Last updated: 2022-02-23

Checks: 6 1

Knit directory: MelanomaIMC/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200728) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version cd92c51. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rproj.user/
    Ignored:    code/.DS_Store
    Ignored:    code/._.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/data_for_analysis/
    Ignored:    data/data_for_analysis_zenodo/
    Ignored:    data/full_data.zip
    Ignored:    data/full_data/

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/Supp-Figure_9.rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Supp-Figure_9.rmd) and HTML (docs/Supp-Figure_9.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html fe331cb toobiwankenobi 2022-02-22 re-run whole analysis
html d246c15 toobiwankenobi 2022-02-22 update Supp Fig 9
Rmd 64e5fde toobiwankenobi 2022-02-16 change order and naming of supp fig files
Rmd b20b6fb toobiwankenobi 2022-02-02 update code for Supp Figures
Rmd 3da15db toobiwankenobi 2021-11-24 changes for revision

Introduction

This script generates plots for Supplementary Figure 9.

Preparations

Load libraries

sapply(list.files("code/helper_functions", full.names = TRUE), source)
        code/helper_functions/calculateSummary.R
value   ?                                       
visible FALSE                                   
        code/helper_functions/censor_dat.R
value   ?                                 
visible FALSE                             
        code/helper_functions/detect_mRNA_expression.R
value   ?                                             
visible FALSE                                         
        code/helper_functions/DistanceToClusterCenter.R
value   ?                                              
visible FALSE                                          
        code/helper_functions/findMilieu.R code/helper_functions/findPatch.R
value   ?                                  ?                                
visible FALSE                              FALSE                            
        code/helper_functions/getInfoFromString.R
value   ?                                        
visible FALSE                                    
        code/helper_functions/getSpotnumber.R
value   ?                                    
visible FALSE                                
        code/helper_functions/plotCellCounts.R
value   ?                                     
visible FALSE                                 
        code/helper_functions/plotCellFractions.R
value   ?                                        
visible FALSE                                    
        code/helper_functions/plotDist.R code/helper_functions/read_Data.R
value   ?                                ?                                
visible FALSE                            FALSE                            
        code/helper_functions/scatter_function.R
value   ?                                       
visible FALSE                                   
        code/helper_functions/sceChecks.R
value   ?                                
visible FALSE                            
        code/helper_functions/validityChecks.R
value   ?                                     
visible FALSE                                 
library(SingleCellExperiment)
library(dplyr)
library(ggplot2)
library(ggbeeswarm)
library(tidyr)
library(scater)
library(dittoSeq)
library(gridExtra)
library(cowplot)
library(data.table)
library(ggpmisc)
library(ggpubr)
library(ComplexHeatmap)
library(rstatix)
library(dendextend)
library(parallel)
library(neighbouRhood)
library(unix)
library(cytomapper)

Load Data

# SCE object
sce_rna = readRDS(file = "data/data_for_analysis/sce_RNA.rds")
sce_prot = readRDS(file = "data/data_for_analysis/sce_protein.rds")

sce_rna <- sce_rna[,sce_rna$Location != "CTRL"]
sce_prot <- sce_prot[,sce_prot$Location != "CTRL"]

# meta data
dat_relation = fread(file = "data/data_for_analysis/protein/Object relationships.csv",stringsAsFactors = FALSE)
dat_relation_rna = fread(file = "data/data_for_analysis/RNA/Object relationships.csv",stringsAsFactors = FALSE)

targets <- metadata(sce_rna)$chemokines_morethan600_withcontrol

Prepare Relation Table

# prepare data 
dat_relation$cellID_first <- paste("RNA", paste(dat_relation$`First Image Number`, dat_relation$`First Object Number`, sep = "_"), sep = "_")
dat_relation$cellID_second <- paste("RNA", paste(dat_relation$`Second Image Number`, dat_relation$`Second Object Number`, sep = "_"), sep = "_")

Supp Figure 9A

Load masks

all_mask <- loadImages(x = "data/full_data/rna/cpout/",
                       pattern = "ilastik_s2_Probabilities_equalized_cellmask.tiff")

add the ImageNumber to masks

# we load the metadata for the images.
image_mat_rna <- as.data.frame(read.csv(file = "data/data_for_analysis/rna/Image.csv",stringsAsFactors = FALSE))

# we extract only the FileNames of the masks as they are in the all_masks object
cur_df <- data.frame(cellmask = image_mat_rna$FileName_cellmask,
                     ImageNumber = image_mat_rna$ImageNumber,
                     Description = image_mat_rna$Metadata_Description)

# we set the rownames of the extracted data to be equal to the names of all_masks
rownames(cur_df) <- gsub(pattern = ".tiff",replacement = "",image_mat_rna$FileName_cellmask)

# we add the extracted information via mcols in the order of the all_masks object
mcols(all_mask) <- cur_df[names(all_mask),]

scale the masks

all_mask <- scaleImages(all_mask,2^16-1)

Plot 4 example Images from the T cell grouping

# select the images K10 (absent), K3 (low), A11 (med), N3 (high) as representative images for the T cell grouping

# subset masks
mask_sub <- all_mask[mcols(all_mask)$Description %in% c("K10", "N3", "K3", "A11")]
sce_prot_sub <- sce_prot[,sce_prot$Description %in% c("K10", "N3", "K3", "A11")]

# rename all cells that are not CD8+ T cell 
sce_prot_sub$celltype <- ifelse(sce_prot_sub$celltype %in% c("CD8+ T cell"), sce_prot_sub$celltype, "Other")

# create color vector
col_list <- list()
col_list$`Cell Type` <- metadata(sce_prot)$colour_vectors$celltype[c("Tumor", "CD8+ T cell")]
names(col_list$`Cell Type`) <- c("Other", "CD8+ T cell")
col_list$`Cell Type`["CD8+ T cell"] <- "green"

sce_prot_sub$`Cell Type` <- sce_prot_sub$celltype

plotCells(mask = mask_sub, 
          object = sce_prot_sub,
          cell_id = "CellNumber", img_id = "Description", 
          colour_by = "Cell Type",
          colour = col_list)

Supp Figure 9B

Expressor in Tcell groups

targets <- metadata(sce_rna)$chemokines_morethan600_withcontrol

frac <- data.frame(colData(sce_rna)) %>%
  filter(Location != "CTRL") %>%
  group_by(Description, Tcell_density_score_image, expressor) %>%
  summarise(n=n()) %>%
  mutate(fraction = n / sum(n)) %>%
  filter(expressor %in% targets) %>%
  reshape2::dcast(Description + Tcell_density_score_image ~ expressor, value.var = "fraction", fill = 0) %>%
  reshape2::melt(id.vars = c("Description", "Tcell_density_score_image"), variable.name = "expressor", value.name = "fraction")

stat.test <- frac %>%
  group_by(expressor) %>%
  kruskal_test(data = ., fraction ~ Tcell_density_score_image) %>%
  adjust_pvalue(method = "BH") %>%
  add_significance("p.adj",cutpoints = c(0, 1e-04, 0.001, 0.01, 0.1, 1)) %>%
  arrange(p.adj) %>%
  mutate(group1 = expressor, group2 = expressor) %>%
  add_x_position()

frac$expressor <- factor(frac$expressor, levels = stat.test$expressor)

ggplot(frac, aes(x=expressor, y = fraction)) + 
  geom_boxplot(alpha=.75, outlier.size = 0.5, aes(fill = Tcell_density_score_image)) +
  stat_pvalue_manual(x = "group1", y.position = 0.055, stat.test, size = 4) +
  scale_color_discrete(guide = FALSE) +
  theme_bw() +
  theme(text = element_text(size = 15),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + 
  guides(fill=guide_legend(title="T cell Score")) +
  xlab("") + 
  ylab("Fractions")  +
  coord_cartesian(ylim = c(0,0.06))
Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please
use `guide = "none"` instead.

Supp Figure 9C

Grouping from Figure 1E

# Create table with celltype fractions
cur_df <- data.frame(celltype = sce_prot$celltype,
                     Description = sce_prot$Description,
                     Location = sce_prot$Location)

# remove control samples 
cur_df <- cur_df %>%
  filter(Location != "CTRL") %>%
  group_by(Description, celltype) %>%
  summarise(n=n()) %>% 
  group_by(Description) %>%
  mutate(fraction = n / sum(n)) %>%
  reshape2::dcast(Description ~ celltype, value.var = "fraction", fill=0)

matrixrownames <- cur_df$Description 

# now we create a matrix from the data and cluster the data based on the cell fractions
hm_dat = as.matrix(cur_df[,-1])
rownames(hm_dat) <- as.character(matrixrownames)

# calculate distance and then cluster images based on cluster fraction
dd <- dist((hm_dat), method = "euclidean")
hc <- hclust(dd, method = "ward.D2")
row_sorted <- hc$labels

dend <- as.dendrogram(hc)
clusters <- data.frame(cutree(dend, k=4)) #### order_clusters_as_data = FALSE?? 
clusters_1E <- color_branches(dend, k = 4, col = c("gray50", "blue", "green", "red"), groupLabels = TRUE)

# get labels from dend
dend_labels <- clusters_1E %>%
  labels()

# change colnames
colnames(clusters) <- "dend_cluster"
clusters$Description <- rownames(clusters)

# same orientation as in 1E
clusters <- clusters[match(dend_labels, clusters$Description),]

# change cluster names
clusters$cluster_name <- ""
clusters[clusters$dend_cluster == 3,]$cluster_name <- "Grey Branch" 
clusters[clusters$dend_cluster == 4,]$cluster_name <- "Blue Branch" 
clusters[clusters$dend_cluster == 2,]$cluster_name <- "Green Branch" 
clusters[clusters$dend_cluster == 1,]$cluster_name <- "Red Branch" 

# add cluster to sce_rna object
all_dat <- data.frame(colData(sce_rna))[,c("Description", "ImageNumber")]
all_dat <- left_join(all_dat, clusters)
sce_rna$cluster_name <- as.character(all_dat$cluster_name)

sce_rna$cluster_name <- factor(sce_rna$cluster_name, levels = c("Red Branch", "Green Branch", "Blue Branch", "Grey Branch"))


targets <- metadata(sce_rna)$chemokines_morethan600_withcontrol

frac <- data.frame(colData(sce_rna)) %>%
  filter(Location != "CTRL") %>%
  group_by(Description, cluster_name, expressor) %>%
  summarise(n=n()) %>%
  mutate(fraction = n / sum(n)) %>%
  filter(expressor %in% targets) %>%
  reshape2::dcast(Description + cluster_name ~ expressor, value.var = "fraction", fill = 0) %>%
  reshape2::melt(id.vars = c("Description", "cluster_name"), variable.name = "expressor", value.name = "fraction")

stat.test <- frac %>%
  group_by(expressor) %>%
  kruskal_test(data = ., fraction ~ cluster_name) %>%
  adjust_pvalue(method = "BH") %>%
  add_significance("p.adj",cutpoints = c(0, 1e-04, 0.001, 0.01, 0.1, 1)) %>%
  arrange(p.adj) %>%
  mutate(group1 = expressor, group2 = expressor) %>%
  add_x_position()

frac$expressor <- factor(frac$expressor, levels = stat.test$expressor)

ggplot(frac, aes(x=expressor, y = fraction)) + 
  geom_boxplot(alpha=.75, outlier.size = 0.5, aes(fill = cluster_name)) +
  stat_pvalue_manual(x = "group1", y.position = 0.055, stat.test, size = 4) +
  scale_color_discrete(guide = FALSE) +
  theme_bw() +
  theme(text = element_text(size = 15),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + 
  guides(fill=guide_legend(title="Dendrogram Cluster")) +
  xlab("") + 
  scale_fill_manual(values=c("red", "green", "blue", "grey")) +
  ylab("Fractions")  +
  coord_cartesian(ylim = c(0,0.06))
Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please
use `guide = "none"` instead.

Supp Figure 9D

CP output

# Load and prepare
dat_cells = fread(file = "data/data_for_analysis/rna/cell.csv",stringsAsFactors = FALSE)
dat_relation = fread(file = "data/data_for_analysis/rna/Object relationships.csv",stringsAsFactors = FALSE)

# Number of cores used for multicore:
if(detectCores() >= 12){
  ncores = round(detectCores()/1.25,0)
}
if(detectCores() > 1 & detectCores() < 12){
  ncores = round(detectCores()/2,0)
}
if(detectCores() == 1){
  ncores = 1
}

n_perm = 100 

Start the analysis

start = Sys.time()
cur_sce <- as.data.frame(colData(sce_rna))

# add same cellID to dat_cells as in sce object
dat_cells$cellID <- paste("RNA_", paste(dat_cells$ImageNumber, dat_cells$ObjectNumber, sep = "_"), sep = "")

image_df <- data.frame()
gc()
            used (Mb) gc trigger   (Mb)   max used   (Mb)
Ncells  11795507  630   18778532 1002.9   18778532 1002.9
Vcells 907534761 6924 1309232800 9988.7 1090431471 8319.4
rlimit_as(Inf)
$cur
[1] Inf

$max
[1] Inf
for(size in c(2,3,4,5,6)) {
  images <- data.frame()
  for(i in colnames(cur_sce[,grepl("CCL|CXCL",colnames(cur_sce))])){
    # add chemokine info to celltype
    sce_info <- cur_sce[,c("cellID", i , "Description")]
    
    # add celltype information
    dat_cells_tmp <- left_join(as.data.frame(dat_cells), sce_info, by = "cellID")
    
    #assign labels and groups
    dat_cells_tmp$label <- dat_cells_tmp[,i]
    dat_cells_tmp$group <- dat_cells_tmp$Description
    dat_cells_tmp <- as.data.table(dat_cells_tmp)
    
    # subset dat_relation and dat_cells
    dat_cells_sub <- dat_cells_tmp
    dat_relation_sub <- dat_relation
    
    # Prepare the data
    d = neighbouRhood::prepare_tables(dat_cells_sub, dat_relation_sub)
    
    # Calculate the baseline statistics
    dat_baseline = neighbouRhood::apply_labels(d[[1]], d[[2]]) %>%
      neighbouRhood::aggregate_classic_patch(., patch_size = size)
    
    # Calculate the permutation statistics
    # This will run the test using parallel computing. The name of the idcol does actually not matter.
    
    set.seed(12312)
    dat_perm = rbindlist(mclapply(1:n_perm, function(x){
      dat_labels = neighbouRhood::shuffle_labels(d[[1]])
      neighbouRhood::apply_labels(dat_labels, d[[2]]) %>%
        neighbouRhood::aggregate_classic_patch(., patch_size = size)
    },mc.cores = ncores
    ), idcol = 'run')
    
    # calc p values
    dat_p <- neighbouRhood::calc_p_vals(dat_baseline, dat_perm, n_perm = n_perm, p_tresh = 0.01) 
    
    # select interactions between chemokine+ cells
    dat_p$interaction <- paste(dat_p$FirstLabel, dat_p$SecondLabel, sep = "_")
    
    dat_p_wide <- dat_p %>%
      reshape2::dcast(group ~ interaction, value.var = "sigval", fill = 0) %>%
      select(group, `1_1`)
    
    summary <- as.data.frame(dat_p_wide) %>%
      group_by(`1_1`) %>%
      summarise(n=n(),.groups = 'drop') %>%
      ungroup() %>%
      mutate(percentage_sig = (n/sum(n)) * 100)
    
    images <- rbind(images, cbind(summary[1,], i))
    gc()
  }
  
  # calculate percentage of images with significant patches
  images$percentage_sig <- 100 - images$percentage_sig
  images$patch_size <- size
  images <- select(images, percentage_sig, i, patch_size)
  colnames(images) <- c("significant_images", "chemokine", "patch_size")
  
  # add to data.frame
  image_df <- rbind(image_df, images)
}
end = Sys.time()

print(end-start)
Time difference of 27.07411 mins

Visualize

dat <- image_df %>%
  reshape2::dcast(chemokine ~ patch_size, value.var = "significant_images", fill = 0)

rownames(dat) <- dat$chemokine
dat$chemokine <- NULL

m <- t(as.matrix(dat))

col_fun = viridis::inferno(100)

Heatmap(m,
        cluster_rows = FALSE,
        col = col_fun,
        column_title = "Self-Interaction",
        column_title_side = "bottom",
        show_row_names = TRUE,
        cell_fun = function(j, i, x, y, width, height, fill) {
          grid.text(sprintf("%.1f", m[i, j]), x, y, gp = gpar(fontsize = 15, col = "grey"))
          },
        heatmap_legend_param = list(
          title = "% Significant\nImages", at = c(0, 10, 20, 30, 40, 50),
          labels = c("0%", "10%", "20%", "30%","40%", "50%")),
        row_title = "Motif Size",
        row_names_side = "left",
        width = unit(15, "cm"),
        height = unit(8, "cm"))

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] parallel  grid      stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] cytomapper_1.6.0            EBImage_4.36.0             
 [3] unix_1.5.4                  neighbouRhood_0.4          
 [5] magrittr_2.0.2              dtplyr_1.2.1               
 [7] dendextend_1.15.2           rstatix_0.7.0              
 [9] ComplexHeatmap_2.10.0       ggpubr_0.4.0               
[11] ggpmisc_0.4.5               ggpp_0.4.3                 
[13] data.table_1.14.2           cowplot_1.1.1              
[15] gridExtra_2.3               dittoSeq_1.6.0             
[17] scater_1.22.0               scuttle_1.4.0              
[19] tidyr_1.2.0                 ggbeeswarm_0.6.0           
[21] ggplot2_3.3.5               SingleCellExperiment_1.16.0
[23] SummarizedExperiment_1.24.0 Biobase_2.54.0             
[25] GenomicRanges_1.46.1        GenomeInfoDb_1.30.1        
[27] IRanges_2.28.0              S4Vectors_0.32.3           
[29] BiocGenerics_0.40.0         MatrixGenerics_1.6.0       
[31] matrixStats_0.61.0          dplyr_1.0.7                
[33] workflowr_1.7.0            

loaded via a namespace (and not attached):
  [1] backports_1.4.1           circlize_0.4.13          
  [3] systemfonts_1.0.3         plyr_1.8.6               
  [5] sp_1.4-6                  shinydashboard_0.7.2     
  [7] BiocParallel_1.28.3       digest_0.6.29            
  [9] foreach_1.5.2             htmltools_0.5.2          
 [11] magick_2.7.3              viridis_0.6.2            
 [13] tiff_0.1-11               fansi_1.0.2              
 [15] ScaledMatrix_1.2.0        cluster_2.1.2            
 [17] doParallel_1.0.16         svgPanZoom_0.3.4         
 [19] svglite_2.0.0             jpeg_0.1-9               
 [21] colorspace_2.0-2          ggrepel_0.9.1            
 [23] xfun_0.29                 callr_3.7.0              
 [25] crayon_1.4.2              RCurl_1.98-1.5           
 [27] jsonlite_1.7.3            iterators_1.0.13         
 [29] glue_1.6.1                gtable_0.3.0             
 [31] zlibbioc_1.40.0           XVector_0.34.0           
 [33] MatrixModels_0.5-0        GetoptLong_1.0.5         
 [35] DelayedArray_0.20.0       car_3.0-12               
 [37] BiocSingular_1.10.0       Rhdf5lib_1.16.0          
 [39] shape_1.4.6               HDF5Array_1.22.1         
 [41] abind_1.4-5               SparseM_1.81             
 [43] scales_1.1.1              pheatmap_1.0.12          
 [45] DBI_1.1.2                 Rcpp_1.0.8               
 [47] xtable_1.8-4              viridisLite_0.4.0        
 [49] clue_0.3-60               rsvd_1.0.5               
 [51] htmlwidgets_1.5.4         httr_1.4.2               
 [53] RColorBrewer_1.1-2        ellipsis_0.3.2           
 [55] farver_2.1.0              pkgconfig_2.0.3          
 [57] sass_0.4.0                locfit_1.5-9.4           
 [59] utf8_1.2.2                labeling_0.4.2           
 [61] reshape2_1.4.4            tidyselect_1.1.1         
 [63] rlang_1.0.0               later_1.3.0              
 [65] munsell_0.5.0             tools_4.1.2              
 [67] cli_3.1.1                 generics_0.1.2           
 [69] broom_0.7.12              ggridges_0.5.3           
 [71] fftwtools_0.9-11          evaluate_0.14            
 [73] stringr_1.4.0             fastmap_1.1.0            
 [75] yaml_2.2.2                processx_3.5.2           
 [77] knitr_1.37                fs_1.5.2                 
 [79] purrr_0.3.4               sparseMatrixStats_1.6.0  
 [81] mime_0.12                 whisker_0.4              
 [83] quantreg_5.87             compiler_4.1.2           
 [85] rstudioapi_0.13           beeswarm_0.4.0           
 [87] png_0.1-7                 ggsignif_0.6.3           
 [89] tibble_3.1.6              bslib_0.3.1              
 [91] stringi_1.7.6             highr_0.9                
 [93] ps_1.6.0                  lattice_0.20-45          
 [95] Matrix_1.4-0              vctrs_0.3.8              
 [97] rhdf5filters_1.6.0        pillar_1.7.0             
 [99] lifecycle_1.0.1           jquerylib_0.1.4          
[101] GlobalOptions_0.1.2       BiocNeighbors_1.12.0     
[103] bitops_1.0-7              irlba_2.3.5              
[105] raster_3.5-15             httpuv_1.6.5             
[107] R6_2.5.1                  promises_1.2.0.1         
[109] vipor_0.4.5               codetools_0.2-18         
[111] assertthat_0.2.1          rhdf5_2.38.0             
[113] rprojroot_2.0.2           rjson_0.2.21             
[115] withr_2.4.3               GenomeInfoDbData_1.2.7   
[117] terra_1.5-17              beachmat_2.10.0          
[119] rmarkdown_2.11            DelayedMatrixStats_1.16.0
[121] carData_3.0-5             git2r_0.29.0             
[123] getPass_0.2-2             shiny_1.7.1