clear,ref,subjects_clear,samples_clear,file="output/DL.RData")
u=unique(samples)
for(i in 1:length(u)){
sel=samples[-sel_rem]==u[i]
print(adjustedRandIndex(labels_clear[sel],ref[sel]))
}
[1] 0.5874289
[1] 0.5343093
[1] 0.507712
[1] 0.5028689
[1] 0.4241738
[1] 0.426007
[1] 0.4838957
[1] 0.5635095
[1] 0.5759575
[1] 0.6173067
[1] 0.6233622
[1] 0.5917995
plot_slide(xy_clear,samples_clear,ref,col=cols_cluster)
png
2
subclusters=sort(names(sort(table(ref,labels_clear)[,"Layer3"],decreasing = TRUE)[1:3]))
sa_sel=(samples_clear=="151669" | samples_clear=="151670" | samples_clear=="151671" | samples_clear=="151672")
aa=apply(data_clear,2,function(x) wilcox.test(x[ref==subclusters[1] & sa_sel],x[(ref==subclusters[2] ) & sa_sel],alternative = "greater")$p.value) +
apply(data_clear,2,function(x) wilcox.test(x[ref==subclusters[1] & sa_sel],x[(ref==subclusters[3]) & sa_sel],alternative = "greater")$p.value)
sort(aa)[1:10]
ENSG00000115756 ENSG00000162545 ENSG00000251562 ENSG00000128989 ENSG00000156508
4.077044e-87 1.297111e-58 1.167145e-45 3.158706e-27 7.428920e-27
ENSG00000170323 ENSG00000173432 ENSG00000162734 ENSG00000174444 ENSG00000144119
8.491823e-24 2.299894e-22 5.756291e-19 2.143882e-17 1.281161e-16
box_sel=(samples_clear=="151669" | samples_clear=="151670" | samples_clear=="151671" | samples_clear=="151672") & (ref==subclusters[1] | ref==subclusters[2] | ref==subclusters[3])
tapply(data_clear[box_sel,names(sort(aa)[1])],as.numeric(as.vector(ref[box_sel])),mean)
1 3 5
0.8993759 0.2901012 0.4536130
df=data.frame(variable=data_clear[box_sel,names(sort(aa)[1])],labels=as.numeric(as.vector(ref[box_sel])))
my_comparisons=list()
my_comparisons[[1]]=c(1,3)
my_comparisons[[2]]=c(1,2)
Nplot1=ggboxplot(df, x = "labels", y = "variable",fill="labels",
width = 0.8,
palette=cols_cluster)+
ylab(names(sort(aa)[1]))+ xlab("")+
stat_compare_means(comparisons = my_comparisons,method="wilcox.test")
Nplot1
a1=apply(data_clear,2,function(x) wilcox.test(x[ref==subclusters[2] & sa_sel],x[(ref==subclusters[3]) & sa_sel],alternative = "greater")$p.value)
a2=apply(data_clear,2,function(x) wilcox.test(x[ref==subclusters[2] & sa_sel],x[(ref==subclusters[1] ) & sa_sel],alternative = "greater")$p.value)
aa=a1+a2
sort(aa)[1:10]
ENSG00000197971 ENSG00000100285 ENSG00000198963 ENSG00000134986 ENSG00000105711
8.272578e-43 7.250085e-27 4.083530e-18 4.807172e-18 1.834065e-17
ENSG00000123560 ENSG00000123416 ENSG00000151552 ENSG00000118785 ENSG00000100362
2.257179e-17 2.991447e-17 6.118685e-17 5.887837e-16 8.522788e-16
a_choice=names(sort(aa)[1])
tapply(data_clear[box_sel,a_choice],as.numeric(as.vector(ref[box_sel])),mean)
1 3 5
1.581691 2.245112 1.917619
df=data.frame(variable=data_clear[box_sel,a_choice],labels=as.numeric(as.vector(ref[box_sel])))
my_comparisons=list()
my_comparisons[[1]]=c(2,3)
my_comparisons[[2]]=c(1,2)
Nplot2=ggboxplot(df, x = "labels", y = "variable",fill="labels",
width = 0.8,
palette=cols_cluster)+
ylab(a_choice)+ xlab("")+
stat_compare_means(comparisons = my_comparisons,method="wilcox.test")
Nplot2
aa=apply(data_clear,2,function(x) wilcox.test(x[ref==subclusters[3] & sa_sel],x[(ref==subclusters[1] ) & sa_sel],alternative = "greater")$p.value) +
apply(data_clear,2,function(x) wilcox.test(x[ref==subclusters[3] & sa_sel],x[(ref==subclusters[2]) & sa_sel],alternative = "greater")$p.value)
sort(aa)[1:10]
ENSG00000120885 ENSG00000154146 ENSG00000128245 ENSG00000162706 ENSG00000205542
4.442257e-09 1.696138e-06 1.515157e-05 7.404897e-04 1.177251e-03
ENSG00000167996 ENSG00000141433 ENSG00000117152 ENSG00000163032 ENSG00000143933
1.414809e-03 1.648107e-03 1.919411e-03 2.398576e-03 2.477883e-03
tapply(data_clear[box_sel,names(sort(aa)[1])],as.numeric(as.vector(ref[box_sel])),mean)
1 3 5
3.288123 3.306209 3.391248
df=data.frame(variable=data_clear[box_sel,names(sort(aa)[1])],labels=as.numeric(as.vector(ref[box_sel])))
my_comparisons=list()
my_comparisons[[1]]=c(2,3)
my_comparisons[[2]]=c(1,3)
Nplot3=ggboxplot(df, x = "labels", y = "variable",fill="labels",
width = 0.8,
palette=cols_cluster)+
ylab(names(sort(aa)[1]))+ xlab("")+
stat_compare_means(comparisons = my_comparisons,method="wilcox.test")
Nplot3
library(ggalluvial)
sel_sub=subjects_clear=="Br5292"
al=data.frame(expand.grid(list(levels(labels_clear),1:7)),freq=as.numeric(table(labels_clear[sel_sub],ref[sel_sub])))
al$Var2=as.factor(al$Var2)
ggplot(data = al,
aes(axis1 = Var1, axis2 = Var2, y = freq)) +
geom_alluvium(aes(fill = Var2)) +
geom_stratum() +
geom_text(stat = "stratum",
aes(label = after_stat(stratum))) +
theme_void()
sel_sub=subjects_clear=="Br5595"
al=data.frame(expand.grid(list(levels(labels_clear),1:7)),freq=as.numeric(table(labels_clear[sel_sub],ref[sel_sub])))
al$Var2=as.factor(al$Var2)
ggplot(data = al,
aes(axis1 = Var1, axis2 = Var2, y = freq)) +
geom_alluvium(aes(fill = Var2)) +
geom_stratum() +
geom_text(stat = "stratum",
aes(label = after_stat(stratum))) +
theme_void()
sel_sub=subjects_clear=="Br8100"
al=data.frame(expand.grid(list(levels(labels_clear),1:7)),freq=as.numeric(table(labels_clear[sel_sub],ref[sel_sub])))
al$Var2=as.factor(al$Var2)
ggplot(data = al,
aes(axis1 = Var1, axis2 = Var2, y = freq)) +
geom_alluvium(aes(fill = Var2)) +
geom_stratum() +
geom_text(stat = "stratum",
aes(label = after_stat(stratum))) +
theme_void()
library("GSVA")
library("GSA")
library("VAM")
geneset=GSA.read.gmt("../Genesets/msigdb_v2023.2.Hs_GMTs/h.all.v2023.2.Hs.symbols.gmt")
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849501
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
names(geneset$genesets)=geneset$geneset.names
genesets=geneset$genesets
countdata <- as.matrix(t(logcounts(spe)))
# library("gprofiler2")
# genes=gconvert(rownames(spe),organism="hsapiens",target="GENECARDS",filter_na = F)$target
genes=rowData(spe)[,"gene_name"]
spot_name=colnames(spe)
colnames(countdata)=genes
li=lapply(genesets,function(x) which(genes %in% x))
VAM=vamForCollection(gene.expr=countdata, gene.set.collection=li)
pathway=VAM$distance.sq
pathway_clear=pathway[-sel_rem,]
aa=apply(pathway_clear,2,function(x) wilcox.test(x[ref==subclusters[1] & sa_sel],x[(ref==subclusters[2] ) & sa_sel],alternative = "greater")$p.value) +
apply(pathway_clear,2,function(x) wilcox.test(x[ref==subclusters[1] & sa_sel],x[(ref==subclusters[3]) & sa_sel],alternative = "greater")$p.value)
sort(aa)[1:10]
HALLMARK_MYC_TARGETS_V1 HALLMARK_MITOTIC_SPINDLE
1.990192e-46 6.156770e-31
HALLMARK_TNFA_SIGNALING_VIA_NFKB HALLMARK_G2M_CHECKPOINT
7.508055e-31 3.118049e-29
HALLMARK_P53_PATHWAY HALLMARK_UV_RESPONSE_DN
4.828974e-28 3.861350e-26
HALLMARK_APICAL_JUNCTION HALLMARK_ALLOGRAFT_REJECTION
4.553265e-25 4.117158e-24
HALLMARK_UNFOLDED_PROTEIN_RESPONSE HALLMARK_ESTROGEN_RESPONSE_EARLY
2.893726e-23 2.658940e-22
box_sel=(samples_clear=="151669" | samples_clear=="151670" | samples_clear=="151671" | samples_clear=="151672") & (ref==subclusters[1] | ref==subclusters[2] | ref==subclusters[3])
tapply(pathway_clear[box_sel,names(sort(aa)[1])],as.numeric(as.vector(ref[box_sel])),mean)
1 3 5
284.1904 261.3498 267.3446
df=data.frame(variable=log(1+pathway_clear[box_sel,names(sort(aa)[1])]),labels=as.numeric(as.vector(ref[box_sel])))
my_comparisons=list()
my_comparisons[[1]]=c(1,3)
my_comparisons[[2]]=c(1,2)
Nplot1=ggboxplot(df, x = "labels", y = "variable",fill="labels",
width = 0.8,
palette=cols_cluster)+
ylab(names(sort(aa)[1]))+ xlab("")+
stat_compare_means(comparisons = my_comparisons,method="wilcox.test")
Nplot1
a1=apply(pathway_clear,2,function(x) wilcox.test(x[ref==subclusters[2] & sa_sel],x[(ref==subclusters[3]) & sa_sel],alternative = "greater")$p.value)
a2=apply(pathway_clear,2,function(x) wilcox.test(x[ref==subclusters[2] & sa_sel],x[(ref==subclusters[1] ) & sa_sel],alternative = "greater")$p.value)
aa=a1+a2
sort(aa)[1:10]
HALLMARK_PANCREAS_BETA_CELLS
0.4485750
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY
0.6973665
HALLMARK_OXIDATIVE_PHOSPHORYLATION
0.9973218
HALLMARK_INTERFERON_ALPHA_RESPONSE
1.2778413
HALLMARK_APICAL_SURFACE
1.6199914
HALLMARK_MYC_TARGETS_V2
1.7282614
HALLMARK_KRAS_SIGNALING_UP
1.8416405
HALLMARK_CHOLESTEROL_HOMEOSTASIS
1.8770509
HALLMARK_WNT_BETA_CATENIN_SIGNALING
1.9169702
HALLMARK_INFLAMMATORY_RESPONSE
1.9761701
a_choice=names(sort(aa)[1])
tapply(pathway_clear[box_sel,a_choice],as.numeric(as.vector(ref[box_sel])),mean)
1 3 5
24.94728 24.15937 24.28457
df=data.frame(variable=pathway_clear[box_sel,a_choice],labels=as.numeric(as.vector(ref[box_sel])))
my_comparisons=list()
my_comparisons[[1]]=c(2,3)
my_comparisons[[2]]=c(1,2)
Nplot2=ggboxplot(df, x = "labels", y = "variable",fill="labels",
width = 0.8,
palette=cols_cluster)+
ylab(a_choice)+ xlab("")+
stat_compare_means(comparisons = my_comparisons,method="wilcox.test")
Nplot2
aa=apply(pathway_clear,2,function(x) wilcox.test(x[ref==subclusters[3] & sa_sel],x[(ref==subclusters[1] ) & sa_sel],alternative = "greater")$p.value) +
apply(pathway_clear,2,function(x) wilcox.test(x[ref==subclusters[3] & sa_sel],x[(ref==subclusters[2]) & sa_sel],alternative = "greater")$p.value)
sort(aa)[1:10]
HALLMARK_OXIDATIVE_PHOSPHORYLATION
0.002678399
HALLMARK_ADIPOGENESIS
0.129896240
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY
0.304488866
HALLMARK_CHOLESTEROL_HOMEOSTASIS
0.845445559
HALLMARK_FATTY_ACID_METABOLISM
0.919218821
HALLMARK_ANGIOGENESIS
0.946597877
HALLMARK_HEDGEHOG_SIGNALING
0.987543573
HALLMARK_MTORC1_SIGNALING
0.994376725
HALLMARK_SPERMATOGENESIS
0.995250421
HALLMARK_PEROXISOME
0.999158738
tapply(pathway_clear[box_sel,names(sort(aa)[1])],as.numeric(as.vector(ref[box_sel])),mean)
1 3 5
397.0898 405.1837 409.4987
df=data.frame(variable=pathway_clear[box_sel,names(sort(aa)[1])],labels=as.numeric(as.vector(ref[box_sel])))
my_comparisons=list()
my_comparisons[[1]]=c(2,3)
my_comparisons[[2]]=c(1,3)
Nplot3=ggboxplot(df, x = "labels", y = "variable",fill="labels",
width = 0.8,
palette=cols_cluster)+
ylab(names(sort(aa)[1]))+ xlab("")+
stat_compare_means(comparisons = my_comparisons,method="wilcox.test")
Nplot3
TRAJECTORY
d <- slingshot(kk_UMAP_clear, clusterLabels = clu)
trajectory=d@metadata$curves$Lineage1$s
k=Rnanoflann::nn(trajectory,kk_UMAP_clear,1)
map_color=rainbow(nrow(trajectory))[k$indices]
plot(kk_UMAP_clear,pch=20,col=map_color)
plot_slide(xy_clear,samples_clear,k$indices,col=rainbow(nrow(trajectory)))
sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 20.04.6 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] VAM_1.1.0 MASS_7.3-61
[3] GSA_1.03.3 GSVA_1.52.3
[5] ggalluvial_0.12.5 ggpubr_0.6.0
[7] Rnanoflann_0.0.3 irlba_2.3.5.1
[9] slingshot_2.12.0 TrajectoryUtils_1.12.0
[11] princurve_2.1.6 mclust_6.1.1
[13] KODAMAextra_1.2 e1071_1.7-16
[15] doParallel_1.0.17 iterators_1.0.14
[17] foreach_1.5.2 KODAMA_4.0
[19] Matrix_1.7-1 umap_0.2.10.0
[21] Rtsne_0.17 minerva_1.5.10
[23] spatialLIBD_1.16.2 SpatialExperiment_1.14.0
[25] Seurat_5.1.0 SeuratObject_5.0.2
[27] sp_2.1-4 harmony_1.2.3
[29] Rcpp_1.0.13-1 SPARK_1.1.1
[31] scry_1.16.0 scran_1.32.0
[33] scater_1.32.1 ggplot2_3.5.1
[35] scuttle_1.14.0 SingleCellExperiment_1.26.0
[37] SummarizedExperiment_1.34.0 Biobase_2.64.0
[39] GenomicRanges_1.56.2 GenomeInfoDb_1.40.1
[41] IRanges_2.38.1 S4Vectors_0.42.1
[43] BiocGenerics_0.50.0 MatrixGenerics_1.16.0
[45] matrixStats_1.4.1 nnSVG_1.8.0
[47] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] GSEABase_1.66.0 goftest_1.2-3
[3] DT_0.33 HDF5Array_1.32.1
[5] Biostrings_2.72.1 vctrs_0.6.5
[7] spatstat.random_3.3-2 digest_0.6.37
[9] png_0.1-8 proxy_0.4-27
[11] git2r_0.33.0 ggrepel_0.9.6
[13] deldir_2.0-4 parallelly_1.41.0
[15] magick_2.8.4 reshape2_1.4.4
[17] httpuv_1.6.15 withr_3.0.1
[19] xfun_0.49 survival_3.8-3
[21] memoise_2.0.1 benchmarkme_1.0.8
[23] ggbeeswarm_0.7.2 zoo_1.8-12
[25] pbapply_1.7-2 Formula_1.2-5
[27] rematch2_2.1.2 KEGGREST_1.44.1
[29] promises_1.3.2 httr_1.4.7
[31] rstatix_0.7.2 restfulr_0.0.15
[33] rhdf5filters_1.16.0 globals_0.16.3
[35] fitdistrplus_1.2-1 rhdf5_2.48.0
[37] ps_1.8.1 rstudioapi_0.17.1
[39] UCSC.utils_1.0.0 miniUI_0.1.1.1
[41] generics_0.1.3 processx_3.8.4
[43] curl_6.0.1 fields_16.3
[45] zlibbioc_1.50.0 ScaledMatrix_1.12.0
[47] polyclip_1.10-7 doSNOW_1.0.20
[49] GenomeInfoDbData_1.2.12 ExperimentHub_2.12.0
[51] SparseArray_1.4.8 golem_0.5.1
[53] xtable_1.8-4 stringr_1.5.1
[55] pracma_2.4.4 evaluate_1.0.1
[57] S4Arrays_1.4.1 BiocFileCache_2.12.0
[59] colorspace_2.1-1 filelock_1.0.3
[61] ROCR_1.0-11 reticulate_1.38.0
[63] spatstat.data_3.1-4 shinyWidgets_0.8.7
[65] magrittr_2.0.3 lmtest_0.9-40
[67] later_1.4.0 viridis_0.6.5
[69] lattice_0.22-6 misc3d_0.9-1
[71] spatstat.geom_3.3-4 future.apply_1.11.3
[73] getPass_0.2-4 scattermore_1.2
[75] XML_3.99-0.17 cowplot_1.1.3
[77] RcppAnnoy_0.0.22 class_7.3-22
[79] pillar_1.9.0 nlme_3.1-166
[81] compiler_4.4.2 beachmat_2.20.0
[83] RSpectra_0.16-2 stringi_1.8.4
[85] tensor_1.5 GenomicAlignments_1.40.0
[87] plyr_1.8.9 crayon_1.5.3
[89] abind_1.4-8 BiocIO_1.14.0
[91] locfit_1.5-9.10 bit_4.5.0.1
[93] dplyr_1.1.4 whisker_0.4.1
[95] codetools_0.2-20 BiocSingular_1.20.0
[97] openssl_2.2.2 bslib_0.8.0
[99] paletteer_1.6.0 plotly_4.10.4
[101] mime_0.12 splines_4.4.2
[103] fastDummies_1.7.4 dbplyr_2.5.0
[105] sparseMatrixStats_1.16.0 attempt_0.3.1
[107] knitr_1.49 blob_1.2.4
[109] utf8_1.2.4 BiocVersion_3.19.1
[111] fs_1.6.5 listenv_0.9.1
[113] DelayedMatrixStats_1.26.0 rdist_0.0.5
[115] ggsignif_0.6.4 tibble_3.2.1
[117] callr_3.7.6 statmod_1.5.0
[119] pkgconfig_2.0.3 tools_4.4.2
[121] BRISC_1.0.6 cachem_1.1.0
[123] RhpcBLASctl_0.23-42 RSQLite_2.3.9
[125] viridisLite_0.4.2 DBI_1.2.3
[127] fastmap_1.2.0 rmarkdown_2.29
[129] scales_1.3.0 grid_4.4.2
[131] ica_1.0-3 Rsamtools_2.20.0
[133] broom_1.0.7 AnnotationHub_3.12.0
[135] sass_0.4.9 patchwork_1.3.0
[137] BiocManager_1.30.25 dotCall64_1.2
[139] graph_1.82.0 carData_3.0-5
[141] RANN_2.6.2 snow_0.4-4
[143] farver_2.1.2 yaml_2.3.10
[145] rtracklayer_1.64.0 cli_3.6.3
[147] purrr_1.0.2 leiden_0.4.3.1
[149] lifecycle_1.0.4 askpass_1.2.1
[151] uwot_0.2.2 backports_1.5.0
[153] bluster_1.14.0 sessioninfo_1.2.2
[155] annotate_1.82.0 BiocParallel_1.38.0
[157] gtable_0.3.5 rjson_0.2.23
[159] ggridges_0.5.6 progressr_0.14.0
[161] limma_3.60.3 jsonlite_1.8.9
[163] edgeR_4.2.2 RcppHNSW_0.6.0
[165] bitops_1.0-9 benchmarkmeData_1.0.4
[167] bit64_4.5.2 spatstat.utils_3.1-1
[169] BiocNeighbors_1.22.0 matlab_1.0.4.1
[171] jquerylib_0.1.4 metapod_1.12.0
[173] config_0.3.2 dqrng_0.4.1
[175] spatstat.univar_3.1-1 lazyeval_0.2.2
[177] shiny_1.10.0 htmltools_0.5.8.1
[179] sctransform_0.4.1 rappdirs_0.3.3
[181] glue_1.8.0 tcltk_4.4.2
[183] spam_2.11-0 XVector_0.44.0
[185] RCurl_1.98-1.16 rprojroot_2.0.4
[187] gridExtra_2.3 igraph_2.0.3
[189] R6_2.5.1 tidyr_1.3.1
[191] labeling_0.4.3 CompQuadForm_1.4.3
[193] cluster_2.1.8 Rhdf5lib_1.26.0
[195] DelayedArray_0.30.1 tidyselect_1.2.1
[197] vipor_0.4.7 maps_3.4.2.1
[199] car_3.1-3 AnnotationDbi_1.66.0
[201] future_1.34.0 rsvd_1.0.5
[203] munsell_0.5.1 KernSmooth_2.23-24
[205] data.table_1.15.4 htmlwidgets_1.6.4
[207] RColorBrewer_1.1-3 rlang_1.1.4
[209] spatstat.sparse_3.1-0 spatstat.explore_3.3-3
[211] fansi_1.0.6 beeswarm_0.4.0