• Observed vs. Predicted
    • Means
    • Variances
      • Values for Weighted Corr
    • Usefulness
    • –> Save
  • Compute prediction accuracies
    • –> Save

Last updated: 2021-03-24

Checks: 7 0

Knit directory: PredictOutbredCrossVar/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191123) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 45e6b20. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  Icon
    Untracked:  PredictOutbredCrossVarMS_ResponseToReviews_R1.gdoc
    Untracked:  figure/
    Untracked:  manuscript/
    Untracked:  output/crossPredictions/
    Untracked:  output/gblups_DirectionalDom_parentwise_crossVal_folds.rds
    Untracked:  output/gblups_geneticgroups.rds
    Untracked:  output/gblups_parentwise_crossVal_folds.rds
    Untracked:  output/mtMarkerEffects/

Unstaged changes:
    Modified:   analysis/NGCleadersCall.Rmd
    Modified:   code/fitDirectionalDomMtBRR.R
    Modified:   code/fitmtBRR.R
    Modified:   code/getDirectionalDomGenomicBLUPs.R
    Modified:   code/getDirectionalDomMtCrossMeanPreds.R
    Modified:   code/getDirectionalDomMtCrossVarBVpreds.R
    Modified:   code/getDirectionalDomMtCrossVarTGVpreds.R
    Modified:   code/getDirectionalDomVarComps.R
    Modified:   code/getGenomicBLUPs.R
    Modified:   code/getMtCrossMeanPreds.R
    Modified:   code/getMtCrossVarPreds.R
    Modified:   code/getUntestedMtCrossVarPreds.R
    Modified:   code/getVarComps.R
    Modified:   data/blups_forawcdata.rds
    Modified:   data/genmap_awc_May2020.rds
    Modified:   data/parentwise_crossVal_folds.rds
    Modified:   data/ped_awc.rds
    Modified:   data/selection_index_weights_4traits.rds
    Modified:   output/CrossesToPredict_top100stdSI_and_209originalParents.rds
    Modified:   output/accuraciesMeans.rds
    Modified:   output/accuraciesUC.rds
    Modified:   output/accuraciesVars.rds
    Modified:   output/crossRealizations/realizedCrossMeans.rds
    Modified:   output/crossRealizations/realizedCrossMeans_BLUPs.rds
    Modified:   output/crossRealizations/realizedCrossMetrics.rds
    Modified:   output/crossRealizations/realizedCrossVars.rds
    Modified:   output/crossRealizations/realizedCrossVars_BLUPs.rds
    Modified:   output/crossRealizations/realized_cross_means_and_covs_traits.rds
    Modified:   output/crossRealizations/realized_cross_means_and_vars_selindices.rds
    Modified:   output/ddEffects.rds
    Modified:   output/gebvs_ModelA_GroupAll_stdSI.rds
    Modified:   output/obsVSpredMeans.rds
    Modified:   output/obsVSpredUC.rds
    Modified:   output/obsVSpredVars.rds
    Modified:   output/pmv_DirectionalDom_varcomps_geneticgroups.rds
    Modified:   output/pmv_varcomps_geneticgroups.rds
    Modified:   output/pmv_varcomps_geneticgroups_tidy_includingSIvars.rds
    Modified:   output/propHomozygous.rds
    Modified:   output/top100stdSI.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/predictionAccuracy.Rmd) and HTML (docs/predictionAccuracy.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html be1e9fc wolfemd 2021-03-24 Build site.
Rmd f73b05f wolfemd 2021-03-24 Update to match revised manuscript. Several comparisons moved to Appendix to streamline primary results, figures, etc.
html 4de1330 wolfemd 2021-02-01 Build site.
Rmd 883b1d4 wolfemd 2021-02-01 Update the syntax highlighting and code-block formatting throughout for
Rmd 6a10c30 wolfemd 2021-01-04 Submission and GitHub ready version.
html 6a10c30 wolfemd 2021-01-04 Submission and GitHub ready version.

Observed vs. Predicted

Format predicted and observed values so prediction accuracy can be computed.

Means

library(tidyverse); library(magrittr); library(predCrossVar)
predmeans<-readRDS(here::here("output/crossPredictions","predictedCrossMeans_tidy_withSelIndices.rds"))
predmeans_dd<-readRDS(here::here("output/crossPredictions","predictedCrossMeans_DirectionalDom_tidy_withSelIndices.rds"))
#predmeans %>% count(Model,predOf)
#predmeans_dd %>% count(predOf)
predmeans %<>% 
  bind_rows(predmeans_dd %>% 
              mutate(Model=ifelse(predOf=="MeanBV","DirDomBV","DirDomAD"))) %>% 
  #rename(VarComp=predOf) %>% 
  mutate(predOf=gsub("MeanGV","MeanTGV",predOf))
rm(predmeans_dd)
#predmeans %>% count(Model,VarComp)
obsMeans<-readRDS(here::here("output/crossRealizations","realizedCrossMeans.rds")) %>% 
  rename(predOf=obsOf) %>% 
  mutate(Model=ifelse(Model=="DirDom",
                      ifelse(predOf=="MeanBV","DirDomBV","DirDomAD"),
                      Model))
#obsMeans %>% count(Model,predOf)
obsMeanBLUPs<-readRDS(here::here("output/crossRealizations","realizedCrossMeans_BLUPs.rds"))

obsVSpredMeans<-bind_rows(left_join(predmeans,obsMeans) %>% mutate(ValidationData="GBLUPs"),
                          left_join(predmeans,obsMeanBLUPs) %>% mutate(ValidationData="iidBLUPs"))
# obsVSpredMeans %>% count(Model,ValidationData,VarComp) %>% spread(ValidationData,n)

Variances

# Variances
predvars<-readRDS(here::here("output/crossPredictions","predictedCrossVars_tidy_withSelIndices.rds")) %>% 
  bind_rows(readRDS(here::here("output/crossPredictions","predictedCrossVars_DirectionalDom_tidy_withSelIndices.rds"))) %>% 
  select(-Nsegsnps,-totcomputetime) %>% 
  pivot_longer(cols=c(VPM,PMV),names_to = "VarMethod",values_to = "predVar") %>% 
  group_by(Repeat,Fold,Model,sireID,damID,Trait1,Trait2,VarMethod) %>%  
  # sum over VarComps (ModelA = VarA, ModelAD = VarA+VarD)
  summarize(predVar=sum(predVar),.groups="drop") %>%  
  mutate(predOf=ifelse(Model %in% c("A","DirDomBV"),"VarBV",
                       ifelse(Model %in% c("AD","DirDomAD"),"VarTGV",NA))) 
predvars %>% 
  count(Model,predOf)
# A tibble: 4 x 3
  Model    predOf     n
  <chr>    <chr>  <int>
1 A        VarBV  99648
2 AD       VarTGV 99648
3 DirDomAD VarTGV 99648
4 DirDomBV VarBV  99648
obsVars<-readRDS(here::here("output/crossRealizations","realizedCrossVars.rds")) %>% 
  rename(predOf=obsOf) %>% 
  mutate(Model=ifelse(Model=="DirDom",
                      ifelse(predOf=="VarBV","DirDomBV","DirDomAD"),
                      Model))
obsVars %>% count(Model,predOf)
# A tibble: 4 x 3
  Model    predOf     n
  <chr>    <chr>  <int>
1 A        VarBV  40374
2 AD       VarTGV 40374
3 DirDomAD VarTGV 40374
4 DirDomBV VarBV  40374
obsVarBLUPs<-readRDS(here::here("output/crossRealizations","realizedCrossVars_BLUPs.rds"))

obsVSpredVars<-bind_rows(left_join(predvars,obsVars) %>% mutate(ValidationData="GBLUPs"),
                         left_join(predvars,obsVarBLUPs) %>% mutate(ValidationData="iidBLUPs"))
obsVSpredVars %>% count(Model,ValidationData,predOf)
# A tibble: 8 x 4
  Model    ValidationData predOf     n
  <chr>    <chr>          <chr>  <int>
1 A        GBLUPs         VarBV  99648
2 A        iidBLUPs       VarBV  99648
3 AD       GBLUPs         VarTGV 99648
4 AD       iidBLUPs       VarTGV 99648
5 DirDomAD GBLUPs         VarTGV 99648
6 DirDomAD iidBLUPs       VarTGV 99648
7 DirDomBV GBLUPs         VarBV  99648
8 DirDomBV iidBLUPs       VarBV  99648

Values for Weighted Corr

For ValidationData==“GBLUPs”, weight by the observed “FamSize”.

# add Family Sizes, for weighted correlations
obsVSpredVars %<>% 
  left_join(readRDS(file=here::here("output/crossRealizations","realizedCrossMetrics.rds")) %>% 
              distinct(Repeat,Fold,sireID,damID,FamSize) %>% ungroup())
obsVSpredVars %>% head
# A tibble: 6 x 13
  Repeat  Fold  Model sireID    damID    Trait1 Trait2 VarMethod  predVar predOf
  <chr>   <chr> <chr> <chr>     <chr>    <chr>  <chr>  <chr>        <dbl> <chr> 
1 Repeat1 Fold1 A     IITA-TMS… IITA-TM… biofo… biofo… PMV       55.4     VarBV 
2 Repeat1 Fold1 A     IITA-TMS… IITA-TM… biofo… biofo… VPM        5.86    VarBV 
3 Repeat1 Fold1 A     IITA-TMS… IITA-TM… DM     DM     PMV        4.35    VarBV 
4 Repeat1 Fold1 A     IITA-TMS… IITA-TM… DM     DM     VPM        0.355   VarBV 
5 Repeat1 Fold1 A     IITA-TMS… IITA-TM… DM     logFY… PMV       -0.0762  VarBV 
6 Repeat1 Fold1 A     IITA-TMS… IITA-TM… DM     logFY… VPM       -0.00459 VarBV 
# … with 3 more variables: obsVar <dbl>, ValidationData <chr>, FamSize <dbl>

For ValidationData==“iidBLUPs”, weight by the number of observed non-missing BLUPs per family per trait.

parentfolds<-readRDS(file = here::here("data","parentwise_crossVal_folds.rds")) %>% 
  rename(Repeat=id,Fold=id2) %>% 
  select(Repeat,Fold,testparents)
ped<-readRDS(here::here("data","ped_awc.rds")) %>%
  nest(FamilyMembers=FullSampleName)
parentfolds %<>% 
  mutate(CrossesToPredict=map(testparents,~filter(ped,sireID %in% . | damID %in% .))) %>% 
  select(-testparents)
indices<-readRDS(file=here::here("data","selection_index_weights_4traits.rds"))
blups<-readRDS(here::here("data","blups_forawcdata.rds")) %>% 
  select(Trait,blups) %>% 
  unnest(blups) %>% 
  select(Trait,germplasmName,BLUP) %>% 
  spread(Trait,BLUP) %>%  
  select(germplasmName,all_of(c("DM","logFYLD","MCMDS","TCHART"))) # precaution to ensure consistent column order
crossblups<-parentfolds %>% 
  unnest(CrossesToPredict) %>% 
  distinct(sireID,damID,FamilyMembers) %>% 
  unnest(FamilyMembers) %>% 
  rename(germplasmName=FullSampleName) %>% 
  left_join(blups) %>% 
  select(sireID,damID,germplasmName,all_of(indices$Trait)) %>% 
  nest(famblups=c(germplasmName,all_of(indices$Trait))) %>% 
  mutate(stdSI=map(famblups,~as.data.frame(.) %>% 
                       column_to_rownames(var = "germplasmName") %>% 
                       as.matrix(.)%*%indices$stdSI),
         biofortSI=map(famblups,~as.data.frame(.) %>% 
                       column_to_rownames(var = "germplasmName") %>% 
                       as.matrix(.)%*%indices$biofortSI))
nObs<-bind_rows(crossblups %>% 
                  select(-famblups) %>% 
                  mutate(stdSI=map_dbl(stdSI,~length(which(!is.na(.)))),
                         biofortSI=map_dbl(biofortSI,~length(which(!is.na(.))))) %>% 
                  pivot_longer(cols = c(stdSI,biofortSI), names_to = "Trait1", values_to = "Nobs",values_drop_na = TRUE) %>% 
                  mutate(Trait2=Trait1),
                crossblups %>% 
                  select(sireID,damID,famblups) %>% 
                  mutate(famblups=map(famblups,function(famblups){
                    NobsMat<-psych::pairwiseCount(famblups %>% select(-germplasmName),diagonal=TRUE)
                    NobsMat[lower.tri(NobsMat, diag = F)]<-NA
                    NobsMat %<>% 
                      as.data.frame %>% 
                      rownames_to_column(var = "Trait1") %>% 
                      pivot_longer(cols = -Trait1, names_to = "Trait2", values_to = "Nobs",values_drop_na = TRUE)
                    return(NobsMat) })) %>% 
                  unnest(famblups))
rm(parentfolds,ped,indices,blups,crossblups)
# add N obs, for weighted correlations
obsVSpredVars %<>%
  left_join(nObs) %>%
  mutate(CorrWeight=ifelse(ValidationData=="GBLUPs",FamSize,Nobs))

Usefulness

# Usefulness
realizedcrossmetrics<-readRDS(file=here::here("output/crossRealizations","realizedCrossMetrics.rds"))
# previously only calculated UC accuracy
# for sel. indices
# Now include component traits
predUsefulness<-left_join(predvars %>% # Variances
                            filter(#Trait1 %in% c("stdSI","biofortSI"),
                                   Trait1==Trait2) %>% 
                            rename(Trait=Trait1) %>% 
                            select(-Trait2) %>% 
                            mutate(predOf=gsub("Var","",predOf)),
                          predmeans %>% # Means
                            #filter(Trait %in% c("stdSI","biofortSI")) %>% 
                            mutate(predOf=gsub("Mean","",predOf))) %>% 
  mutate(predSD=sqrt(predVar)) %>% 
  select(-predVar)
## Add the realized selection intensities
## Create a variable "Stage" for which there are several applying to "Usefulness" for TGV
predBVs<-predUsefulness %>% 
  filter(predOf=="BV") %>% 
  left_join(realizedcrossmetrics %>% 
              select(Repeat,Fold,Model,sireID,damID,Trait,FamSize,realIntensityParent) %>% 
              rename(realIntensity=realIntensityParent) %>% 
              mutate(Stage="Parent",
                     Model=ifelse(Model=="ClassicAD","A","DirDomBV")))
predTGVs<-predUsefulness %>% 
  filter(predOf=="TGV") %>% 
  left_join(realizedcrossmetrics %>% 
              select(Repeat,Fold,Model,sireID,damID,Trait,FamSize,
                     contains("realIntensity"),-realIntensityParent) %>% 
              pivot_longer(cols = contains("realIntensity"),
                           names_to = "Stage", 
                           values_to = "realIntensity", 
                           names_prefix = "realIntensity") %>% 
              mutate(Model=ifelse(Model=="ClassicAD","AD","DirDomAD")))
predUsefulness<-bind_rows(predBVs,
                          predTGVs) %>% 
  # include a "stage" (=="ConstIntensity") 
  # where intensity for predicted UC is set to 2.67
  bind_rows(predUsefulness %>% 
              left_join(realizedcrossmetrics %>% 
                          distinct(Repeat,Fold,sireID,damID,Trait,FamSize)) %>% 
              mutate(Stage="ConstIntensity",
                     realIntensity=2.67))

## Compute predicted UCs
predUsefulness %<>% 
  dplyr::mutate(predUC=predMean+(realIntensity*predSD))
# predUsefulness %>% count(Model,predOf,Stage)
# predUsefulness %>% filter(!is.na(predUC)) %>% count(Model,predOf,Stage)

## Format observed UCs
obsUCgca<-realizedcrossmetrics %>% 
  select(Repeat,Fold,Model,sireID,damID,Trait,realizedUCparent) %>%
  rename(obsUC=realizedUCparent) %>% 
  mutate(predOf="BV",
         Stage="Parent")
#obsUCgca %>% count(VarComp,Stage,Model,Trait)
obsUCtgv<-realizedcrossmetrics %>% 
  select(Repeat,Fold,Model,sireID,damID,Trait,contains("realizedUCat")) %>% 
  pivot_longer(cols = contains("realizedUCat"),
               names_to = "Stage", 
               values_to = "obsUC", 
               names_prefix = "realizedUCat",
               values_drop_na = T) %>% 
  mutate(predOf="TGV")
#obsUCtgv %>% count(VarComp,Stage,Model)
obsUsefulness<-bind_rows(obsUCgca,obsUCtgv)
obsUsefulness %<>% 
  bind_rows(realizedcrossmetrics %>% 
              select(Repeat,Fold,Model,sireID,damID,Trait,meanTop1pctGEBV) %>%
               rename(obsUC=meanTop1pctGEBV) %>% 
               mutate(predOf="BV",
                     Stage="ConstIntensity")) %>% 
  bind_rows(realizedcrossmetrics %>% 
              select(Repeat,Fold,Model,sireID,damID,Trait,meanTop1pctGETGV) %>% 
              rename(obsUC=meanTop1pctGETGV) %>% 
              mutate(predOf="TGV",
                     Stage="ConstIntensity"))
obsUsefulness %<>% 
  mutate(Model=ifelse(Model=="ClassicAD",
                      ifelse(predOf=="BV","A","AD"),
                      ifelse(predOf=="BV","DirDomBV","DirDomAD")))

#obsUsefulness %>% count(Trait,Stage,predOf,Model) %>% spread(Trait,n)
# predUsefulness %>% count(Model,predOf,Stage)
# obsUsefulness %>% count(Model,predOf,Stage)
# obsUsefulness %>% filter(!is.na(obsUC))
# predUsefulness %>% filter(!is.na(predUC)) %>% count(Model,predOf,Stage)
#predUsefulness %>% filter(is.na(FamSize)) %>% count(Model,predOf,VarMethod,Stage)
obsVSpredUC<-left_join(predUsefulness,obsUsefulness) %>% ungroup()
obsVSpredUC %<>% drop_na(.) %>% ungroup()
obsVSpredUC %>% str
tibble [391,848 × 15] (S3: tbl_df/tbl/data.frame)
 $ Repeat       : chr [1:391848] "Repeat1" "Repeat1" "Repeat1" "Repeat1" ...
 $ Fold         : chr [1:391848] "Fold1" "Fold1" "Fold1" "Fold1" ...
 $ Model        : chr [1:391848] "A" "A" "A" "A" ...
 $ sireID       : chr [1:391848] "IITA-TMS-IBA030075" "IITA-TMS-IBA030075" "IITA-TMS-IBA030075" "IITA-TMS-IBA030075" ...
 $ damID        : chr [1:391848] "IITA-TMS-IBA940006" "IITA-TMS-IBA940006" "IITA-TMS-IBA940006" "IITA-TMS-IBA940006" ...
 $ Trait        : chr [1:391848] "biofortSI" "biofortSI" "DM" "DM" ...
 $ VarMethod    : chr [1:391848] "PMV" "VPM" "PMV" "VPM" ...
 $ predOf       : chr [1:391848] "BV" "BV" "BV" "BV" ...
 $ predMean     : num [1:391848] 4.49 4.49 1.4605 1.4605 0.0746 ...
 $ predSD       : num [1:391848] 7.263 2.294 2.055 0.626 0.186 ...
 $ FamSize      : num [1:391848] 38 38 38 38 38 38 38 38 38 38 ...
 $ realIntensity: num [1:391848] 2.32 2.32 2.32 2.32 2.32 ...
 $ Stage        : chr [1:391848] "Parent" "Parent" "Parent" "Parent" ...
 $ predUC       : num [1:391848] 21.327 9.807 6.225 2.913 0.505 ...
 $ obsUC        : num [1:391848] -0.886 -0.886 1.805 1.805 0.121 ...
obsVSpredUC %>% count(Trait)
# A tibble: 6 x 2
  Trait         n
  <chr>     <int>
1 biofortSI 65308
2 DM        65308
3 logFYLD   65308
4 MCMDS     65308
5 stdSI     65308
6 TCHART    65308
#obsVSpredUC %>% count(Model,predOf,Stage)

–> Save

saveRDS(obsVSpredMeans,here::here("output","obsVSpredMeans.rds"))
saveRDS(obsVSpredVars,here::here("output","obsVSpredVars.rds"))
saveRDS(obsVSpredUC,here::here("output","obsVSpredUC.rds"))

Compute prediction accuracies

rm(list=ls())
library(tidyverse); library(magrittr);
obsVSpredMeans<-readRDS(here::here("output","obsVSpredMeans.rds"))
obsVSpredVars<-readRDS(here::here("output","obsVSpredVars.rds"))
obsVSpredUC<-readRDS(here::here("output","obsVSpredUC.rds"))

# Means
obsVSpredMeans %<>%
  drop_na(.) %>% 
  nest(predVSobs=c(sireID,damID,predMean,obsMean)) %>% 
  mutate(Accuracy=map_dbl(predVSobs,~cor(.$predMean,.$obsMean,use = 'complete.obs'))) %>% 
  select(-predVSobs)

# Variances
obsVSpredVars %<>% 
  drop_na(.) %>% 
  select(-FamSize,-Nobs) %>% 
  nest(predVSobs=c(sireID,damID,predVar,obsVar,CorrWeight)) %>% 
  mutate(AccuracyWtCor=map_dbl(predVSobs,~psych::cor.wt(.[,3:4],w = .$CorrWeight) %$% r[1,2]),
         AccuracyCor=map_dbl(predVSobs,~cor(.$predVar,.$obsVar,use = 'complete.obs'))) %>% 
  select(-predVSobs)

# Usefulness
obsVSpredUC %<>% 
  select(-predMean,-predSD,-realIntensity) %>% 
  nest(predVSobs=c(sireID,damID,predUC,obsUC,FamSize)) %>% 
  mutate(AccuracyWtCor=map_dbl(predVSobs,~psych::cor.wt(.[,3:4],w = .$FamSize) %$% r[1,2]),
         AccuracyCor=map_dbl(predVSobs,~cor(.$predUC,.$obsUC,use = 'complete.obs'))) %>% 
  select(-predVSobs)
obsVSpredUC %>% count(Model,predOf,Stage)
# A tibble: 14 x 4
   Model    predOf Stage              n
   <chr>    <chr>  <chr>          <int>
 1 A        BV     ConstIntensity   300
 2 A        BV     Parent           300
 3 AD       TGV    AYT              300
 4 AD       TGV    CET              300
 5 AD       TGV    ConstIntensity   300
 6 AD       TGV    PYT              300
 7 AD       TGV    UYT              300
 8 DirDomAD TGV    AYT              300
 9 DirDomAD TGV    CET              300
10 DirDomAD TGV    ConstIntensity   300
11 DirDomAD TGV    PYT              300
12 DirDomAD TGV    UYT              300
13 DirDomBV BV     ConstIntensity   300
14 DirDomBV BV     Parent           300

–> Save

saveRDS(obsVSpredMeans,here::here("output","accuraciesMeans.rds"))
saveRDS(obsVSpredVars,here::here("output","accuraciesVars.rds"))
saveRDS(obsVSpredUC,here::here("output","accuraciesUC.rds"))

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] predCrossVar_0.1.0 magrittr_2.0.1     forcats_0.5.1      stringr_1.4.0     
 [5] dplyr_1.0.5        purrr_0.3.4        readr_1.4.0        tidyr_1.1.3       
 [9] tibble_3.1.0       ggplot2_3.3.3      tidyverse_1.3.0    workflowr_1.6.2   

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.6        lattice_0.20-41   lubridate_1.7.10  here_1.0.1       
 [5] assertthat_0.2.1  rprojroot_2.0.2   digest_0.6.27     psych_2.0.12     
 [9] utf8_1.2.1        R6_2.5.0          cellranger_1.1.0  backports_1.2.1  
[13] reprex_1.0.0      evaluate_0.14     httr_1.4.2        pillar_1.5.1     
[17] rlang_0.4.10      readxl_1.3.1      rstudioapi_0.13   whisker_0.4      
[21] jquerylib_0.1.3   rmarkdown_2.7     munsell_0.5.0     broom_0.7.5      
[25] compiler_4.0.3    httpuv_1.5.5      modelr_0.1.8      xfun_0.22        
[29] pkgconfig_2.0.3   mnormt_2.0.2      tmvnsim_1.0-2     htmltools_0.5.1.1
[33] tidyselect_1.1.0  fansi_0.4.2       crayon_1.4.1      dbplyr_2.1.0     
[37] withr_2.4.1       later_1.1.0.1     grid_4.0.3        nlme_3.1-152     
[41] jsonlite_1.7.2    gtable_0.3.0      lifecycle_1.0.0   DBI_1.1.1        
[45] git2r_0.28.0      scales_1.1.1      cli_2.3.1         stringi_1.5.3    
[49] fs_1.5.0          promises_1.2.0.1  xml2_1.3.2        bslib_0.2.4      
[53] ellipsis_0.3.1    generics_0.1.0    vctrs_0.3.6       tools_4.0.3      
[57] glue_1.4.2        hms_1.0.0         parallel_4.0.3    yaml_2.2.1       
[61] colorspace_2.0-0  rvest_1.0.0       knitr_1.31        haven_2.3.1      
[65] sass_0.3.1