Last updated: 2024-02-08
Checks: 7 0
Knit directory: Treg_uNK/1_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(12345)
was run prior to running the
code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 8da2e31. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: 2_plots/4_GSEA/
Untracked files:
Untracked: .gitignore
Untracked: 0_data/functions/compColour.rds
Untracked: 0_data/rawData/DTvsPBS_upstream regulators.xls
Untracked: 0_data/rawData/IPA Diseases and Functions.xlsx
Untracked: 0_data/rawData/IPA pathways.xlsx
Untracked: 0_data/rawData/IPA upstream regulators.xlsx
Untracked: 0_data/rawData/Treg vs DT_diseases and functions.xls
Untracked: 0_data/rawData/Treg vs DT_pathways.xls
Untracked: 0_data/rawData/Treg vs DT_upstream regulators.xls
Untracked: 0_data/rawData/Treg vs PBS_diseases and functions.xls
Untracked: 0_data/rawData/Treg vs PBS_pathways.xls
Untracked: 0_data/rawData/Treg vs PBS_upstream regulators.xls
Untracked: 0_data/rds_objects/disease_function_sig.rds
Untracked: 0_data/rds_objects/ipa_pathways.rds
Untracked: 0_data/rds_objects/upstream_sig.rds
Untracked: 0_data/rds_plots/
Untracked: 2_plots/2_DE/heat_DT vs veh.svg
Untracked: 2_plots/2_DE/heat_DT+Treg vs DT.svg
Untracked: 2_plots/2_DE/heat_DT+Treg vs veh.svg
Untracked: 2_plots/2_DE/hist_DT vs veh.svg
Untracked: 2_plots/2_DE/hist_DT+Treg vs DT.svg
Untracked: 2_plots/2_DE/hist_DT+Treg vs veh.svg
Untracked: 2_plots/2_DE/ma_DT vs veh.png
Untracked: 2_plots/2_DE/ma_DT+Treg vs DT.png
Untracked: 2_plots/2_DE/ma_DT+Treg vs veh.png
Untracked: 2_plots/2_DE/venn_2comp.png
Untracked: 2_plots/2_DE/venn_2comp.png.2024-02-02_16-30-41.893776.log
Untracked: 2_plots/2_DE/venn_2comp.png.2024-02-02_16-31-08.009748.log
Untracked: 2_plots/2_DE/vol_DT vs veh.png
Untracked: 2_plots/2_DE/vol_DT+Treg vs DT.png
Untracked: 2_plots/2_DE/vol_DT+Treg vs veh.png
Untracked: 2_plots/3_FA/go/dot_DT vs veh.svg
Untracked: 2_plots/3_FA/go/dot_DT+Treg vs DT.svg
Untracked: 2_plots/3_FA/go/dot_DT+Treg vs veh.svg
Untracked: 2_plots/3_FA/go/parTerm_dot_DT vs veh.svg
Untracked: 2_plots/3_FA/go/parTerm_dot_DT+Treg vs DT.svg
Untracked: 2_plots/3_FA/go/parTerm_dot_DT+Treg vs veh.svg
Untracked: 2_plots/3_FA/go/semSim_dendrogram_DT vs veh.svg
Untracked: 2_plots/3_FA/go/semSim_dendrogram_DT+Treg vs DT.svg
Untracked: 2_plots/3_FA/go/semSim_dendrogram_DT+Treg vs veh.svg
Untracked: 2_plots/3_FA/go/semSim_scatter_DT vs veh.svg
Untracked: 2_plots/3_FA/go/semSim_scatter_DT+Treg vs DT.svg
Untracked: 2_plots/3_FA/go/semSim_scatter_DT+Treg vs veh.svg
Untracked: 2_plots/3_FA/go/upset_DT vs veh.svg
Untracked: 2_plots/3_FA/go/upset_DT+Treg vs DT.svg
Untracked: 2_plots/3_FA/go/upset_DT+Treg vs veh.svg
Untracked: 2_plots/3_FA/ipa/
Untracked: 2_plots/3_FA/kegg/heat_Antigen processing and presentation.svg
Untracked: 2_plots/3_FA/kegg/heat_Epstein-Barr virus infection.svg
Untracked: 2_plots/3_FA/kegg/heat_Natural killer cell mediated cytotoxicity.svg
Untracked: 2_plots/3_FA/kegg/heat_Phagosome.svg
Untracked: 2_plots/3_FA/kegg/kegg_dot_DT vs veh.svg
Untracked: 2_plots/3_FA/kegg/kegg_dot_DT+Treg vs DT.svg
Untracked: 2_plots/3_FA/kegg/kegg_dot_DT+Treg vs veh.svg
Untracked: 2_plots/3_FA/kegg/kegg_upset_DT vs veh.svg
Untracked: 2_plots/3_FA/kegg/kegg_upset_DT+Treg vs DT.svg
Untracked: 2_plots/3_FA/kegg/kegg_upset_DT+Treg vs veh.svg
Untracked: 2_plots/3_FA/kegg/mmu04145.png
Untracked: 2_plots/3_FA/kegg/mmu04145.xml
Untracked: 2_plots/3_FA/kegg/mmu04612.png
Untracked: 2_plots/3_FA/kegg/mmu04612.xml
Untracked: 2_plots/3_FA/kegg/mmu04650.png
Untracked: 2_plots/3_FA/kegg/mmu04650.xml
Untracked: 2_plots/3_FA/kegg/mmu05169.png
Untracked: 2_plots/3_FA/kegg/mmu05169.xml
Untracked: 2_plots/3_FA/kegg/pv_mmu04145.png
Untracked: 2_plots/3_FA/kegg/pv_mmu04612.png
Untracked: 2_plots/3_FA/kegg/pv_mmu04650.png
Untracked: 2_plots/3_FA/kegg/pv_mmu05169.png
Untracked: 2_plots/3_FA/reactome/combine_react_dot.svg
Untracked: 2_plots/3_FA/reactome/react_dot_DT vs veh.svg
Untracked: 2_plots/3_FA/reactome/react_dot_DT+Treg vs DT.svg
Untracked: 2_plots/3_FA/reactome/react_dot_DT+Treg vs veh.svg
Untracked: 2_plots/3_FA/reactome/react_upset_DT vs veh.svg
Untracked: 2_plots/3_FA/reactome/react_upset_DT+Treg vs DT.svg
Untracked: 2_plots/3_FA/reactome/react_upset_DT+Treg vs veh.svg
Untracked: 2_plots/3_FA/reactome/venn_react.png
Unstaged changes:
Modified: 0_data/functions/bossTheme.rds
Modified: 0_data/functions/bossTheme_bar.rds
Modified: 0_data/functions/groupColour.rds
Modified: 0_data/functions/groupColour_dark.rds
Modified: 0_data/rds_objects/comp.rds
Modified: 0_data/rds_objects/dge.rds
Modified: 0_data/rds_objects/enrichGO.rds
Modified: 0_data/rds_objects/enrichGO_sig.rds
Modified: 0_data/rds_objects/enrichKEGG.rds
Modified: 0_data/rds_objects/enrichKEGG_all.rds
Modified: 0_data/rds_objects/enrichKEGG_sig.rds
Modified: 0_data/rds_objects/lm.rds
Modified: 0_data/rds_objects/lm_all.rds
Modified: 0_data/rds_objects/lm_sig.rds
Modified: 0_data/rds_objects/pathway_details.rds
Modified: 0_data/rds_objects/rawCount.rds
Modified: 0_data/rds_objects/reactome.rds
Modified: 0_data/rds_objects/reactome_all.rds
Modified: 0_data/rds_objects/reactome_sig.rds
Modified: 0_data/rds_objects/reducedTerms_all.rds
Modified: 0_data/rds_objects/reducedTerms_ora.rds
Modified: 0_data/rds_objects/reduced_semSim_df.rds
Modified: 0_data/rds_objects/scores_ora.rds
Modified: 0_data/rds_objects/semSim_df.rds
Modified: 0_data/rds_objects/simMatrix_ora.rds
Modified: 140_treg_uNK.Rproj
Modified: 1_analysis/_site.yml
Modified: 2_plots/1_QC/PC1_PC2.svg
Modified: 2_plots/1_QC/PC1_PC3.svg
Modified: 2_plots/1_QC/PC2_PC3.svg
Modified: 2_plots/1_QC/counts_after_filtering.svg
Modified: 2_plots/1_QC/counts_before_after_filtering.svg
Modified: 2_plots/1_QC/counts_before_filtering.svg
Modified: 2_plots/1_QC/library_size.svg
Deleted: 2_plots/2_DE/heat_DT vs PBS.svg
Deleted: 2_plots/2_DE/heat_Treg vs DT.svg
Deleted: 2_plots/2_DE/heat_Treg vs PBS.svg
Modified: 2_plots/2_DE/heat_combined.svg
Deleted: 2_plots/2_DE/hist_DT vs PBS.svg
Deleted: 2_plots/2_DE/hist_Treg vs DT.svg
Deleted: 2_plots/2_DE/hist_Treg vs PBS.svg
Deleted: 2_plots/2_DE/ma_DT vs PBS.png
Deleted: 2_plots/2_DE/ma_Treg vs DT.png
Deleted: 2_plots/2_DE/ma_Treg vs PBS.png
Modified: 2_plots/2_DE/venn.png
Deleted: 2_plots/2_DE/venn.png.2024-01-08_19-59-50.400111.log
Deleted: 2_plots/2_DE/vol_DT vs PBS.png
Deleted: 2_plots/2_DE/vol_Treg vs DT.png
Deleted: 2_plots/2_DE/vol_Treg vs PBS.png
Modified: 2_plots/3_FA/go/combine_go_dot.svg
Deleted: 2_plots/3_FA/go/dot_DT vs PBS.svg
Deleted: 2_plots/3_FA/go/dot_Treg vs DT.svg
Deleted: 2_plots/3_FA/go/dot_Treg vs PBS.svg
Modified: 2_plots/3_FA/go/parTerm_BP_venn.png
Modified: 2_plots/3_FA/go/parTerm_CC_venn.png
Modified: 2_plots/3_FA/go/parTerm_MF_venn.png
Deleted: 2_plots/3_FA/go/parTerm_dot_DT vs PBS.svg
Deleted: 2_plots/3_FA/go/parTerm_dot_Treg vs DT.svg
Deleted: 2_plots/3_FA/go/parTerm_dot_Treg vs PBS.svg
Modified: 2_plots/3_FA/go/parentTerm_all.svg
Deleted: 2_plots/3_FA/go/upset_DT vs PBS.svg
Deleted: 2_plots/3_FA/go/upset_Treg vs DT.svg
Deleted: 2_plots/3_FA/go/upset_Treg vs PBS.svg
Modified: 2_plots/3_FA/go/venn.png
Modified: 2_plots/3_FA/kegg/combine_kegg_dot.svg
Deleted: 2_plots/3_FA/kegg/heat_DT vs PBS_Antigen processing and presentation.svg
Deleted: 2_plots/3_FA/kegg/heat_DT vs PBS_Natural killer cell mediated cytotoxicity.svg
Deleted: 2_plots/3_FA/kegg/heat_DT vs PBS_Phagosome.svg
Deleted: 2_plots/3_FA/kegg/heat_DT vs PBS_Th1 and Th2 cell differentiation.svg
Deleted: 2_plots/3_FA/kegg/heat_Treg vs DT_Antigen processing and presentation.svg
Deleted: 2_plots/3_FA/kegg/heat_Treg vs DT_Natural killer cell mediated cytotoxicity.svg
Deleted: 2_plots/3_FA/kegg/heat_Treg vs DT_Phagosome.svg
Deleted: 2_plots/3_FA/kegg/heat_Treg vs DT_Th1 and Th2 cell differentiation.svg
Deleted: 2_plots/3_FA/kegg/heat_Treg vs PBS_Antigen processing and presentation.svg
Deleted: 2_plots/3_FA/kegg/heat_Treg vs PBS_Natural killer cell mediated cytotoxicity.svg
Deleted: 2_plots/3_FA/kegg/heat_Treg vs PBS_Phagosome.svg
Deleted: 2_plots/3_FA/kegg/heat_Treg vs PBS_Th1 and Th2 cell differentiation.svg
Deleted: 2_plots/3_FA/kegg/kegg_dot_DT vs PBS.svg
Deleted: 2_plots/3_FA/kegg/kegg_dot_Treg vs DT.svg
Deleted: 2_plots/3_FA/kegg/kegg_dot_Treg vs PBS.svg
Deleted: 2_plots/3_FA/kegg/kegg_upset_DT vs PBS.svg
Deleted: 2_plots/3_FA/kegg/kegg_upset_Treg vs DT.svg
Deleted: 2_plots/3_FA/kegg/kegg_upset_Treg vs PBS.svg
Modified: 2_plots/3_FA/kegg/venn.png
Deleted: 2_plots/3_FA/reactome/react_dot_DT vs PBS.svg
Deleted: 2_plots/3_FA/reactome/react_dot_Treg vs DT.svg
Deleted: 2_plots/3_FA/reactome/react_dot_Treg vs PBS.svg
Deleted: 2_plots/3_FA/reactome/react_upset_DT vs PBS.svg
Deleted: 2_plots/3_FA/reactome/react_upset_Treg vs DT.svg
Deleted: 2_plots/3_FA/reactome/react_upset_Treg vs PBS.svg
Modified: 2_plots/functionalHeat.svg
Modified: 3_output/GO_sig.xlsx
Modified: 3_output/KEGG_all.xlsx
Modified: 3_output/KEGG_sig.xlsx
Modified: 3_output/de_genes_all.xlsx
Modified: 3_output/de_genes_sig.xlsx
Modified: 3_output/reactome_all.xlsx
Modified: 3_output/reactome_sig.xlsx
Modified: functions.Rmd
Deleted: ipa.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (1_analysis/kegg.Rmd
) and HTML
(docs/kegg.html
) files. If you’ve configured a remote Git
repository (see ?wflow_git_remote
), click on the hyperlinks
in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 8da2e31 | tranmanhha135 | 2024-02-08 | workflowr::wflow_publish(here::here("1_analysis/*.Rmd")) |
html | d8d23ee | tranmanhha135 | 2024-01-13 | im on holiday |
html | 36aeb85 | Ha Manh Tran | 2024-01-13 | Build site. |
Rmd | a957cff | Ha Manh Tran | 2024-01-13 | workflowr::wflow_publish(here::here("1_analysis/*Rmd")) |
Rmd | c78dfac | tranmanhha135 | 2024-01-12 | remote from ipad |
Rmd | 221e2fa | tranmanhha135 | 2024-01-10 | fixed error |
html | 762020e | tranmanhha135 | 2024-01-09 | Build site. |
Rmd | c6d389f | tranmanhha135 | 2024-01-09 | workflowr::wflow_publish(here::here("1_analysis/*.Rmd")) |
Rmd | 05fa0b3 | tranmanhha135 | 2024-01-06 | added description |
# working with data
library(dplyr)
library(magrittr)
library(readr)
library(tibble)
library(reshape2)
library(tidyverse)
library(KEGGREST)
library(data.table)
library(KEGGREST)
# Visualisation:
library(VennDiagram)
library(kableExtra)
library(ggplot2)
library(grid)
library(pander)
library(viridis)
library(cowplot)
library(pheatmap)
library(DT)
library(extrafont)
# Custom ggplot
library(ggplotify)
library(ggpubr)
library(ggbiplot)
library(ggrepel)
# Bioconductor packages:
library(edgeR)
library(limma)
library(Glimma)
library(clusterProfiler)
library(org.Mm.eg.db)
library(enrichplot)
library(pathview)
library(pandoc)
library(knitr)
opts_knit$set(progress = FALSE, verbose = FALSE)
opts_chunk$set(warning=FALSE, message=FALSE, echo=FALSE)
KEGG pathway images reproduced by permission from Kanehisa Laboratories, September 2023
KEGG analysis, or Kyoto Encyclopedia of Genes and Genomes analysis, is a method that involves the mapping of molecular datasets, such as DE genes or proteins, to the reference pathways in the KEGG database. The KEGG database provides a comprehensive resource for understanding the molecular interaction and reaction networks within biological systems. KEGG pathways encompass a wide range of biological processes, including metabolism, cellular processes, environmental information processing, and human diseases.
The KEGG database is organized into several classes:
Pathway Maps (PATH): This class includes diagrams of molecular interactions and reactions in various biological pathways. Each pathway map is associated with specific biological processes or functions.
BRITE (B): BRITE is a hierarchical classification of biological entities, such as genes, proteins, and compounds. It provides a functional hierarchy and relationships between different biological components.
Module (M): Modules are sets of manually defined functional units, which can represent functional modules of genes or proteins in specific pathways.
Orthology (KO): The Orthology class provides information about orthologous gene groups, which are genes in different species that evolved from a common ancestral gene. This class is particularly useful for comparative genomics.
For this analysis, only KEGG pathway database will be used. This database is further sub-categorised into several classes:
The following visualisations are KEGG enrichment analysis performed with set of DE genes significantly below FDR < 0.1 without FC threshold (TREAT). IMPORTANTLY, these KEGG terms are significantly enriched with FDR < 0.2.
Dot plot: illustrates the top 7 enriched KEGG pathways
Table: list of all the significant KEGG pathways
Upset: illustrate the overlap of gene between different pathways
I recommend reading through the full list of significant KEGG pathways and selecting the most biologically relevant for better visualisation
Here the top 4 most interesting KEGG pathways were selected for further visualisations.
These visualisations are similarly performed with set of DE genes significantly below FDR < 0.1 or < 0.05 with and without FC threshold (TREAT). IMPORTANTLY, these KEGG terms are all significantly enriched but only with P-value < 0.05 and no P-value correction method.
Heatmap: illustrates the expression of genes in specific KEGG pathways.
Table: list of all the significant DE genes in the specified KEGG pathway
Pathview: maps gene expression data onto the specified KEGG pathways, allowing users to see where genes in their dataset are located within specific pathways, and potential upstream and downstream elements.
The following are exported:
KEGG_all.xlsx - This spreadsheet contains all KEGG pathways
KEGG_sig.xlsx - This spreadsheet contains all significant (P value < 0.05) KEGG pathways
R version 4.3.2 (2023-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
[1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
[5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
[7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
time zone: Australia/Adelaide
tzcode source: system (glibc)
attached base packages:
[1] stats4 grid stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] knitr_1.45 pandoc_0.2.0 pathview_1.40.0
[4] enrichplot_1.20.3 org.Mm.eg.db_3.17.0 AnnotationDbi_1.62.2
[7] IRanges_2.34.1 S4Vectors_0.38.2 Biobase_2.60.0
[10] BiocGenerics_0.46.0 clusterProfiler_4.8.3 Glimma_2.10.0
[13] edgeR_3.42.4 limma_3.56.2 ggrepel_0.9.4
[16] ggbiplot_0.55 scales_1.3.0 plyr_1.8.9
[19] ggpubr_0.6.0 ggplotify_0.1.2 extrafont_0.19
[22] DT_0.31 pheatmap_1.0.12 cowplot_1.1.2
[25] viridis_0.6.4 viridisLite_0.4.2 pander_0.6.5
[28] kableExtra_1.3.4 VennDiagram_1.7.3 futile.logger_1.4.3
[31] data.table_1.14.10 KEGGREST_1.40.1 lubridate_1.9.3
[34] forcats_1.0.0 stringr_1.5.1 purrr_1.0.2
[37] tidyr_1.3.0 ggplot2_3.4.4 tidyverse_2.0.0
[40] reshape2_1.4.4 tibble_3.2.1 readr_2.1.4
[43] magrittr_2.0.3 dplyr_1.1.4
loaded via a namespace (and not attached):
[1] fs_1.6.3 matrixStats_1.2.0
[3] bitops_1.0-7 HDO.db_0.99.1
[5] httr_1.4.7 webshot_0.5.5
[7] RColorBrewer_1.1-3 doParallel_1.0.17
[9] Rgraphviz_2.44.0 tools_4.3.2
[11] backports_1.4.1 utf8_1.2.4
[13] R6_2.5.1 lazyeval_0.2.2
[15] GetoptLong_1.0.5 withr_2.5.2
[17] gridExtra_2.3 cli_3.6.2
[19] textshaping_0.3.7 formatR_1.14
[21] scatterpie_0.2.1 labeling_0.4.3
[23] sass_0.4.8 KEGGgraph_1.60.0
[25] systemfonts_1.0.5 yulab.utils_0.1.2
[27] gson_0.1.0 ggupset_0.3.0
[29] DOSE_3.26.2 svglite_2.1.3
[31] rstudioapi_0.15.0 RSQLite_2.3.4
[33] generics_0.1.3 gridGraphics_0.5-1
[35] shape_1.4.6 crosstalk_1.2.1
[37] car_3.1-2 GO.db_3.17.0
[39] Matrix_1.6-3 fansi_1.0.6
[41] abind_1.4-5 lifecycle_1.0.4
[43] whisker_0.4.1 yaml_2.3.8
[45] carData_3.0-5 SummarizedExperiment_1.30.2
[47] qvalue_2.32.0 blob_1.2.4
[49] promises_1.2.1 crayon_1.5.2
[51] lattice_0.22-5 magick_2.8.2
[53] pillar_1.9.0 ComplexHeatmap_2.16.0
[55] fgsea_1.26.0 GenomicRanges_1.52.1
[57] rjson_0.2.21 codetools_0.2-19
[59] fastmatch_1.1-4 glue_1.6.2
[61] downloader_0.4 ggfun_0.1.3
[63] vctrs_0.6.5 png_0.1-8
[65] treeio_1.24.3 gtable_0.3.4
[67] cachem_1.0.8 xfun_0.41
[69] S4Arrays_1.0.6 tidygraph_1.3.0
[71] iterators_1.0.14 ellipsis_0.3.2
[73] nlme_3.1-163 ggtree_3.8.2
[75] bit64_4.0.5 GenomeInfoDb_1.36.4
[77] rprojroot_2.0.4 bslib_0.6.1
[79] colorspace_2.1-0 DBI_1.2.0
[81] DESeq2_1.40.2 tidyselect_1.2.0
[83] bit_4.0.5 compiler_4.3.2
[85] extrafontdb_1.0 curl_5.2.0
[87] git2r_0.33.0 rvest_1.0.3
[89] graph_1.78.0 xml2_1.3.6
[91] DelayedArray_0.26.7 shadowtext_0.1.2
[93] rappdirs_0.3.3 digest_0.6.33
[95] rmarkdown_2.25 XVector_0.40.0
[97] htmltools_0.5.7 pkgconfig_2.0.3
[99] MatrixGenerics_1.12.3 highr_0.10
[101] fastmap_1.1.1 rlang_1.1.2
[103] GlobalOptions_0.1.2 htmlwidgets_1.6.4
[105] farver_2.1.1 jquerylib_0.1.4
[107] jsonlite_1.8.8 BiocParallel_1.34.2
[109] GOSemSim_2.26.1 RCurl_1.98-1.13
[111] GenomeInfoDbData_1.2.10 patchwork_1.1.3
[113] munsell_0.5.0 Rcpp_1.0.11
[115] ape_5.7-1 stringi_1.8.3
[117] ggraph_2.1.0 zlibbioc_1.46.0
[119] MASS_7.3-60 org.Hs.eg.db_3.17.0
[121] parallel_4.3.2 Biostrings_2.68.1
[123] graphlayouts_1.0.2 splines_4.3.2
[125] hms_1.1.3 circlize_0.4.15
[127] locfit_1.5-9.8 igraph_1.6.0
[129] ggsignif_0.6.4 futile.options_1.0.1
[131] XML_3.99-0.16 evaluate_0.23
[133] lambda.r_1.2.4 tzdb_0.4.0
[135] foreach_1.5.2 tweenr_2.0.2
[137] httpuv_1.6.13 Rttf2pt1_1.3.12
[139] polyclip_1.10-6 clue_0.3-65
[141] ggforce_0.4.1 broom_1.0.5
[143] tidytree_0.4.6 rstatix_0.7.2
[145] later_1.3.2 ragg_1.2.7
[147] aplot_0.2.2 memoise_2.0.1
[149] writexl_1.4.2 cluster_2.1.6
[151] workflowr_1.7.1 timechange_0.2.0
[153] here_1.0.1