Last updated: 2025-04-16
Checks: 6 1
Knit directory:
HairCort-Evaluation-Nist2020/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20241016) was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 4314cc8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish or
wflow_git_commit). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .RData
Ignored: .Rhistory
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: data/.DS_Store
Ignored: data/Test3/.DS_Store
Ignored: data/Test4/.DS_Store
Unstaged changes:
Modified: analysis/ELISA_Analysis_FinalVals_comparisons_test3_test4.Rmd
Modified: analysis/ELISA_Analysis_FinalVals_test4.Rmd
Modified: analysis/ELISA_Calc_FinalVals_test3.Rmd
Modified: analysis/ELISA_Calc_FinalVals_test4.Rmd
Modified: data/Test3/Data_cort_values_methodC.csv
Modified: data/Test4/Data_Cortisol_Processed.csv
Modified: data/Test4/Data_cort_values_methodB.csv
Modified: data/Test4/Data_cort_values_methodC.csv
Deleted: data/Test4/Data_cort_values_methodD.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/ELISA_Calc_FinalVals_test4.Rmd) and HTML
(docs/ELISA_Calc_FinalVals_test4.html) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote),
click on the hyperlinks in the table below to view the files as they
were in that past version.
| File | Version | Author | Date | Message |
|---|---|---|---|---|
| Rmd | 16ce91c | Paloma | 2025-04-10 | recalc_evaluations |
| html | 16ce91c | Paloma | 2025-04-10 | recalc_evaluations |
| html | bbb70a9 | Paloma | 2025-04-09 | comparing methods |
| Rmd | ccad031 | Paloma | 2025-04-09 | new_calc |
| html | ccad031 | Paloma | 2025-04-09 | new_calc |
| html | 77c2ab5 | Paloma | 2025-04-08 | cleaning test3 |
| Rmd | ced6eed | Paloma | 2025-04-03 | upd |
| html | ced6eed | Paloma | 2025-04-03 | upd |
| Rmd | ca6c804 | Paloma | 2025-04-03 | new calc final vals |
| html | ca6c804 | Paloma | 2025-04-03 | new calc final vals |
| Rmd | 528855b | Paloma | 2025-04-03 | new_calc |
| html | 528855b | Paloma | 2025-04-03 | new_calc |
Cortisol value calculations (includes bad quality samples, n = 41)
| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | NA’s | |
|---|---|---|---|---|---|---|---|
| A) Standard Method (mult. by sample dilution) | 17.13 | 29.01 | 32.27 | 35.28 | 39.47 | 82.94 | 4 |
| B) Spike-Corrected Method | -45.870 | -35.833 | -5.960 | -3.488 | 23.109 | 50.963 | 4 |
| C) Spike-Corrected (Sam’s Method) | 7.472 | 18.533 | 24.559 | 27.009 | 31.196 | 80.804 | 4 |
Cortisol value calculations (removed bad quality samples)
| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | NA’s | |
|---|---|---|---|---|---|---|---|
| A) Standard Method (mult. by sample dilution) | 18.27 | 29.27 | 31.54 | 34.13 | 37.73 | 69.17 | |
| B) Spike-Corrected Method | -39.371 | -34.855 | -20.577 | -14.325 | -6.825 | 40.400 | |
| C) Spike-Corrected (Sam’s Method) | 11.80 | 18.45 | 24.09 | 24.05 | 30.32 | 40.40 |
I calculated final cortisol values in pg/mg using the following key variables:
Ave_Conc_pg/ml: average ELISA reading per sample in pg/mL
Weight_mg: hair weight in mg
Buffer_nl: assay buffer volume in nL → we convert to mL
Spike: binary indicator (1 = spiked sample)
SpikeVol_uL: volume of spike added in µL
Dilution: dilution factor (already present)
Vol_in_well.tube_uL: total volume in well/tube in µL (for spike correction)
std: standard reading value
extraction: methanol volume ratio = vol added / vol recovered (e.g. 1/0.75 ml)
Results:
Intra-assay CV: 14.5%
Intra-assay CV after removing low quality samples: 10%
Inter-assay CV: 21%
(Bindings for 20mg sample diluted in 250 uL, no spike: 64.8% and 48% in test3 and test4, respectively)
Conclusions:
Concerns: Overall quality of the plate is not great, but serial dilusions show clear parallelism and standards have values within the expected
# set reading value of spike (std1, 0.333 ug/dL),
# and transforming to ug.dL
std <- (3191+3228)/2
std.r <- (std/10000)
std
[1] 3209.5
std.r
[1] 0.32095
# according to chatgpt, the spike's contribution is
# 1600 pg/mL, which is very similar to half of the reading for std 1 :]
Loading files and transforming units, including low quality data
df <- read.csv(file.path(data_path,"Data_QC_flagged.csv"))
kable(tail(df))
| Wells | Sample | Category | Weight_mg | Buffer_nl | Spike | SpikeVol_uL | Dilution_sample | Dilution_spike | Vol_in_well.tube_uL | Extraction_ratio | Raw.OD | Binding.Perc | Conc_pg.ml | Ave_Conc_pg.ml | CV.Perc | SD | SEM | CV_categ | Binding.Perc_categ | Failed_samples | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 77 | G11 | TP3A | P | 12 | 220 | 1 | 25 | 1 | 1 | 50 | 1.351351 | 0.258 | 23.2 | 2800 | 2792 | 0.391 | 10.9 | 7.71 | NA | NA | NA |
| 78 | H11 | TP3A | P | 12 | 220 | 1 | 25 | 1 | 1 | 50 | 1.351351 | 0.259 | NA | 2785 | NA | NA | NA | NA | NA | NA | NA |
| 79 | A12 | TP3B | P | 12 | 60 | 1 | 25 | 1 | 1 | 50 | 1.333333 | 0.195 | 15.5 | 4084 | 4210 | 4.230 | 178.0 | 126.00 | NA | UNDER 20% binding | UNDER 20% binding |
| 80 | B12 | TP3B | P | 12 | 60 | 1 | 25 | 1 | 1 | 50 | 1.333333 | 0.186 | NA | 4336 | NA | NA | NA | NA | NA | NA | NA |
| 81 | C12 | TP3C | P | 12 | 60 | 1 | 25 | 1 | 1 | 50 | 1.333333 | 0.186 | 13.9 | 4336 | 4661 | 9.870 | 460.0 | 325.00 | NA | UNDER 20% binding | UNDER 20% binding |
| 82 | D12 | TP3C | P | 12 | 60 | 1 | 25 | 1 | 1 | 50 | 1.333333 | 0.166 | NA | 4986 | NA | NA | NA | NA | NA | NA | NA |
# remove outlier
#df<- df[(df$Sample != "TP3A"),]
# Creating variables in indicated units
# dilution (buffer)
df$Buffer_ml <- c(df$Buffer_nl/1000)
df$Failed_samples[is.na(df$Failed_samples)] <- "OK"
table(df$Failed_samples)
ABOVE 80% binding HIGH CV HIGH CV;ABOVE 80% binding
4 2 7
HIGH CV;UNDER 20% binding OK UNDER 20% binding
1 60 8
df$Failed_samples[df$Failed_samples == "ABOVE 80% binding"] <- "Out of curve"
df$Failed_samples[df$Failed_samples == "HIGH CV;ABOVE 80% binding"] <- "High CV & Out of curve"
df$Failed_samples[df$Failed_samples == "HIGH CV;UNDER 20% binding"] <- "High CV & Out of curve"
df$Failed_samples[df$Failed_samples == "HIGH CV"] <- "High CV"
df$Failed_samples[df$Failed_samples == "UNDER 20% binding"] <- "Out of curve"
df$Failed_samples <- factor(
df$Failed_samples,
levels = c(
"OK",
"Out of curve",
"High CV",
"High CV & Out of curve"
)
)
# remove unnecessary information
data <- df %>%
dplyr::select(Wells, Sample, Category, Binding.Perc, Ave_Conc_pg.ml, Weight_mg, Buffer_ml, Spike, SpikeVol_uL, Dilution_sample, Dilution_spike, Extraction_ratio, Vol_in_well.tube_uL, Failed_samples)
# remove duplicates
data <- data[!is.na(data$Binding.Perc), ]
kable(tail(data, 10))
| Wells | Sample | Category | Binding.Perc | Ave_Conc_pg.ml | Weight_mg | Buffer_ml | Spike | SpikeVol_uL | Dilution_sample | Dilution_spike | Extraction_ratio | Vol_in_well.tube_uL | Failed_samples | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 63 | A10 | TD7 | D | 99.0 | 86.73 | 20 | 0.11 | 1 | 110 | 64 | 64 | 1.333333 | 220 | Out of curve |
| 65 | C10 | TP1A | P | 21.8 | 2986.00 | 6 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | OK |
| 67 | E10 | TP1B | P | 18.1 | 3820.00 | 6 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | High CV & Out of curve |
| 69 | G10 | TP1C*FAIL | P | 27.8 | 2242.00 | 6 | 0.06 | 1 | 25 | 1 | 1 | 1.851852 | 50 | OK |
| 71 | A11 | TP2A | P | 17.3 | 3793.00 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve |
| 73 | C11 | TP2B | P | 21.1 | 3101.00 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | OK |
| 75 | E11 | TP2C | P | 18.1 | 3634.00 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve |
| 77 | G11 | TP3A | P | 23.2 | 2792.00 | 12 | 0.22 | 1 | 25 | 1 | 1 | 1.351351 | 50 | OK |
| 79 | A12 | TP3B | P | 15.5 | 4210.00 | 12 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve |
| 81 | C12 | TP3C | P | 13.9 | 4661.00 | 12 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve |
dim(data)
[1] 41 14
Formula:
((A/B) * (C/D) * E * 10,000) = F
##################################
##### Calculate final values #####
##################################
# Transform to μg/dl from assay output
data$Ave_Conc_ug.dL <- c(data$Ave_Conc_pg.ml/10000)
data$Final_conc_pg.mg <- c(
((data$Ave_Conc_ug.dL) / data$Weight_mg) * # A/B *
data$Extraction_ratio * # C/D *
data$Buffer_ml * 10000 * data$Dilution_sample) # E * 10000
data <- data[order(data$Sample),]
write.csv(data, file.path(data_path, "Data_cort_values_methodA.csv"), row.names = F)
# summary for all samples
data <- data %>%
filter(!Sample %in% c("B0", "BE", "NSB", "POOL"))
dim(data)
[1] 37 16
summary(data$Final_conc_pg.mg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
17.13 29.01 32.27 35.28 39.47 82.94
# summary for good quality samples only
temp <- data %>%
filter(Failed_samples ==
"OK")
dim(temp)
[1] 18 16
summary(temp$Final_conc_pg.mg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
18.27 29.27 31.54 34.13 37.73 69.17
kable(tail(data, 7))
| Wells | Sample | Category | Binding.Perc | Ave_Conc_pg.ml | Weight_mg | Buffer_ml | Spike | SpikeVol_uL | Dilution_sample | Dilution_spike | Extraction_ratio | Vol_in_well.tube_uL | Failed_samples | Ave_Conc_ug.dL | Final_conc_pg.mg | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 31 | G10 | TP1C*FAIL | P | 27.8 | 2242 | 6 | 0.06 | 1 | 25 | 1 | 1 | 1.851852 | 50 | OK | 0.2242 | 41.51852 |
| 32 | A11 | TP2A | P | 17.3 | 3793 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.3793 | 33.71556 |
| 33 | C11 | TP2B | P | 21.1 | 3101 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | OK | 0.3101 | 27.56444 |
| 34 | E11 | TP2C | P | 18.1 | 3634 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.3634 | 32.30222 |
| 35 | G11 | TP3A | P | 23.2 | 2792 | 12 | 0.22 | 1 | 25 | 1 | 1 | 1.351351 | 50 | OK | 0.2792 | 69.17117 |
| 36 | A12 | TP3B | P | 15.5 | 4210 | 12 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.4210 | 28.06667 |
| 37 | C12 | TP3C | P | 13.9 | 4661 | 12 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.4661 | 31.07333 |
We followed the procedure described in Nist et al. 2020:
“Thus, after pipetting 25μL of standards and samples into the appropriate wells of the 96-well assay plate, we added 25μL of the 0.333ug/dL standard to all samples, resulting in a 1:2 dilution of samples. The remainder of the manufacturer’s protocol was unchanged. We analyzed the assay plate in a Powerwave plate reader (BioTek, Winooski, VT) at 450nm and subtracted background values from all assay wells. In the calculations, we subtracted the 0.333ug/dL standard reading from the sample readings. Samples that resulted in a negative number were considered nondetectable. We converted cortisol levels from ug/dL, as measured by the assay, to pg/mg—based on the mass of hair collected and analyzed using the following formula:
A/B * C/D * E * 10,000 * 2 = F
where - A = μg/dl from assay output; - B = weight (in mg) of collected hair; - C = vol. (in ml) of methanol added to the powdered hair; - D = vol. (in ml) of methanol recovered from the extract and subsequently dried down; - E = vol. (in ml) of assay buffer used to reconstitute the dried extract; 10,000 accounts for changes in metrics; 2 accounts for the dilution factor after addition of the spike; and - F = final value of hair cortisol concentration in pg/mg”
dSpike <- data
##################################
##### Calculate final values #####
##################################
# spike is already divided by 10000 (unit is ug/dL)
dSpike$Final_conc_pg.mg <-
ifelse(
dSpike$Spike == 1, ## Only spiked samples
((dSpike$Ave_Conc_ug.dL - (std.r)) / # (A-spike) / B
dSpike$Weight_mg)
* data$Extraction_ratio * # C / D
dSpike$Buffer_ml * 10000 * 2, # E * 10000 * 2
dSpike$Final_conc_pg.mg
)
write.csv(dSpike, file.path(data_path, "Data_cort_values_methodB.csv"), row.names = F)
# summary for all samples
summary(dSpike$Final_conc_pg.mg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-45.870 -35.833 -5.960 -3.488 23.109 50.963
dSpike$Sample
[1] "TA1" "TA2" "TA3" "TA4" "TA5" "TA6"
[7] "TA7" "TB1" "TB2" "TB3" "TB4" "TB5"
[13] "TB6" "TB7" "TC1" "TC2" "TC3" "TC4"
[19] "TC5" "TC6" "TC7" "TD1" "TD2" "TD3"
[25] "TD4" "TD5" "TD6" "TD7" "TP1A" "TP1B"
[31] "TP1C*FAIL" "TP2A" "TP2B" "TP2C" "TP3A" "TP3B"
[37] "TP3C"
# summary for all samples
dSpike <- dSpike %>%
filter(!Sample %in% c("B0", "BE", "NSB", "POOL"))
dim(dSpike)
[1] 37 16
summary(dSpike$Final_conc_pg.mg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-45.870 -35.833 -5.960 -3.488 23.109 50.963
# summary for good quality samples only
temp <- dSpike %>%
filter(Failed_samples ==
"OK")
dim(temp)
[1] 18 16
summary(temp$Final_conc_pg.mg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-39.371 -34.855 -20.577 -14.325 -6.825 40.400
kable(tail(dSpike, 10))
| Wells | Sample | Category | Binding.Perc | Ave_Conc_pg.ml | Weight_mg | Buffer_ml | Spike | SpikeVol_uL | Dilution_sample | Dilution_spike | Extraction_ratio | Vol_in_well.tube_uL | Failed_samples | Ave_Conc_ug.dL | Final_conc_pg.mg | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 28 | A10 | TD7 | D | 99.0 | 86.73 | 20 | 0.11 | 1 | 110 | 64 | 64 | 1.333333 | 220 | Out of curve | 0.008673 | -45.800627 |
| 29 | C10 | TP1A | P | 21.8 | 2986.00 | 6 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | OK | 0.298600 | -5.960000 |
| 30 | E10 | TP1B | P | 18.1 | 3820.00 | 6 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | High CV & Out of curve | 0.382000 | 16.280000 |
| 31 | G10 | TP1C*FAIL | P | 27.8 | 2242.00 | 6 | 0.06 | 1 | 25 | 1 | 1 | 1.851852 | 50 | OK | 0.224200 | -35.833333 |
| 32 | A11 | TP2A | P | 17.3 | 3793.00 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.379300 | 10.373333 |
| 33 | C11 | TP2B | P | 21.1 | 3101.00 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | OK | 0.310100 | -1.928889 |
| 34 | E11 | TP2C | P | 18.1 | 3634.00 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.363400 | 7.546667 |
| 35 | G11 | TP3A | P | 23.2 | 2792.00 | 12 | 0.22 | 1 | 25 | 1 | 1 | 1.351351 | 50 | OK | 0.279200 | -20.686937 |
| 36 | A12 | TP3B | P | 15.5 | 4210.00 | 12 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.421000 | 13.340000 |
| 37 | C12 | TP3C | P | 13.9 | 4661.00 | 12 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.466100 | 19.353333 |
Simplify unnecessary unit transformations
Account for spike considering dilution of both sample and the spike
Spike contribution (pg/mL) = (Vol. spike (mL) x Conc. spike (pg/mL) ) / Vol. reconstitution (mL) or total vol. in well (50uL) (depending on where the spike was added)
# Calculate contribution of spike according to the different volumes in which it was added
# Consider that contribution of spike in serial dilutions gets smaller
# Vol. of spike transformed to mL
data$SpikeVol_ml <- data$SpikeVol_uL/1000
# Concentration of the spike:
std
[1] 3209.5
# Vol. reconstitution (mL) is the total volume in tube or well (sample + spike), after adding spike.
# transform to mL
data$Vol_in_well.tube_ml <- data$Vol_in_well.tube_uL/1000
##( Spike vol. x Spike Conc.)
## ------------------------ / dilution = Spike contribution
## Total vol.
# Cortisol added by spike in wells: 0.0025 mL x 3200 pg/mL = 80 pg
# Calculate cort contribution of spike to each sample
data$Spike.cont_pg.mL <- ((data$SpikeVol_ml * std / # Volume of spike * Spike concentration
data$Vol_in_well.tube_ml) / # divided by the total volume (spike + sample)
data$Dilution_spike) # resulting number changes depending on the dilution
dSpiked <- data
##################################
##### Calculate final values #####
##################################
dSpiked$Final_conc_pg.mg <-
(((dSpiked$Ave_Conc_pg.ml - dSpiked$Spike.cont_pg.mL)) / # (A - spike) / B
dSpiked$Weight_mg) *
dSpiked$Extraction_ratio * # C / D
dSpiked$Buffer_ml * dSpiked$Dilution_sample # E *
write.csv(dSpiked, file.path(data_path, "Data_cort_values_methodC.csv"), row.names = F)
# summary for all samples
dSpiked <- dSpiked %>%
filter(!Sample %in% c("B0", "BE", "NSB", "POOL"))
dim(dSpiked)
[1] 37 19
summary(dSpiked$Final_conc_pg.mg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.472 18.533 24.559 27.009 31.196 80.804
# summary for good quality samples only
temp <- dSpiked %>%
filter(Failed_samples ==
"OK")
dim(temp)
[1] 18 19
summary(temp$Final_conc_pg.mg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
11.80 18.45 24.09 24.05 30.32 40.40
kable(tail(dSpike, 10))
| Wells | Sample | Category | Binding.Perc | Ave_Conc_pg.ml | Weight_mg | Buffer_ml | Spike | SpikeVol_uL | Dilution_sample | Dilution_spike | Extraction_ratio | Vol_in_well.tube_uL | Failed_samples | Ave_Conc_ug.dL | Final_conc_pg.mg | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 28 | A10 | TD7 | D | 99.0 | 86.73 | 20 | 0.11 | 1 | 110 | 64 | 64 | 1.333333 | 220 | Out of curve | 0.008673 | -45.800627 |
| 29 | C10 | TP1A | P | 21.8 | 2986.00 | 6 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | OK | 0.298600 | -5.960000 |
| 30 | E10 | TP1B | P | 18.1 | 3820.00 | 6 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | High CV & Out of curve | 0.382000 | 16.280000 |
| 31 | G10 | TP1C*FAIL | P | 27.8 | 2242.00 | 6 | 0.06 | 1 | 25 | 1 | 1 | 1.851852 | 50 | OK | 0.224200 | -35.833333 |
| 32 | A11 | TP2A | P | 17.3 | 3793.00 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.379300 | 10.373333 |
| 33 | C11 | TP2B | P | 21.1 | 3101.00 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | OK | 0.310100 | -1.928889 |
| 34 | E11 | TP2C | P | 18.1 | 3634.00 | 9 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.363400 | 7.546667 |
| 35 | G11 | TP3A | P | 23.2 | 2792.00 | 12 | 0.22 | 1 | 25 | 1 | 1 | 1.351351 | 50 | OK | 0.279200 | -20.686937 |
| 36 | A12 | TP3B | P | 15.5 | 4210.00 | 12 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.421000 | 13.340000 |
| 37 | C12 | TP3C | P | 13.9 | 4661.00 | 12 | 0.06 | 1 | 25 | 1 | 1 | 1.333333 | 50 | Out of curve | 0.466100 | 19.353333 |
kable(head(dSpiked[!is.na(dSpiked$Final_conc_pg.mg) , c("Sample", "Final_conc_pg.mg", "Ave_Conc_pg.ml", "Spike.cont_pg.mL", "Binding.Perc", "Weight_mg", "Buffer_ml", "SpikeVol_uL", "Dilution_sample", "Dilution_spike", "Vol_in_well.tube_uL", "Extraction_ratio")],10))
| Sample | Final_conc_pg.mg | Ave_Conc_pg.ml | Spike.cont_pg.mL | Binding.Perc | Weight_mg | Buffer_ml | SpikeVol_uL | Dilution_sample | Dilution_spike | Vol_in_well.tube_uL | Extraction_ratio |
|---|---|---|---|---|---|---|---|---|---|---|---|
| TA1 | 31.19595 | 4617.00 | 0.0000 | 14.0 | 50 | 0.25 | 0 | 1 | 1 | 50 | 1.351351 |
| TA2 | 39.47297 | 2921.00 | 0.0000 | 22.4 | 50 | 0.25 | 0 | 2 | 1 | 50 | 1.351351 |
| TA3 | 30.62162 | 1133.00 | 0.0000 | 44.3 | 50 | 0.25 | 0 | 4 | 1 | 50 | 1.351351 |
| TA4 | 40.40000 | 747.40 | 0.0000 | 55.2 | 50 | 0.25 | 0 | 8 | 1 | 50 | 1.351351 |
| TA5 | 38.09730 | 352.40 | 0.0000 | 74.1 | 50 | 0.25 | 0 | 16 | 1 | 50 | 1.351351 |
| TA6 | 48.86486 | 226.00 | 0.0000 | 84.2 | 50 | 0.25 | 0 | 32 | 1 | 50 | 1.351351 |
| TA7 | 26.86703 | 62.13 | 0.0000 | 103.0 | 50 | 0.25 | 0 | 64 | 1 | 50 | 1.351351 |
| TB1 | 32.28152 | 5134.00 | 291.7727 | 12.3 | 50 | 0.25 | 25 | 1 | 1 | 275 | 1.333333 |
| TB2 | 31.23367 | 2503.00 | 160.4750 | 25.5 | 50 | 0.25 | 25 | 2 | 2 | 250 | 1.333333 |
| TB3 | 26.87367 | 1088.00 | 80.2375 | 45.3 | 50 | 0.25 | 25 | 4 | 4 | 250 | 1.333333 |

Wells Sample Category Binding.Perc Ave_Conc_pg.ml Weight_mg Buffer_ml Spike
1 C3 TA1 A 14.0 4617.0 50 0.25 No
2 E3 TA2 A 22.4 2921.0 50 0.25 No
3 G3 TA3 A 44.3 1133.0 50 0.25 No
4 A4 TA4 A 55.2 747.4 50 0.25 No
5 C4 TA5 A 74.1 352.4 50 0.25 No
6 E4 TA6 A 84.2 226.0 50 0.25 No
SpikeVol_uL Dilution_sample Dilution_spike Extraction_ratio
1 0 1 1 1.351351
2 0 2 1 1.351351
3 0 4 1 1.351351
4 0 8 1 1.351351
5 0 16 1 1.351351
6 0 32 1 1.351351
Vol_in_well.tube_uL Failed_samples Ave_Conc_ug.dL Final_conc_pg.mg
1 50 Out of curve 0.46170 31.19595
2 50 High CV 0.29210 39.47297
3 50 OK 0.11330 30.62162
4 50 OK 0.07474 40.40000
5 50 OK 0.03524 38.09730
6 50 High CV & Out of curve 0.02260 48.86486
Buffer
1 250 uL
2 250 uL
3 250 uL
4 250 uL
5 250 uL
6 250 uL

ggplot(dSpiked, aes(y = Final_conc_pg.mg,
x = Spike.cont_pg.mL,
color = (Failed_samples))) +
# fill = factor(Spike.cont_pg.mL))) +
geom_point(size = 2.5) +
geom_text(label = c(dSpiked$Sample), nudge_y = 0.95, nudge_x = -1.2) +
# geom_hline(yintercept = mean(data$Final_conc_pg.mg),
# color = "gray80",
# linetype = "dashed") +
theme_minimal() +
labs(
title = "Final Cort Concentration and Contribution of spike",
y = "Final Concentration (pg/mg)",
x = "Contribution of spike (pg/ml)"
) +
theme(
plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
axis.title = element_text(size = 14),
axis.text = element_text(size = 12)
)

sessionInfo()
R version 4.4.3 (2025-02-28)
Platform: aarch64-apple-darwin20
Running under: macOS Sequoia 15.4
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/Detroit
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] dplyr_1.1.4 paletteer_1.6.0 broom_1.0.7 ggplot2_3.5.1
[5] knitr_1.49
loaded via a namespace (and not attached):
[1] sass_0.4.9 utf8_1.2.4 generics_0.1.3 tidyr_1.3.1
[5] prismatic_1.1.2 stringi_1.8.4 digest_0.6.37 magrittr_2.0.3
[9] evaluate_1.0.1 grid_4.4.3 fastmap_1.2.0 rprojroot_2.0.4
[13] workflowr_1.7.1 jsonlite_1.8.9 whisker_0.4.1 backports_1.5.0
[17] rematch2_2.1.2 promises_1.3.0 purrr_1.0.2 fansi_1.0.6
[21] scales_1.3.0 jquerylib_0.1.4 cli_3.6.3 rlang_1.1.4
[25] munsell_0.5.1 withr_3.0.2 cachem_1.1.0 yaml_2.3.10
[29] tools_4.4.3 colorspace_2.1-1 httpuv_1.6.15 vctrs_0.6.5
[33] R6_2.5.1 lifecycle_1.0.4 git2r_0.35.0 stringr_1.5.1
[37] fs_1.6.5 pkgconfig_2.0.3 pillar_1.9.0 bslib_0.8.0
[41] later_1.3.2 gtable_0.3.6 glue_1.8.0 Rcpp_1.0.13-1
[45] xfun_0.49 tibble_3.2.1 tidyselect_1.2.1 rstudioapi_0.17.1
[49] farver_2.1.2 htmltools_0.5.8.1 rmarkdown_2.29 labeling_0.4.3
[53] compiler_4.4.3