1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
use self::super::{ParseInstructionError, DisplayInstruction}; use self::super::super::super::util::limit_to_width; use self::super::super::GeneralPurposeRegisterBank; use std::convert::{TryFrom, From}; /// Instructions will increase the PC by one, unless otherwise stated. /// /// The PC is incremented as the instruction is loaded from RAM. /// /// An instruction is a single byte, and can include some following immediate values purely for data. /// /// /// It is possible that the PC will overflow and wrap around as you load an instruction, /// there is no hardware level protection or detection if this happens. /// /// An example of how this can happen is if you perform a jump to `0xFFFF`, /// as the instruction at `0xFFFF` is loaded, the PC would be incremented to `0x10000`, /// but as it's only 16 bits wide, it becomes just `0x0000`. /// /// /// The 'Bit Mask' shows a pattern which denotes an instruction or group of instructions, the letters denoting where any value /// can be used and still be considered part of the same instruction. /// /// The 'name' is for either a group or single instruction. /// /// 'Count' is how many of the 256 possible instructions are used by that bit pattern; /// HALT for example is exactly one instruction, whilst MOVE is effectively 64 possible combinations /// [this was added to help me keep track of how many operations I've defined, it should add up to 256]. /// /// Bit Mask | Name | Count | Description /// ----------|------|-------|------------ /// 000X XXXX | LOAD | 32 | Load, see section below /// 0010 0XXX | JUMP | 8 | Jump, see section below /// 0010 1RRR | SAVE | 8 | Store value in register `RRR` in address indicated by `ADR` /// 0011 XXXX | ALU | 16 | ALU based operations, see section below /// 01QQ QRRR | MOVE | 64 | Move a value from register `QQQ` to register `RRR` /// 10XX XXXX | | 64 | Reserved /// 1100 XXXX | | 16 | Reserved /// 1101 0XXX | | 8 | Reserved /// 1101 10XX | MADR | 4 | Move a value to/from the ADR register, see section below /// 1101 11XX | | 4 | Reserved /// 1110 XXXX | PORT | 16 | Perform I/O, see section below /// 1111 0RRR | COMP | 8 | Compare register S with register `RRR`, see section below /// 1111 10XX | STCK | 4 | Stack manipulation, see section below /// 1111 110X | | 2 | Reserved /// 1111 1110 | CLRF | 1 | Clear the F register, by setting it to `0000 0000` /// 1111 1111 | HALT | 1 | Stop the CPU from doing any more execution /// /// ## LOAD /// /// There are various types of load instruction, all under the same `000X XXXX` pattern. /// They may further increment the PC, as described in their relevant sub-sections. /// Some of the potential instruction patterns are simply reserved. /// /// The following table is a break down of possible LOAD instructions. /// If you consider load instruction pattern as `000M XXXX`, the `M` bit is `0` for single byte loads and `1` for multi-byte loads. /// /// Bit Mask | Load Type | Description /// ---------|----------------|------------ /// 0 0RRR | Byte immediate | Load the the next byte into register `RRR` /// 0 1RRR | From memory | Load the byte address by `ADR` into register `RRR` /// 1 00XX | Wide immediate | Load the the next two bytes into a register pair /// 1 01XX | | Reserved /// 1 1XXX | | Reserved /// /// ### Wide Immediate /// /// When performing a wide immediate load, two bytes are read from memory into a pair of registers, as indicated by the two /// bits `RR`. /// /// The first byte read (after the actual LOAD instruction itself) is loaded as the high byte, the second is the low byte; /// registers A, C and X are considered the 'high byte' for this purpose; /// if loading into ADR, the high/low bytes are loaded as the high/low byte of the address for ADR. /// /// RR | Registers /// ---|---------- /// 00 | A and B /// 01 | C and D /// 10 | X and Y /// 11 | ADR /// /// The PC is incremented twice more. /// /// ### Byte Immediate /// /// When performing a byte immediate load, the next byte (after this instruction) is read from memory into a register, /// as indicated by the bits `RRR`. /// /// The PC is incremented once more. /// /// ### From memory /// /// For loading from memory, the memory address to load from should have already been set in the ADR register and the /// instruction says what register to load into. /// /// The PC is not incremented any further. /// /// ## PORT - I/O /// /// The PORT instruction in the form `1110 DRRR` will perform I/O on the port specified in register A. /// /// The `D` bit specifies the direction; /// `1` for reading in from the port (PORT IN) and `0` for writing out to the port (PORT OUT). /// The `RRR` bits specify the register to write to (IN from the selected device) or read from (OUT to the selected device). /// /// It is possible to read a value form a selected device to the A register, via `1110 1100`, which then changes the selected device. /// This will be stable though, and would require a further such operation in order to for the device selection to change once more. /// The value is latched on the clock edge. /// /// **NB:** It is currently planned the data is be latched on the rising edge. /// The clock signal will also be exposed out for I/O device, though it may only be done so when the CPU is expecting to read/write. /// The control line to signify to I/O devices that they should read/write would also be exposed, but under what timings is not yet determined. /// /// ## COMP - Compare /// /// The compare instruction will compare the S register with a register selected by bits `RRR`. /// /// It will set the Zero and Parity flag based on the value of the S register; /// the Zero flag if all the bits are zero, Parity if the number of set bits is even. /// Parity if the number of set bits is even. /// /// Compare will set the Equal flag if the two registers have the same bit pattern. /// /// The Greater than flag is set if S is greater than the second register. /// /// Note that when doing a compare signed/unsigned is not taken into account, /// the two registers are treated as if they contain two unsigned values. /// /// **NB:** This might change to instead compare just the X and Y register. /// /// ## STCK - Stack Manipulation /// /// When dealing with the stack, a pair of registers will be moved to or from 'the stack' and the SP updated to reflect the /// changed address. /// /// The registers A and B are paired, as are the registers C and D. /// /// Effectively, the stack works on 16-bit values, but due to the 8-bit data bus it requires two transfers, /// though this is handled via the hardware/microcode. /// /// /// The Stack manipulation operations are of pattern `1111 10DR`. /// /// The `D` bit indicates the direction; /// `0` for PUSH and `1` for POP. /// /// The `R` bit indicates the register pair; /// `0` for A & B and `1` for C & D. /// /// /// When PUSHing B/D will go to the address one less than the current SP, whilst A/C will go to address two less than the SP. /// /// After PUSHing, the SP will have been decremented by two, with the SP containing the address of A/C (now in memory). /// /// When POPing, the same respective pairs of memory locations will be read to the same pair of registers, and the SP increased /// by two. /// /// Care must be taken, especially when POPing the stack, as there is no under/overflow protection or detection, /// just like with the PC incrementing during instruction execution. /// /// In fact, by design, POPing the final value from the stack will result in an overflow bringing the SP back to `0x0000`. /// /// In terms of pseudo-code, a PUSH followed by a POP can view as the following microcode, where SP is a pointer to the memory /// address: /// /// ```cpp /// // PUSH /// SP -= 1 /// *SP = B /// SP -= 1 /// *SP = A /// /// // POP /// A = *SP /// SP += 1 /// B = *SP /// SP += 1 /// ``` /// /// **NB:** I Think I might update this to allow pushing/popping the PC, this would make it very easy (hardware wise) to handle /// calling and returning functions /// /// ## MADR - ADR Register Manipulation /// /// The ADR register is a 16-bit register, it's value can be set/read to the general purpose registers. /// /// The registers A and B are paired, as are the registers C and D. /// /// Although still two distinct bytes, the A and C registers should be considered the more significant byte whilst B and D /// registers the lesser; /// the more significant byte will be stored at the lower address in the stack, the pair of registers are big-endian. /// /// /// These ADR manipulation operations are of pattern `0000 10DR`. /// /// The `D` bit indicates the direction; /// `0` for write-to and `1` for read-from the ADR register. /// /// The `R` bit indicates the register pair; /// `0` for A & B and `1` for C & D. #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum Instruction { /// Reserved instruction, contains the entire byte Reserved(u8), /// Load the the next byte into register `RRR` (PC will be incremented a second time), see section above LoadImmediateByte { rrr: u8, }, /// Load the the next two byte into register pair `RR` (PC will be incremented two more times), see section above LoadImmediateWide { rr: InstructionLoadImmediateWideRegisterPair, }, /// Load the byte at the address specified by `ADR` into register `RRR`, see section above LoadIndirect { rrr: u8, }, /// Jump, see member doc Jump(InstructionJumpCondition), /// Store value in register `RRR` in address indicated by the next two bytes (PC will be incremented two more times) Save { rrr: u8, }, /// ALU based operations, see member doc Alu(AluOperation), /// Move a value from register `QQQ` to register `RRR` Move { qqq: u8, rrr: u8, }, /// Manipulate ADR, see section above Madr { d: InstructionMadrDirection, r: InstructionRegisterPair, }, /// Perform I/O, see section above Port { d: InstructionPortDirection, rrr: u8, }, /// Compare register S with register `RRR`, see section above Comp { rrr: u8, }, /// Stack manipulation, see member doc Stck { d: InstructionStckDirection, r: InstructionRegisterPair, }, /// Clear the F register, by setting it to `0000 0000` Clrf, /// Stop the CPU from doing any more execution Halt, } impl Instruction { /// Check if this instruction doesn't use reserved space /// /// # Examples /// /// ``` /// # use pir_8_emu::isa::instruction::{AluOperation, Instruction}; /// assert!(Instruction::Clrf.is_valid()); /// assert!(Instruction::Alu(AluOperation::Or).is_valid()); /// /// assert!(!Instruction::Reserved(0).is_valid()); /// ``` pub fn is_valid(self) -> bool { match self { Instruction::Reserved(_) => false, _ => true, } } /// Get the amount of data bytes following this instruction /// /// # Examples /// /// ``` /// # use pir_8_emu::isa::instruction::{InstructionLoadImmediateWideRegisterPair, AluOperation, Instruction}; /// assert_eq!(Instruction::Clrf.data_length(), 0); /// assert_eq!(Instruction::Alu(AluOperation::Or).data_length(), 0); /// /// assert_eq!(Instruction::LoadImmediateByte { rrr: 0 }.data_length(), 1); /// assert_eq!(Instruction::LoadImmediateWide { rr: InstructionLoadImmediateWideRegisterPair::Ab }.data_length(), 2); /// ``` pub fn data_length(self) -> usize { match self { Instruction::LoadImmediateByte { .. } => 1, Instruction::LoadImmediateWide { .. } => 2, _ => 0, } } /// Get proxy object implementing `Display` for printing instructions in assembly format /// /// # Examples /// /// ``` /// # use pir_8_emu::isa::instruction::{InstructionStckDirection, InstructionRegisterPair, AluOperation, Instruction}; /// # use pir_8_emu::isa::GeneralPurposeRegister; /// # let registers = GeneralPurposeRegister::defaults(); /// assert_eq!(Instruction::Clrf.display(®isters).to_string(), /// "CLRF"); /// assert_eq!(Instruction::Alu(AluOperation::Or).display(®isters).to_string(), /// "ALU OR"); /// assert_eq!(Instruction::Stck { /// d: InstructionStckDirection::Push, /// r: InstructionRegisterPair::Cd, /// }.display(®isters).to_string(), /// "STCK PUSH C&D"); /// /// assert_eq!(Instruction::Reserved(0b1111_0000).display(®isters).to_string(), /// "0b1111_0000"); /// ``` pub fn display<'r, 's: 'r>(&'s self, registers: &'r GeneralPurposeRegisterBank) -> DisplayInstruction<'r> { DisplayInstruction { instr: self, registers: registers, } } /// Parse assembly instruction format /// /// The input string must be ASCII and contain no vertical whitespace /// /// # Examples /// /// ``` /// # use pir_8_emu::isa::instruction::{AluOperationShiftOrRotateDirection, AluOperationShiftOrRotateType, /// # InstructionJumpCondition, AluOperation, Instruction}; /// # use pir_8_emu::isa::GeneralPurposeRegister; /// # let registers = GeneralPurposeRegister::defaults(); /// assert_eq!(Instruction::from_str("JMPL", ®isters), /// Ok(Instruction::Jump(InstructionJumpCondition::Jmpl))); /// /// assert_eq!(Instruction::from_str("LOAD IND B", ®isters), /// Ok(Instruction::LoadIndirect { rrr: 0b101 })); /// /// assert_eq!(Instruction::from_str("ALU SOR RIGHT ASF", ®isters), /// Ok(Instruction::Alu(AluOperation::ShiftOrRotate { /// d: AluOperationShiftOrRotateDirection::Right, /// tt: AluOperationShiftOrRotateType::Asf, /// }))); /// ``` #[inline] pub fn from_str(s: &str, registers: &GeneralPurposeRegisterBank) -> Result<Instruction, ParseInstructionError> { Instruction::from_str_impl(s, registers) } } impl From<u8> for Instruction { fn from(raw: u8) -> Instruction { match ((raw & 0b1000_0000) != 0, (raw & 0b0100_0000) != 0, (raw & 0b0010_0000) != 0, (raw & 0b0001_0000) != 0, (raw & 0b0000_1000) != 0, (raw & 0b0000_0100) != 0, (raw & 0b0000_0010) != 0, (raw & 0b0000_0001) != 0) { (false, false, false, false, false, _, _, _) => Instruction::LoadImmediateByte { rrr: raw & 0b0000_0111 }, (false, false, false, false, true, _, _, _) => Instruction::LoadIndirect { rrr: raw & 0b0000_0111 }, (false, false, false, true, false, false, _, _) => { Instruction::LoadImmediateWide { rr: InstructionLoadImmediateWideRegisterPair::try_from(raw & 0b0000_0011) .expect("Wrong raw instruction slicing for LOAD IMM WIDE register pair parse"), } } (false, false, false, true, false, true, _, _) => Instruction::Reserved(raw), (false, false, false, true, true, _, _, _) => Instruction::Reserved(raw), (false, false, true, false, false, _, _, _) => { Instruction::Jump(InstructionJumpCondition::try_from(raw & 0b0000_1111).expect("Wrong raw instruction slicing for JUMP condition parse")) } (false, false, true, false, true, _, _, _) => Instruction::Save { rrr: raw & 0b0000_0111 }, (false, false, true, true, _, _, _, _) => { Instruction::Alu(AluOperation::try_from(raw & 0b0000_1111).expect("Wrong raw instruction slicing for ALU op parse")) } (false, true, _, _, _, _, _, _) => { Instruction::Move { qqq: (raw & 0b0011_1000) >> 3, rrr: raw & 0b0000_0111, } } (true, false, _, _, _, _, _, _) => Instruction::Reserved(raw), (true, true, false, false, _, _, _, _) => Instruction::Reserved(raw), (true, true, false, true, false, _, _, _) => Instruction::Reserved(raw), (true, true, false, true, true, false, d, r) => { Instruction::Madr { d: d.into(), r: r.into(), } } (true, true, false, true, true, true, _, _) => Instruction::Reserved(raw), (true, true, true, false, d, _, _, _) => { Instruction::Port { d: d.into(), rrr: raw & 0b0000_0111, } } (true, true, true, true, false, _, _, _) => Instruction::Comp { rrr: raw & 0b0000_0111 }, (true, true, true, true, true, false, d, r) => { Instruction::Stck { d: d.into(), r: r.into(), } } (true, true, true, true, true, true, false, _) => Instruction::Reserved(raw), (true, true, true, true, true, true, true, false) => Instruction::Clrf, (true, true, true, true, true, true, true, true) => Instruction::Halt, } } } impl Into<u8> for Instruction { fn into(self) -> u8 { match self { Instruction::Reserved(raw) => raw, Instruction::LoadImmediateByte { rrr } => 0b0000_0000 | 0b0_0000 | rrr, Instruction::LoadIndirect { rrr } => 0b0000_0000 | 0b0_1000 | rrr, Instruction::LoadImmediateWide { rr } => 0b0000_0000 | 0b1_0000 | (rr as u8), Instruction::Jump(cond) => 0b0010_0000 | (cond as u8), Instruction::Save { rrr } => 0b0010_1000 | rrr, Instruction::Alu(op) => { let op_b: u8 = op.into(); 0b0011_0000u8 | op_b } Instruction::Move { qqq, rrr } => 0b0100_0000 | (qqq << 3) | rrr, Instruction::Madr { d, r } => 0b1101_1000 | (d as u8) | (r as u8), Instruction::Port { d, rrr } => 0b1110_0000 | (d as u8) | rrr, Instruction::Comp { rrr } => 0b1111_0000 | rrr, Instruction::Stck { d, r } => 0b1111_1000 | (d as u8) | (r as u8), Instruction::Clrf => 0b1111_1110, Instruction::Halt => 0b1111_1111, } } } /// The `D` bit indicates the direction – `0` for write-to (`MADR WRITE`) and `1` for read-from (`MADR READ`) the `ADR` /// register. #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum InstructionMadrDirection { Write = 0b00, Read = 0b10, } impl From<bool> for InstructionMadrDirection { fn from(raw: bool) -> InstructionMadrDirection { match raw { false => InstructionMadrDirection::Write, true => InstructionMadrDirection::Read, } } } /// This Instruction takes a three bit operand indicating under what condition the jump should be performed. /// /// If the condition is met, the value of ADR is loaded into the PC. /// /// If the condition is not met, no further special action is taken; /// the PC would have already been incremented as part of loading the instruction. /// /// **NB:** The value of ADR must have been set with the desired target location prior to the JUMP instruction being performed. /// /// /// This table shows what combination of bits to the JUMP instruction check what flags and in what combination /// /// /// FFF | Name | Description /// ----|------|------------- /// 000 | JMPZ | Zero flag /// 001 | JMPP | Parity flag /// 010 | JMPG | NOT Zero AND Greater than flag (i.e. greater than) /// 011 | JMPC | Carry flag /// 100 | JMZG | Zero OR Greater than flags /// 101 | JMZL | Zero OR NOT Greater than flag /// 110 | JMPL | NOT Zero AND NOT Greater than flag (i.e. less than) /// 111 | JUMP | Unconditional Jump (always jumps) #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum InstructionJumpCondition { Jmpz = 0b000, Jmpp = 0b001, Jmpg = 0b010, Jmpc = 0b011, Jmzg = 0b100, Jmzl = 0b101, Jmpl = 0b110, Jump = 0b111, } impl TryFrom<u8> for InstructionJumpCondition { type Error = (); fn try_from(raw: u8) -> Result<InstructionJumpCondition, ()> { let nib = limit_to_width(raw, 3).ok_or(())?; Ok(match ((nib & 0b0100) != 0, (nib & 0b0010) != 0, (nib & 0b0001) != 0) { (false, false, false) => InstructionJumpCondition::Jmpz, (false, false, true) => InstructionJumpCondition::Jmpp, (false, true, false) => InstructionJumpCondition::Jmpg, (false, true, true) => InstructionJumpCondition::Jmpc, (true, false, false) => InstructionJumpCondition::Jmzg, (true, false, true) => InstructionJumpCondition::Jmzl, (true, true, false) => InstructionJumpCondition::Jmpl, (true, true, true) => InstructionJumpCondition::Jump, }) } } /// The `D` bit specifies the direction - `1` for reading in from the port (`PORT IN`) and `0` for writing out to the port /// (`PORT OUT`). #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum InstructionPortDirection { In = 0b1000, Out = 0b0000, } impl From<bool> for InstructionPortDirection { fn from(raw: bool) -> InstructionPortDirection { match raw { true => InstructionPortDirection::In, false => InstructionPortDirection::Out, } } } /// The `D` bit indicates the direction; `0` for PUSH and `1` for POP. #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum InstructionStckDirection { Push = 0b00, Pop = 0b10, } impl From<bool> for InstructionStckDirection { fn from(raw: bool) -> InstructionStckDirection { match raw { false => InstructionStckDirection::Push, true => InstructionStckDirection::Pop, } } } /// When performing a wide immediate load, two bytes are read from memory into a pair of registers, as indicated by the two /// bits `RR`. /// /// RR | Registers /// ---|---------- /// 00 | A and B /// 01 | C and D /// 10 | X and Y /// 11 | ADR #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum InstructionLoadImmediateWideRegisterPair { Ab = 0b00, Cd = 0b01, Xy = 0b10, Adr = 0b11, } impl TryFrom<u8> for InstructionLoadImmediateWideRegisterPair { type Error = (); fn try_from(raw: u8) -> Result<InstructionLoadImmediateWideRegisterPair, ()> { let nib = limit_to_width(raw, 2).ok_or(())?; Ok(match ((nib & 0b0010) != 0, (nib & 0b0001) != 0) { (false, false) => InstructionLoadImmediateWideRegisterPair::Ab, (false, true) => InstructionLoadImmediateWideRegisterPair::Cd, (true, false) => InstructionLoadImmediateWideRegisterPair::Xy, (true, true) => InstructionLoadImmediateWideRegisterPair::Adr, }) } } /// The `R` bit indicates the register pair; `0` for A & B and `1` for C & D. #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum InstructionRegisterPair { Ab = 0b0, Cd = 0b1, } impl From<bool> for InstructionRegisterPair { fn from(raw: bool) -> InstructionRegisterPair { match raw { false => InstructionRegisterPair::Ab, true => InstructionRegisterPair::Cd, } } } /// Any CPU instruction of the pattern `0011 FFFF` will invoke some function of the ALU. /// /// The four bits `FFFF` are the actual operation being performed by the ALU. /// /// The registers X and Y are used as inputs to the ALU (only X for unary operations), /// and the S register is used to store the result. /// /// /// ALU operations will also update the F register as noted. /// /// All will set the ZERO flag if the output (register S) is `0000 0000`. /// /// All will set the PARITY flag if the number of high bits are even in the S register. /// /// The ADD, SUB, ADDC, and SUBC operations will set the carry bit in F to carry out value from the adders. /// /// FFFF | Name | Count | Description /// -----|------|-------|------------ /// 0000 | ADD | 1 | Addition of register X and register Y /// 0001 | SUB | 1 | Subtraction of register Y from register X (X-Y) /// 0010 | ADDC | 1 | Addition of register X and register Y, using the carry bit from F (X+Y+C) /// 0011 | SUBC | 1 | Subtraction of register Y from register X (X-Y), using the carry bit from F (X-Y-C) /// 0100 | OR | 1 | Bitwise OR /// 0101 | XOR | 1 | Bitwise XOR /// 0110 | AND | 1 | Bitwise AND /// 0111 | NOT | 1 | Bitwise NOT (unary operation) /// 1DTT | | 8 | Shift or Rotate, see section below (unary operation) #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum AluOperation { /// Addition of register X and register Y Add, /// Subtraction of register Y from register X (X-Y) Sub, /// Addition of register X and register Y, using the carry bit from F AddC, /// Subtraction of register Y from register X (X-Y), using the carry bit from F SubC, /// Bitwise OR Or, /// Bitwise XOR Xor, /// Bitwise AND And, /// Bitwise NOT Not, /// Shift or Rotate, see member doc ShiftOrRotate { d: AluOperationShiftOrRotateDirection, tt: AluOperationShiftOrRotateType, }, } impl AluOperation { /// Perform the ALU operation on the specified operands /// /// Returns `0` and sets carry for reserved ops. /// /// # Examples /// /// ``` /// # use pir_8_emu::isa::instruction::{AluOperationShiftOrRotateDirection, AluOperationShiftOrRotateType, AluOperation}; /// assert_eq!(AluOperation::Or.perform(0b0001, 0b0100, &mut false), 0b0101); /// /// let mut carry = true; /// assert_eq!(AluOperation::ShiftOrRotate { /// d: AluOperationShiftOrRotateDirection::Left, /// tt: AluOperationShiftOrRotateType::Rtc, /// }.perform(0b0101_0000, 0, &mut carry), /// 0b1010_0001); /// assert_eq!(carry, false); /// /// let mut carry = false; /// assert_eq!(AluOperation::Add.perform(0b1001_0000, 0b1010_0101, &mut carry), /// 0b0011_0101); /// assert_eq!(carry, true); /// ``` #[inline] pub fn perform(self, lhs: u8, rhs: u8, carry: &mut bool) -> u8 { self.perform_impl(lhs, rhs, carry) } } impl TryFrom<u8> for AluOperation { type Error = (); fn try_from(raw: u8) -> Result<AluOperation, ()> { let nib = limit_to_width(raw, 4).ok_or(())?; Ok(match ((nib & 0b1000) != 0, (nib & 0b0100) != 0, (nib & 0b0010) != 0, (nib & 0b0001) != 0) { (false, false, false, false) => AluOperation::Add, (false, false, false, true) => AluOperation::Sub, (false, false, true, false) => AluOperation::AddC, (false, false, true, true) => AluOperation::SubC, (false, true, false, false) => AluOperation::Or, (false, true, false, true) => AluOperation::Xor, (false, true, true, false) => AluOperation::And, (false, true, true, true) => AluOperation::Not, (true, d, _, _) => { AluOperation::ShiftOrRotate { d: d.into(), tt: AluOperationShiftOrRotateType::try_from(nib & 0b0011).expect("Wrong raw instruction slicing for ALU Shift or Rotate Type parse"), } } }) } } impl Into<u8> for AluOperation { fn into(self) -> u8 { match self { AluOperation::Add => 0b0000, AluOperation::Sub => 0b0001, AluOperation::AddC => 0b0010, AluOperation::SubC => 0b0011, AluOperation::Or => 0b0100, AluOperation::Xor => 0b0101, AluOperation::And => 0b0110, AluOperation::Not => 0b0111, AluOperation::ShiftOrRotate { d, tt } => { let tt_b: u8 = tt.into(); 0b1000 | (d as u8) | tt_b } } } } /// If D is a `1`, the shift is to the left, all bits will move to a higher value, if D is `0`, it's a right shift, moving bits /// to lower values. #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum AluOperationShiftOrRotateDirection { Left = 0b100, Right = 0b000, } impl From<bool> for AluOperationShiftOrRotateDirection { fn from(raw: bool) -> AluOperationShiftOrRotateDirection { match raw { true => AluOperationShiftOrRotateDirection::Left, false => AluOperationShiftOrRotateDirection::Right, } } } /// All shifts can be performed left or right, as designated by the `D` bit of the instruction. /// /// If `D` is a `1`, the shift is to the left, all bits will move to a higher value, if `D` is `0`, /// it's a right shift, moving bits to lower values. /// /// There are then four types of shift that can be performed designated by the final two bits of the ALU /// instruction. /// /// The name should be appended with an L or R for the direction of the shift, left or right respectively. /// /// For all shift operations, the bit shifted out is set into the Carry flag. /// /// TT | Name | Description /// ---|------|------------ /// 00 | LSF | Logical shift - a zero is inserted /// 01 | ASF | Arithmetic shift - a zero is inserted for left shift, bit-7 (MSB) is inserted for right shift /// 10 | RTC | Rotate with carry - the Carry flag is inserted (Carry flag value before it is updated is used) /// 11 | RTW | Rotate without carry - the bit shifted out is inserted /// /// An example of a Arithmetic shift right; /// `AXXX XXXB` would become `AAXX XXXX`, with `B` copied to the Carry bit. /// /// **NB:** An 'Arithmetic shift left' is the same as performing a 'Logical shift left', they _can_ be used interchangeably, but /// 'Arithmetic shift left' should be avoided. #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum AluOperationShiftOrRotateType { /// Logical shift - a zero is inserted Lsf, /// Arithmetic shift - a zero is inserted for left shift, bit-8 is inserted for right shift Asf, /// Rotate with carry - the Carry flag is inserted (Carry flag value before it is updated is used) Rtc, /// Rotate without carry - the bit shifted out is is inserted Rtw, } impl TryFrom<u8> for AluOperationShiftOrRotateType { type Error = (); fn try_from(raw: u8) -> Result<AluOperationShiftOrRotateType, ()> { let nib = limit_to_width(raw, 2).ok_or(())?; Ok(match ((nib & 0b10) != 0, (nib & 0b01) != 0) { (false, false) => AluOperationShiftOrRotateType::Lsf, (false, true) => AluOperationShiftOrRotateType::Asf, (true, false) => AluOperationShiftOrRotateType::Rtc, (true, true) => AluOperationShiftOrRotateType::Rtw, }) } } impl Into<u8> for AluOperationShiftOrRotateType { fn into(self) -> u8 { match self { AluOperationShiftOrRotateType::Lsf => 0b00, AluOperationShiftOrRotateType::Asf => 0b01, AluOperationShiftOrRotateType::Rtc => 0b10, AluOperationShiftOrRotateType::Rtw => 0b11, } } }