Last updated: 2019-07-12

Checks: 2 0

Knit directory: FLASHvestigations/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    code/.DS_Store
    Ignored:    code/flashier_bench/.DS_Store
    Ignored:    data/flashier_bench/

Untracked files:
    Untracked:  analysis/squarem_notes.Rmd
    Untracked:  code/ebspca.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 926cc1c Jason Willwerscheid 2019-07-12 analysis/squarem_notes.Rmd
html f9a3167 Jason Willwerscheid 2019-07-08 Build site.
Rmd 239862c Jason Willwerscheid 2019-07-08 wflow_publish(c(“analysis/parallel_v2.Rmd”, “analysis/index.Rmd”))
html 6772e65 Jason Willwerscheid 2019-07-02 Build site.
Rmd 5d3db89 Jason Willwerscheid 2019-07-02 wflow_publish(“analysis/index.Rmd”)
html d2b435e Jason Willwerscheid 2019-05-19 Build site.
Rmd cdfcea9 Jason Willwerscheid 2019-05-19 wflow_publish(“analysis/index.Rmd”)
html 872fae5 Jason Willwerscheid 2019-02-26 Build site.
Rmd 314e7ea Jason Willwerscheid 2019-02-26 wflow_publish(“analysis/index.Rmd”)
html 6a701fa Jason Willwerscheid 2019-02-25 Build site.
Rmd 3c6502f Jason Willwerscheid 2019-02-25 wflow_publish(“analysis/index.Rmd”)
html 4693348 Jason Willwerscheid 2019-02-19 Build site.
Rmd 223898e Jason Willwerscheid 2019-02-19 wflow_publish(“analysis/index.Rmd”)
html 57be68c Jason Willwerscheid 2019-02-13 Build site.
Rmd 0b17dcf Jason Willwerscheid 2019-02-13 wflow_publish(“analysis/index.Rmd”)
html ba4e575 Jason Willwerscheid 2019-01-28 Build site.
Rmd d5bdcbc Jason Willwerscheid 2019-01-28 wflow_publish(“analysis/index.Rmd”)
html 8d151ff Jason Willwerscheid 2019-01-15 Build site.
Rmd b421808 Jason Willwerscheid 2019-01-15 workflowr::wflow_publish(“analysis/index.Rmd”)
html a276f8c Jason Willwerscheid 2018-12-06 Build site.
Rmd 54fd17d Jason Willwerscheid 2018-12-06 wflow_publish(“analysis/index.Rmd”)
html fa6eeb2 Jason Willwerscheid 2018-12-05 Build site.
Rmd 403051a Jason Willwerscheid 2018-12-05 wflow_publish(“analysis/index.Rmd”)
html 7aba87b Jason Willwerscheid 2018-12-04 Build site.
Rmd 6f64dea Jason Willwerscheid 2018-12-04 wflow_publish(“analysis/index.Rmd”)
html a0e8cba Jason Willwerscheid 2018-12-04 Build site.
Rmd e33776b Jason Willwerscheid 2018-12-04 workflowr::wflow_publish(“analysis/index.Rmd”)
html c013c93 Jason Willwerscheid 2018-11-06 Build site.
Rmd b93993d Jason Willwerscheid 2018-11-06 wflow_publish(c(“analysis/index.Rmd”))
html 5095faf Jason Willwerscheid 2018-11-06 Build site.
Rmd 8b95d79 Jason Willwerscheid 2018-11-06 wflow_publish(c(“analysis/index.Rmd”))
html 7ca650c Jason Willwerscheid 2018-11-06 Build site.
Rmd 83c6dd5 Jason Willwerscheid 2018-11-06 wflow_publish(c(“analysis/matrix_ops.Rmd”, “analysis/index.Rmd”))
html 195021c Jason Willwerscheid 2018-11-05 Build site.
Rmd 3d91e0d Jason Willwerscheid 2018-11-05 wflow_publish(“analysis/index.Rmd”)
html 5f7219f Jason Willwerscheid 2018-10-23 Build site.
Rmd a57f09e Jason Willwerscheid 2018-10-23 workflowr::wflow_publish(“analysis/index.Rmd”)
html 0201367 Jason Willwerscheid 2018-10-02 Build site.
Rmd 6e4d240 Jason Willwerscheid 2018-10-02 wflow_publish(“analysis/index.Rmd”)
html 1c6fd5c Jason Willwerscheid 2018-09-28 Build site.
Rmd 43dbd89 Jason Willwerscheid 2018-09-28 wflow_publish(“analysis/index.Rmd”)
html 16d164d Jason Willwerscheid 2018-09-25 Build site.
Rmd c416b56 Jason Willwerscheid 2018-09-25 wflow_publish(“analysis/index.Rmd”)
html 0d3e65d Jason Willwerscheid 2018-09-21 Build site.
Rmd 382f0f7 Jason Willwerscheid 2018-09-21 wflow_publish(“analysis/index.Rmd”)
html 23eb8cb Jason Willwerscheid 2018-09-20 Build site.
Rmd 73535b4 Jason Willwerscheid 2018-09-20 workflowr::wflow_publish(“analysis/index.Rmd”)
html 61c0e2e Jason Willwerscheid 2018-09-18 Build site.
Rmd fc79d31 Jason Willwerscheid 2018-09-18 wflow_publish(“analysis/index.Rmd”)
html dc193d9 Jason Willwerscheid 2018-09-12 Build site.
Rmd 5e96e40 Jason Willwerscheid 2018-09-12 wflow_publish(“analysis/index.Rmd”)
html efbae90 Jason Willwerscheid 2018-09-11 Build site.
Rmd 734b172 Jason Willwerscheid 2018-09-11 wflow_publish(“analysis/index.Rmd”)
html eb78de4 Jason Willwerscheid 2018-08-29 Build site.
Rmd 9302ecc Jason Willwerscheid 2018-08-29 wflow_publish(“analysis/index.Rmd”)
html 10a535b Jason Willwerscheid 2018-08-29 Build site.
Rmd 47f0b23 Jason Willwerscheid 2018-08-29 wflow_publish(“analysis/index.Rmd”)
html 07ffbc2 Jason Willwerscheid 2018-08-23 Build site.
Rmd c73018d Jason Willwerscheid 2018-08-23 wflow_publish(“analysis/index.Rmd”)
html 9e39a5f Jason Willwerscheid 2018-08-22 Build site.
Rmd ac09d4b Jason Willwerscheid 2018-08-22 wflow_publish(“analysis/index.Rmd”)
html b0fbbe0 Jason Willwerscheid 2018-08-22 Build site.
Rmd 4fe662c Jason Willwerscheid 2018-08-22 wflow_publish(“analysis/index.Rmd”)
html 02be9e9 Jason Willwerscheid 2018-08-17 Build site.
Rmd 6e0036f Jason Willwerscheid 2018-08-17 wflow_publish(“analysis/index.Rmd”)
html a6d55b6 Jason Willwerscheid 2018-08-16 Build site.
Rmd c972927 Jason Willwerscheid 2018-08-16 wflow_publish(c(“analysis/index.Rmd”, “analysis/parallel2.Rmd”))
html 10d46c0 Jason Willwerscheid 2018-08-15 Build site.
Rmd acd7f0c Jason Willwerscheid 2018-08-15 wflow_publish(c(“analysis/index.Rmd”))
html 86ef31a Jason Willwerscheid 2018-08-12 Build site.
Rmd 73aa339 Jason Willwerscheid 2018-08-12 wflow_publish(“analysis/index.Rmd”)
html 5a2e2a9 Jason Willwerscheid 2018-08-12 Build site.
Rmd 6a9bf1c Jason Willwerscheid 2018-08-12 wflow_publish(c(“analysis/index.Rmd”, “analysis/parallel.Rmd”))
html 9246c68 Jason Willwerscheid 2018-08-12 Build site.
Rmd eaba09b Jason Willwerscheid 2018-08-12 wflow_publish(c(“analysis/index.Rmd”, “analysis/parallel.Rmd”))
html cfa8e83 Jason Willwerscheid 2018-07-27 Build site.
Rmd f497f36 Jason Willwerscheid 2018-07-27 wflow_publish(c(“analysis/warmstart2.Rmd”,
html 974e1db Jason Willwerscheid 2018-07-27 Build site.
Rmd 2d81ef4 Jason Willwerscheid 2018-07-27 wflow_publish(c(“analysis/index.Rmd”, “analysis/init_fn2.Rmd”))
html 9fc59e7 Jason Willwerscheid 2018-07-26 Build site.
Rmd 21cbf89 Jason Willwerscheid 2018-07-26 wflow_publish(c(“analysis/index.Rmd”))
html 8f471cb Jason Willwerscheid 2018-07-26 Build site.
Rmd ff417b6 Jason Willwerscheid 2018-07-26 wflow_publish(c(“analysis/warmstart.Rmd”, “analysis/index.Rmd”))
html aae4dfc Jason Willwerscheid 2018-07-25 Build site.
Rmd 6417d4e Jason Willwerscheid 2018-07-25 wflow_publish(c(“analysis/index.Rmd”, “analysis/init_fn.Rmd”))
html 3983695 Jason Willwerscheid 2018-07-25 Build site.
Rmd 566c202 Jason Willwerscheid 2018-07-25 wflow_publish(“analysis/index.Rmd”)
html dd91b19 Jason Willwerscheid 2018-07-20 Build site.
Rmd 032edd6 Jason Willwerscheid 2018-07-20 wflow_publish(c(“analysis/index.Rmd”, “analysis/flash_em.Rmd”,
html f995dbb Jason Willwerscheid 2018-07-20 manual commits to remove licence
html c9f10b0 Jason Willwerscheid 2018-07-20 Build site.
Rmd 4fc94bd Jason Willwerscheid 2018-07-20 wflow_publish(c(“analysis/index.Rmd”, “analysis/flash_em.Rmd”))
html 1de2af0 Jason Willwerscheid 2018-07-20 Build site.
Rmd 9ac7bb0 Jason Willwerscheid 2018-07-20 wflow_publish(“analysis/index.Rmd”)
html f98f61f Jason Willwerscheid 2018-07-20 Build site.
Rmd 8e383cd Jason Willwerscheid 2018-07-20 wflow_publish(c(“analysis/index.Rmd”))
html 58b3ea4 Jason Willwerscheid 2018-07-19 Build site.
Rmd eb264b1 Jason Willwerscheid 2018-07-19 wflow_publish(“analysis/index.Rmd”)
html 36a6312 Jason Willwerscheid 2018-07-19 Build site.
Rmd a9f8cc6 Jason Willwerscheid 2018-07-19 wflow_publish(“analysis/index.Rmd”)
html c420802 Jason Willwerscheid 2018-07-17 Build site.
Rmd 38942eb Jason Willwerscheid 2018-07-17 wflow_publish(“analysis/index.Rmd”)
html e2e1286 Jason Willwerscheid 2018-07-16 Build site.
Rmd 55f42ca Jason Willwerscheid 2018-07-16 wflow_publish(“analysis/index.Rmd”)
html de8f823 Jason Willwerscheid 2018-07-16 Build site.
Rmd f5379fa Jason Willwerscheid 2018-07-16 wflow_publish(“analysis/index.Rmd”)
html 7db12a1 Jason Willwerscheid 2018-07-16 Build site.
html 873da40 Jason Willwerscheid 2018-07-16 Build site.
html 58e136a Jason Willwerscheid 2018-07-15 Build site.
Rmd 82c7cdd Jason Willwerscheid 2018-07-15 wflow_publish(c(“analysis/index.Rmd”, “analysis/about.Rmd”))
html 76eacb7 Jason Willwerscheid 2018-07-15 Build site.
Rmd f6928cc Jason Willwerscheid 2018-07-15 wflow_publish(c(“analysis/index.Rmd”, “analysis/about.Rmd”))
Rmd 56d7ded Jason Willwerscheid 2018-07-14 Start workflowr project.

In Progress

Investigation 12. To fit a FLASH model with an arbitrary error covariance matrix, I follow up on a suggestion by Matthew Stephens.

Investigations 14 and 16-17 illustrate three approaches to factorizing the GTEx donation matrix. The first is more naive, and is primarily intended as an illustration of how to do nonnegative matrix factorization using FLASH. The second and third are more sophisticated approaches that model the entries as count or binary data.

  • Investigation 14. An example of how to use nonnegative ASH priors to obtain a nonnegative matrix factorization.

  • Investigation 16. Instead of directly fitting FLASH, I fit count data via a Gaussian approximation to the Poisson log likelihood…

  • Investigation 17. … then I fit binary data via an approximation to the binomial log likelihood.

Note 3 and Investigation 18 explore stochastic approaches to fitting FLASH objects to very large datasets.

  • Note 3. An idea for how to fit FLASH models when \(n\) is manageable and \(p\) is very large.

  • Investigation 18. I implement the idea described in Note 3 and I test it out on data from the GTEx project.

Investigations 19a-b and 20 try FLASH out on large single-cell RNA datasets.

  • Investigation 19a. An analysis of the smaller “droplet” dataset from Montoro et al.

  • Investigation 19b. I redo my analysis of the “droplet” dataset, but this time I follow the authors’ preprocessing steps. Results are, I think, of much lower quality.

  • Investigation 20. An analysis of the larger “pulse-seq” dataset from Montoro et al.

Investigation 22. A flashier analysis of the GTEx brain subtensor.

Investigations 24 and 25 explore approaches to count data.

  • Investigation 24. I propose a new approach to factorizing count data that uses adaptive shrinkage to estimate the rate matrix.

  • Investigation 25. I compare three different data transformations, three approaches to handling the heteroskedacity of the log1p transformation, and two approaches to dealing with row- and column-specific scaling.

  • Investigation 26. I compare FLASH fits of the “droplet” dataset in Montoro et al. using three different data transformations.

Still Relevant

Investigation 4 and accompanying notes describe a way to compute the FLASH objective directly (rather than using the indirect method implemented in flashr).

  • Notes on computing the FLASH objective function. I derive an explicit expression for the KL divergence between prior and posterior.

  • Notes for an alternate algorithm for optimizing the FLASH objective, using the explicit expression derived in the previous notes.

  • Investigation 4. The alternate algorithm agrees with FLASH with respect to both the objective and fit obtained.

Abandoned

I’m no longer pursuing acceleration via SQUAREM/DAAREM. My reasons are detailed in these notes.

  • Investigation 10. SQUAREM does poorly on FLASH backfits. DAAREM (a more recent algorithm by one of the authors of SQUAREM) does better, but offers smaller performance gains than parallelization.

Archived

The bug causing the problem described in Investigations 1-3 was fixed in version 0.1-13 of package ebnm.

  • Investigation 1. The FLASH objective function can behave very erratically.

  • Investigation 2. This problem only occurs when using ebnm_pn, not ebnm_ash.

  • Investigation 3. The objective can continue to get worse as loadings are repeatedly updated. Nonetheless, convergence takes place (from above!).

Since flashier uses a home-grown initialization function, Investigations 5a-b and 13 are no longer relevant.

  • Investigation 5a. An argument for changing the default init_fn to udv_si_svd when there is missing data and udv_svd otherwise. Based on an analysis of GTEx data.

  • Investigation 5b. More evidence supporting the recommendations in Investigation 5a.

  • Investigation 13. A counterargument. Results in Investigations 5a-b probably depend on the fact that \(n\) is small (\(n = 44\)). For large \(n\), setting init_fn to udv_si is best.

Investigations 6 and 7 dealt with warmstarts, which were implemented in version 0.5-14 of flashr.

  • Investigation 6. Poor optim results can produce large decreases in the objective function. We should use warmstarts when ebnm_fn = ebnm_pn.

  • Investigation 7. The advantages of warmstarts are not nearly as compelling when ebnm_fn = ebnm_ash.

Investigations 8 and 9 were concerned with parallel backfitting updates, which are better covered by a more recent investigation.

flashier implemented the ability to specify the order in which factors are updated. It makes very little difference when factor loadings are nearly orthogonal (as they usually are).

  • Investigation 11. The order in which factor/loading pairs are updated (during backfitting) makes some difference, but not much.

The changes tested here were implemented in version 0.6-2 of flashr.

These changes were implemented in version 2.2-29 of ashr.

  • Investigation 23. I benchmark the rewritten my_etruncnorm and my_vtruncnorm functions in package ashr against their counterparts in package truncnorm.

An early set of notes identified key ways to reduce the memory footprint of flashr. The good ideas were implemented in flashier. Not all of the ideas were good.