Last updated: 2022-11-30

Checks: 7 0

Knit directory: Multimodal-Plasmacell_manuscript/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211005) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7288a3f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/cellstate_sidetest.Rmd
    Untracked:  analysis/hallmarks.Rmd
    Untracked:  analysis/supplements.Rmd
    Untracked:  code/Import_and_create_seuratobject.R
    Untracked:  data/Seq2Science/
    Untracked:  data/azimuth_PBMCs/
    Untracked:  data/azimuth_bonemarrow/
    Untracked:  data/citeseqcount_htseqcount.zip
    Untracked:  data/genelist.plots.diffmarkers.txt
    Untracked:  data/genelist.plots.diffmarkers2.txt
    Untracked:  data/raw/
    Untracked:  data/supplementary/
    Untracked:  output/MOFA_analysis_Donorgroup.hdf5
    Untracked:  output/MOFA_analysis_Donorgroup.rds
    Untracked:  output/MOFA_analysis_Donorgroup_clustered.rds
    Untracked:  output/extra plots.docx
    Untracked:  output/paper_figures/
    Untracked:  output/seu.PROT_fix.rds
    Untracked:  output/seu.PROT_live.rds
    Untracked:  output/seu.RNA.rds
    Untracked:  output/seu.fix_norm.rds
    Untracked:  output/seu.fix_norm_cellstate.rds
    Untracked:  output/seu.fix_norm_plasmacells.rds
    Untracked:  output/seu.live_norm.rds
    Untracked:  output/seu.live_norm_cellstate.rds
    Untracked:  output/seu.live_norm_plasmacells.rds
    Untracked:  output/seu.live_norm_plasmacells_RNA.rds
    Untracked:  output/top-PROT-loadings_IgA.tsv
    Untracked:  output/top-PROT-loadings_IgG.tsv
    Untracked:  output/top-PROT-loadings_IgM.tsv
    Untracked:  output/top-gene-loadings_IgA.tsv
    Untracked:  output/top-gene-loadings_IgG.tsv
    Untracked:  output/top-gene-loadings_IgM.csv
    Untracked:  output/top-gene-loadings_IgM.tsv

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   analysis/cellstate.Rmd
    Modified:   analysis/index.Rmd
    Modified:   code/load_packages.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/QC.Rmd) and HTML (docs/QC.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7288a3f Jessie van Buggenum 2022-11-30 documentation of QC and filtering plots
html 858cad9 jessievb 2021-12-04 Build site.
Rmd 1853aae jessievb 2021-12-04 quality control and filtering
Rmd 427f096 jessievb 2021-11-09 update donor metadata numbers
html 4680ae2 jessievb 2021-10-07 Build site.
Rmd 8d9f708 jessievb 2021-10-07 quality check page and remove header title

The single-cell multi-omics data contains single-cell transcriptomic and proteomic and phospho-proteomic data of in vitro generated antibody-secreting cells. The code below generates quality control plots, performs filtering, normalization and scaling of the counts

Count matrix to Seurat object

Import all count matrixes, combine plates and create unfiltered Seurat objects.

myfiles <- list.files(path="output/", pattern = ".rds$")
## only read all raw files and create raw combined table if not done yet. Speeds up generation of html file
if ("seu.RNA.rds" %in%  myfiles) {
  seu_RNA <- readRDS("output/seu.RNA.rds")
  seu.PROT_live <- readRDS("output/seu.PROT_live.rds")
  seu.PROT_fix <- readRDS("output/seu.PROT_fix.rds")
} else {
  source("code/Import_and_create_seuratObj.R")
}

QC plots and filters

plot_RNA_nCount <- plot_QC_paper(
  seu_object = seu_RNA,
  feature = "nCount_RNA",
  ytext = "Total UMI counts per cell",
  xtext = "Plate number",
  paneltitle = "Fixed cells (1586 to 1589) show lower counts",
  colorviolin = "dodgerblue2"
) +
  geom_vline(xintercept = 6.5,
             size = 0.3,
             color = "red") +
  annotate(
    geom = "text",
    x = 6.6,
    y = 20000,
    label = "Fixed cells",
    hjust = 0,
    size = 2.5
  ) +
  theme(axis.title.x = element_blank())

plot_RNA_ngenes <- plot_QC_paper(
  seu_object = seu_RNA,
  feature = "nFeature_RNA",
  ytext = "Total genes per cell",
  xtext = "Plate number",
  paneltitle = "Keep cells >300 genes",
  colorviolin = "dodgerblue2"
) +
  geom_hline(yintercept = 300,
             size = 0.3,
             color = "red") +
  theme(axis.title.x = element_blank())

plot_percent.mt <- plot_QC_paper(
  seu_object = seu_RNA,
  feature = "percent.mt",
  ytext = "% Mitochondrial counts",
  xtext = "Plate number",
  paneltitle = "Keep cells < 5 % mitochondrial genecounts",
  colorviolin = "dodgerblue2"
) +
  geom_hline(yintercept = 5,
             color = "red",
             size = 0.3) +
  theme(axis.title.x = element_blank())

plot_percent.rb <- plot_QC_paper(
  seu_object = seu_RNA,
  feature = "percent.rb",
  ytext = "% Ribosomal counts",
  xtext = "Plate number",
  paneltitle = "comparable % ribosomal counts in all plates",
  colorviolin = "dodgerblue2"
) +
  theme(axis.title.x = element_blank())


plot_PROT_nCount.live <- plot_QC_paper(
  seu_object = seu.PROT_live,
  feature = "nCount_PROT",
  ytext =  "Total UMI counts per cell",
  xtext = "Plate number",
  paneltitle = "Keep cells > 1500 & < 9000 PROT counts",
  colorviolin = "deeppink3"
) +
  geom_hline(yintercept = 1500, size = 0.3) +
  geom_hline(yintercept = 9000, size = 0.3) +
  theme(axis.title.x = element_blank())

plot_PROT_nCount.fix <- plot_QC_paper(
  seu_object = seu.PROT_fix,
  feature = "nCount_PROT",
  ytext =  "Total UMI counts per cell",
  xtext = "Plate number",
  paneltitle = "Keep cells > 2500 & < 20000 PROT counts",
  colorviolin = "deeppink3"
) +
  geom_hline(yintercept = 2500, size = 0.3) +
  geom_hline(yintercept = 20000, size = 0.3) +
  theme(axis.title.x = element_blank())

plot_PROT_nproteins.live <-
  plot_QC_paper(
    seu_object = seu.PROT_live,
    feature = "nFeature_PROT",
    ytext =  "Total proteins per cell",
    xtext = "Plate number",
    paneltitle = "Keep cells >40 proteins",
    colorviolin = "deeppink3"
  ) +
  geom_hline(yintercept = 40,
             size = 0.3,
             color = "red") +
  theme(axis.title.x = element_blank())

plot_PROT_nproteins.fix <- plot_QC_paper(
  seu_object = seu.PROT_fix,
  feature = "nFeature_PROT",
  ytext =  "Total proteins per cell",
  xtext = "Plate number",
  paneltitle = "Keep cells >65 proteins",
  colorviolin = "deeppink3"
) +
  geom_hline(yintercept = 65,
             size = 0.3,
             color = "red") +
  theme(axis.title.x = element_blank())



plot.QC <- plot_grid(
  plot_RNA_nCount,
  plot_RNA_ngenes,
  plot_percent.mt,
  plot_percent.rb,
  plot_PROT_nCount.live,
  plot_PROT_nCount.fix,
  plot_PROT_nproteins.live,
  plot_PROT_nproteins.fix,
  labels = c('a', 'b', 'c', 'd' , 'e', 'f', 'g', 'h'),
  label_size = 10,
  ncol = 2
)

ggsave(
  plot.QC,
  filename = "output/paper_figures/Suppl_QC_filters.pdf",
  width = 177,
  height = 200,
  units = "mm",
  dpi = 300
)
ggsave(
  plot.QC,
  filename = "output/paper_figures/Suppl_QC_filters.eps",
  width = 177,
  height = 200,
  units = "mm",
  dpi = 300
)
ggsave(
  plot.QC,
  filename = "output/paper_figures/Suppl_QC_filters.png",
  width = 177,
  height = 200,
  units = "mm",
  dpi = 300
)
plot.QC

Supplementary Figure Thresholds for selection of high-quality samples and cells.

  1. Based on the indicated cut-offs, high-quality cells are filtered for further analysis.
## Filter fixed protein dataset
seu.PROT.fix.subset <- subset(seu.PROT_fix, subset = nCount_PROT >= 2500 & nCount_PROT < 20000)

## Filter live-cell protein dataset
seu.PROT.live.subset <- subset(seu.PROT_live, subset = nCount_PROT >= 1500 & nCount_PROT <= 9000)


## RNA quality of fixed dataset is too low (very low gene numbers and counts). Therefore continue only with live-cell dataset.
seu.RNA_live <- subset(seu_RNA, idents = c(1586:1589), invert = TRUE)
seu.RNA_fix <- subset(seu_RNA, idents = c(1586:1589))

## Filter RNA live dataset
seu.RNA_live.subset <- subset(seu.RNA_live, subset = percent.mt <=5 & nFeature_RNA >= 300)
seu.RNA_fix.subset <- subset(seu.RNA_fix) #, subset = percent.mt <= 5 & nFeature_RNA >= 300 # Nofilter because RNA not taken along.
  1. Filter low-detected genes: Keep genes that are >1% cells detected.
## Additional filter features (genes) detected in 1% of cells
seu.RNA_live.subset <- CreateSeuratObject(seu.RNA_live.subset[["RNA"]]@counts, min.cells = round(ncol(seu.RNA_live.subset)/100)) ## keep features detected in 1% of cells
seu.RNA_fix.subset <- CreateSeuratObject(seu.RNA_fix.subset[["RNA"]]@counts, min.cells = round(ncol(seu.RNA_fix.subset)/100)) ## keep features detected in min 1% cells
  1. Merge Seurat objects from Protein & RNA modalities
## Merge Seurat objects live dataset
intersect <- colnames(seu.RNA_live.subset)[colnames(seu.RNA_live.subset) %in% colnames(seu.PROT.live.subset)]
intersect <- colnames(seu.PROT.live.subset)[colnames(seu.PROT.live.subset) %in% intersect]

seu.RNA_combined.live <- subset(seu.RNA_live.subset, cells = intersect )
Prot.live.intersect <- seu.PROT.live.subset@assays$PROT@counts[,colnames(seu.PROT.live.subset) %in% intersect]

seu.RNA_combined.live[["PROT"]] <- CreateAssayObject(counts = Prot.live.intersect)
seu.RNA_combined.live
An object of class Seurat 
10211 features across 1433 samples within 2 assays 
Active assay: RNA (10158 features, 0 variable features)
 1 other assay present: PROT
## fix dataset
intersect <- colnames(seu.RNA_fix.subset)[colnames(seu.RNA_fix.subset) %in% colnames(seu.PROT.fix.subset)]
intersect <- colnames(seu.PROT.fix.subset)[colnames(seu.PROT.fix.subset) %in% intersect]

seu.RNA_combined.fix <- subset(seu.RNA_fix.subset, cells = intersect )
Prot.fix.intersect <- seu.PROT.fix.subset@assays$PROT@counts[,colnames(seu.PROT.fix.subset) %in% intersect]

seu.RNA_combined.fix[["PROT"]] <- CreateAssayObject(counts = Prot.fix.intersect)
seu.RNA_combined.fix
An object of class Seurat 
5095 features across 1038 samples within 2 assays 
Active assay: RNA (5019 features, 0 variable features)
 1 other assay present: PROT
  1. Antibody quality (Non-detected proteins) filter: remove proteins with median counts < 0.2 (fixed cells), or < 1 (live cells)
PROT_tbl_subset.fix <- as.data.frame(seu.PROT.fix.subset@assays$PROT@counts) %>%
  mutate(protein = rownames(seu.PROT.fix.subset)) %>%
  dplyr::select(protein, everything()) %>%
  gather("cell", "count", 2:c(ncol(seu.PROT.fix.subset)+1)) %>%
  mutate(sample = gsub('.{5}$', '', cell) )

prot.median.fix <- aggregate(PROT_tbl_subset.fix[, 3], list(protein =PROT_tbl_subset.fix$protein), mean)

prot.fix.toremove <- prot.median.fix$protein[prot.median.fix$x <=0.2]

filtered.prot.counts <- seu.PROT.fix.subset[["PROT"]]@counts[!c(rownames(seu.PROT.fix.subset[["PROT"]]@counts) %chin% prot.fix.toremove),]

seu.PROT.fix.subset <- CreateSeuratObject(filtered.prot.counts, assay = "PROT")

## Live cells
PROT_tbl_subset.live <- as.data.frame(seu.PROT_live@assays$PROT@counts) %>%
  mutate(protein = rownames(seu.PROT_live[["PROT"]])) %>%
  dplyr::select(protein, everything()) %>%
  gather("cell", "count", 2:c(ncol(seu.PROT_live[["PROT"]])+1)) %>%
  mutate(sample = gsub('.{9}$', '', cell) )

prot.median.live <- aggregate(PROT_tbl_subset.live[, 3], list(protein =PROT_tbl_subset.live$protein), mean)

prot.live.toremove <- prot.median.live$protein[prot.median.live$x <1]

filtered.prot.counts.live <- seu.RNA_combined.live[["PROT"]]@counts[!c(rownames(seu.RNA_combined.live[["PROT"]]@counts) %chin% prot.live.toremove),]

seu.RNA_combined.live[["PROT"]] <- CreateAssayObject(counts = filtered.prot.counts.live)
  1. Add metadata to object.
## metadata import
metadata <- read_delim("data/metadata.txt", "\t", escape_double = FALSE, trim_ws = TRUE)
metadata$sample <- as.factor(metadata$sample)

## add metadata to fix dataset
meta.fix <- data.frame(seu.RNA_combined.fix@meta.data)  %>%
  mutate(sample = orig.ident ) %>%
  left_join(metadata) %>%
  mutate(group = sample) 
meta.fix<-as.data.frame(meta.fix)
rownames(meta.fix) <- rownames(data.frame(seu.RNA_combined.fix@meta.data) )
seu.RNA_combined.fix <- AddMetaData(object = seu.RNA_combined.fix, metadata = meta.fix)

#meta.fix <- data.frame(seu.RNA_combined.fix@meta.data) %>%
#  mutate(sample = rownames(seu.RNA_combined.fix@meta.data))


## add metadata to live dataset
meta.live <- data.frame(seu.RNA_combined.live@meta.data)  %>%
  mutate(sample = orig.ident ) %>%
  left_join(metadata) %>%
  mutate(group = sample) 
meta.live<-as.data.frame(meta.live)
rownames(meta.live) <- rownames(data.frame(seu.RNA_combined.live@meta.data) )
seu.RNA_combined.live <- AddMetaData(object = seu.RNA_combined.live, metadata = meta.live)

#meta.live <- data.frame(seu.RNA_combined.live@meta.data) %>%
#  mutate(sample = rownames(seu.RNA_combined.live@meta.data)) 

seu.RNA_combined.live[["percent.mt"]] <- PercentageFeatureSet(seu.RNA_combined.live, pattern = "^MT")

seu.RNA_combined.fix[["percent.mt"]] <- PercentageFeatureSet(seu.RNA_combined.fix, pattern = "^MT")

Normalize and Scale

Finally, the datasets are normalized (SCT for RNA, CLR for (phospho-)protein), and scaled (regress out: nCount, percentage mitochondiral, and plate ID for RNA, and regress out: nCount and plate ID for protein).

## fix data normalize RNA
DefaultAssay(seu.RNA_combined.fix) <- 'RNA'
seu.RNA_combined.fix <- SCTransform(seu.RNA_combined.fix, assay = "RNA", new.assay.name = "SCT", vars.to.regress = c("nCount_RNA", "percent.mt", "plate"), return.only.var.genes = FALSE, verbose = FALSE)

# Add some metadata to normalized data (ncounts & percent mt)
seu.RNA_combined.fix <- AddMetaData(seu.RNA_combined.fix, as.data.frame(seu.RNA_combined.fix@assays$SCT@counts) %>% summarise_all(funs(sum)) %>% unlist(), col.name = "nCount_RNA_SCT")

seu.RNA_combined.fix <- PercentageFeatureSet(seu.RNA_combined.fix, pattern = "^MT\\.|^MTRN", col.name = "percent.mt.aftersct", assay = "SCT")

## Fixed dataset normalize protein
DefaultAssay(seu.RNA_combined.fix) <- 'PROT'
VariableFeatures(seu.RNA_combined.fix) <- rownames(seu.RNA_combined.fix[["PROT"]])
seu.RNA_combined.fix <- NormalizeData(seu.RNA_combined.fix, normalization.method = 'CLR', margin = 2, assay = "PROT") %>% 
  ScaleData(vars.to.regress = c("nCount_PROT", "plate"))

## live data normalize RNA
DefaultAssay(seu.RNA_combined.live) <- 'RNA'
seu.RNA_combined.live <- SCTransform(seu.RNA_combined.live, assay = "RNA", new.assay.name = "SCT", vars.to.regress = c("nCount_RNA", "percent.mt", "plate"), return.only.var.genes = FALSE, verbose = FALSE)

# Add some metadata to normalized data (ncounts & percent mt)
seu.RNA_combined.live <- AddMetaData(seu.RNA_combined.live, as.data.frame(seu.RNA_combined.live@assays$SCT@counts) %>% summarise_all(funs(sum)) %>% unlist(), col.name = "nCount_RNA_SCT")

seu.RNA_combined.live <- PercentageFeatureSet(seu.RNA_combined.live, pattern = "^MT\\.|^MTRN", col.name = "percent.mt.aftersct", assay = "SCT")

## live normalize & scale protein data 
DefaultAssay(seu.RNA_combined.live) <- 'PROT'
VariableFeatures(seu.RNA_combined.live) <- rownames(seu.RNA_combined.live[["PROT"]])
seu.RNA_combined.live <- NormalizeData(seu.RNA_combined.live, normalization.method = 'CLR', margin = 2, assay = "PROT") %>% 
  ScaleData(vars.to.regress = c("nCount_PROT", "plate")) 

Filtered dataset properties

Overview of the number of cells and data properties of all plates.

Live-cells RNA & surface protein dataset

seu.RNA_combined.live
An object of class Seurat 
20366 features across 1433 samples within 3 assays 
Active assay: PROT (50 features, 50 variable features)
 2 other assays present: RNA, SCT

Table Overview of per plate properties after filtering.

kable(seu.RNA_combined.live@meta.data %>% 
        group_by(donor,plate) %>% 
        summarise(`Number of cells` = round(n(),0),
                  `Median counts RNA` = round(median(nCount_RNA),0),
                  `Median Number genes` = round(median(nFeature_RNA),0),
                  `Median Mitochondrial counts (Median %)` = round(median(percent.mt),2), 
                  `Median counts PROT` = round(median(nCount_PROT),0),
                  `Number proteins` = round(median(nFeature_PROT),0)
                  )) %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
donor plate Number of cells Median counts RNA Median Number genes Median Mitochondrial counts (Median %) Median counts PROT Number proteins
D1 P_1578 216 1624 556 1.14 3842 46
D1 P_1579 293 2333 861 1.21 3601 45
D2 P_1580 274 2888 1040 1.18 3908 47
D2 P_1584 184 3688 1220 1.21 4383 48
D3 P_1582 231 1150 524 1.11 3575 47
D3 P_1585 235 3706 1133 1.24 3831 47

Table Overview of per donor properties after filtering.

kable(seu.RNA_combined.live@meta.data %>% 
        group_by(donor) %>% 
        summarise(`Number of cells` = round(n(),0),
                  `Median counts RNA` = round(median(nCount_RNA),0),
                  `Median Number genes` = round(median(nFeature_RNA),0),
                  `Median Mitochondrial counts (Median %)` = round(median(percent.mt),2), 
                  `Median counts PROT` = round(median(nCount_PROT),0),
                  `Number proteins` = round(median(nFeature_PROT),0)
                  )) %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
donor Number of cells Median counts RNA Median Number genes Median Mitochondrial counts (Median %) Median counts PROT Number proteins
D1 509 2008 732 1.18 3693 46
D2 458 3168 1122 1.18 4098 47
D3 466 1817 731 1.17 3694 47

Fixed cells intracellular proteins dataset

seu.RNA_combined.fix
An object of class Seurat 
10114 features across 1038 samples within 3 assays 
Active assay: PROT (76 features, 76 variable features)
 2 other assays present: RNA, SCT

Table Overview of per plate properties after filtering.

kable(seu.RNA_combined.fix@meta.data %>% 
        group_by(donor,plate) %>% 
        summarise(`Number of cells` = round(n(),0),
                  `Median counts RNA` = round(median(nCount_RNA),0),
                  `Median Number genes` = round(median(nFeature_RNA),0),
                  `Median Mitochondrial counts (Median %)` = round(median(percent.mt),2), 
                  `Median counts PROT` = round(median(nCount_PROT),0),
                  `Number proteins` = round(median(nFeature_PROT),0)
                  )) %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
donor plate Number of cells Median counts RNA Median Number genes Median Mitochondrial counts (Median %) Median counts PROT Number proteins
D2 P_1586 290 280 106 0.52 7664 72
D2 P_1587 232 266 120 0.99 8492 72
D3 P_1588 254 322 140 0.57 7250 72
D3 P_1589 262 272 116 0.81 8704 72

Table Overview of per donor properties after filtering.

kable(seu.RNA_combined.fix@meta.data %>% 
        group_by(donor) %>% 
        summarise(`Number of cells` = round(n(),0),
                  `Median counts RNA` = round(median(nCount_RNA),0),
                  `Median Number genes` = round(median(nFeature_RNA),0),
                  `Median Mitochondrial counts (Median %)` = round(median(percent.mt),2), 
                  `Median counts PROT` = round(median(nCount_PROT),0),
                  `Number proteins` = round(median(nFeature_PROT),0)
                  )) %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
donor Number of cells Median counts RNA Median Number genes Median Mitochondrial counts (Median %) Median counts PROT Number proteins
D2 522 272 112 0.73 7924 72
D3 516 292 126 0.64 7942 72

Save dataset

Seurat object with filtered cells and normalized counts is stored in “output/seu.fix_norm.rds” (intracellular protein modality) and “output/seu.live_norm.rds”(RNA and surface protein modalities).

## Save Seurat objects
saveRDS(seu.RNA_combined.fix, file = "output/seu.fix_norm.rds")
saveRDS(seu.RNA_combined.live, file = "output/seu.live_norm.rds")

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)

Matrix products: default

locale:
[1] LC_COLLATE=English_Netherlands.1252  LC_CTYPE=English_Netherlands.1252   
[3] LC_MONETARY=English_Netherlands.1252 LC_NUMERIC=C                        
[5] LC_TIME=English_Netherlands.1252    

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ggupset_0.3.0        RColorBrewer_1.1-2   enrichplot_1.10.2   
 [4] UCell_1.0.0          data.table_1.14.2    scales_1.1.1        
 [7] cowplot_1.1.1        ggthemes_4.2.4       kableExtra_1.3.4    
[10] knitr_1.36           org.Hs.eg.db_3.12.0  AnnotationDbi_1.52.0
[13] IRanges_2.24.1       S4Vectors_0.28.1     Biobase_2.50.0      
[16] BiocGenerics_0.36.1  forcats_0.5.1        stringr_1.4.0       
[19] dplyr_1.0.7          purrr_0.3.4          readr_2.1.0         
[22] tidyr_1.1.4          tibble_3.1.5         ggplot2_3.3.5       
[25] tidyverse_1.3.1      Matrix_1.3-4         SeuratObject_4.0.2  
[28] Seurat_4.0.2         workflowr_1.6.2     

loaded via a namespace (and not attached):
  [1] utf8_1.2.2            reticulate_1.22       tidyselect_1.1.1     
  [4] RSQLite_2.2.8         htmlwidgets_1.5.4     BiocParallel_1.24.1  
  [7] grid_4.0.3            Rtsne_0.15            scatterpie_0.1.7     
 [10] munsell_0.5.0         ragg_1.2.0            codetools_0.2-16     
 [13] ica_1.0-2             future_1.23.0         miniUI_0.1.1.1       
 [16] withr_2.4.3           colorspace_2.0-2      GOSemSim_2.16.1      
 [19] highr_0.9             rstudioapi_0.13       ROCR_1.0-11          
 [22] tensor_1.5            DOSE_3.16.0           listenv_0.8.0        
 [25] labeling_0.4.2        git2r_0.28.0          polyclip_1.10-0      
 [28] bit64_4.0.5           farver_2.1.0          rprojroot_2.0.2      
 [31] parallelly_1.29.0     vctrs_0.3.8           generics_0.1.1       
 [34] xfun_0.26             R6_2.5.1              graphlayouts_0.7.2   
 [37] fgsea_1.16.0          spatstat.utils_2.2-0  cachem_1.0.6         
 [40] assertthat_0.2.1      vroom_1.5.6           promises_1.2.0.1     
 [43] ggraph_2.0.5          gtable_0.3.0          globals_0.14.0       
 [46] goftest_1.2-2         tidygraph_1.2.0       rlang_0.4.11         
 [49] systemfonts_1.0.3     splines_4.0.3         lazyeval_0.2.2       
 [52] spatstat.geom_2.2-2   broom_0.7.10          yaml_2.2.1           
 [55] reshape2_1.4.4        abind_1.4-5           modelr_0.1.8         
 [58] backports_1.3.0       httpuv_1.6.3          qvalue_2.22.0        
 [61] tools_4.0.3           ellipsis_0.3.2        spatstat.core_2.3-0  
 [64] jquerylib_0.1.4       ggridges_0.5.3        Rcpp_1.0.7           
 [67] plyr_1.8.6            rpart_4.1-15          deldir_1.0-2         
 [70] pbapply_1.5-0         viridis_0.6.2         zoo_1.8-9            
 [73] haven_2.4.3           ggrepel_0.9.1         cluster_2.1.0        
 [76] fs_1.5.0              magrittr_2.0.1        scattermore_0.7      
 [79] DO.db_2.9             lmtest_0.9-38         reprex_2.0.1         
 [82] RANN_2.6.1            whisker_0.4           fitdistrplus_1.1-6   
 [85] matrixStats_0.61.0    hms_1.1.1             patchwork_1.1.1      
 [88] mime_0.12             evaluate_0.14         xtable_1.8-4         
 [91] readxl_1.3.1          gridExtra_2.3         compiler_4.0.3       
 [94] shadowtext_0.0.9      KernSmooth_2.23-17    crayon_1.4.2         
 [97] htmltools_0.5.2       ggfun_0.0.4           mgcv_1.8-33          
[100] later_1.3.0           tzdb_0.2.0            lubridate_1.8.0      
[103] DBI_1.1.1             tweenr_1.0.2          dbplyr_2.1.1         
[106] MASS_7.3-53           cli_3.1.0             igraph_1.2.6         
[109] pkgconfig_2.0.3       plotly_4.10.0         spatstat.sparse_2.0-0
[112] xml2_1.3.2            svglite_2.0.0         bslib_0.3.1          
[115] webshot_0.5.2         rvest_1.0.2           digest_0.6.28        
[118] sctransform_0.3.2     RcppAnnoy_0.0.19      spatstat.data_2.1-0  
[121] fastmatch_1.1-3       rmarkdown_2.11        cellranger_1.1.0     
[124] leiden_0.3.9          uwot_0.1.10           shiny_1.7.1          
[127] lifecycle_1.0.1       nlme_3.1-149          jsonlite_1.7.2       
[130] viridisLite_0.4.0     fansi_0.5.0           pillar_1.6.4         
[133] lattice_0.20-41       fastmap_1.1.0         httr_1.4.2           
[136] survival_3.2-7        GO.db_3.12.1          glue_1.4.2           
[139] png_0.1-7             bit_4.0.4             ggforce_0.3.3        
[142] stringi_1.7.5         sass_0.4.0            blob_1.2.2           
[145] textshaping_0.3.6     memoise_2.0.1         irlba_2.3.3          
[148] future.apply_1.8.1