Last updated: 2021-09-17

Checks: 6 1

Knit directory: femNATCD_MethSeq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210128) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e3b7fcf. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/figure/
    Ignored:    code/.Rhistory
    Ignored:    data/Epicounts.csv
    Ignored:    data/Epimeta.csv
    Ignored:    data/Epitpm.csv
    Ignored:    data/KangUnivers.txt
    Ignored:    data/Kang_DataPreprocessing.RData
    Ignored:    data/Kang_dataset_genesMod_version2.txt
    Ignored:    data/PatMeta.csv
    Ignored:    data/ProcessedData.RData
    Ignored:    data/RTrawdata/
    Ignored:    data/SNPCommonFilt.csv
    Ignored:    data/femNAT_PC20.txt
    Ignored:    output/BrainMod_Enrichemnt.pdf
    Ignored:    output/Brain_Module_Heatmap.pdf
    Ignored:    output/DMR_Results.csv
    Ignored:    output/GOres.xlsx
    Ignored:    output/LME_GOplot.pdf
    Ignored:    output/LME_Results.csv
    Ignored:    output/LME_Results_Sig.csv
    Ignored:    output/LME_tophit.svg
    Ignored:    output/ProcessedData.RData
    Ignored:    output/RNAvsMETplots.pdf
    Ignored:    output/Regions_GOplot.pdf
    Ignored:    output/ResultsgroupComp.txt
    Ignored:    output/SEM_summary_groupEpi_M15.txt
    Ignored:    output/SEM_summary_groupEpi_M2.txt
    Ignored:    output/SEM_summary_groupEpi_M_all.txt
    Ignored:    output/SEM_summary_groupEpi_TopHit.txt
    Ignored:    output/SEM_summary_groupEpi_all.txt
    Ignored:    output/SEMplot_Epi_M15.html
    Ignored:    output/SEMplot_Epi_M15.png
    Ignored:    output/SEMplot_Epi_M15_files/
    Ignored:    output/SEMplot_Epi_M2.html
    Ignored:    output/SEMplot_Epi_M2.png
    Ignored:    output/SEMplot_Epi_M2_files/
    Ignored:    output/SEMplot_Epi_M_all.html
    Ignored:    output/SEMplot_Epi_M_all.png
    Ignored:    output/SEMplot_Epi_M_all_files/
    Ignored:    output/SEMplot_Epi_TopHit.html
    Ignored:    output/SEMplot_Epi_TopHit.png
    Ignored:    output/SEMplot_Epi_TopHit_files/
    Ignored:    output/SEMplot_Epi_all.html
    Ignored:    output/SEMplot_Epi_all.png
    Ignored:    output/SEMplot_Epi_all_files/
    Ignored:    output/barplots.pdf
    Ignored:    output/circos_DMR_tags.svg
    Ignored:    output/circos_LME_tags.svg
    Ignored:    output/clinFact.RData
    Ignored:    output/dds_filt_analyzed.RData
    Ignored:    output/designh0.RData
    Ignored:    output/designh1.RData
    Ignored:    output/envFact.RData
    Ignored:    output/functional_Enrichemnt.pdf
    Ignored:    output/gostres.pdf
    Ignored:    output/modelFact.RData
    Ignored:    output/resdmr.RData
    Ignored:    output/resultsdmr_table.RData
    Ignored:    output/table1_filtered.Rmd
    Ignored:    output/table1_filtered.docx
    Ignored:    output/table1_unfiltered.Rmd
    Ignored:    output/table1_unfiltered.docx
    Ignored:    setup_built.R

Unstaged changes:
    Modified:   analysis/03_01_Posthoc_analyses_Gene_Enrichment.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/03_01_Posthoc_analyses_Gene_Enrichment.Rmd) and HTML (docs/03_01_Posthoc_analyses_Gene_Enrichment.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd e3b7fcf achiocch 2021-09-17 adds new build
html e3b7fcf achiocch 2021-09-17 adds new build
html b497cc9 achiocch 2021-09-17 Build site.
Rmd 2047ac2 achiocch 2021-09-17 wflow_publish(c(“analysis/", "code/”, "docs/*"))
Rmd fd80c2d achiocch 2021-09-16 adds SEM improvments
html fd80c2d achiocch 2021-09-16 adds SEM improvments
html ccbc9e4 achiocch 2021-08-10 Build site.
Rmd 723a1aa achiocch 2021-08-09 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 70cd649 achiocch 2021-08-06 Build site.
Rmd 611ca24 achiocch 2021-08-06 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 2a53a87 achiocch 2021-08-06 Build site.
Rmd e4425b8 achiocch 2021-08-06 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html e3a9ae3 achiocch 2021-08-04 Build site.
Rmd 3979990 achiocch 2021-08-04 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html f6bbdc0 achiocch 2021-08-04 Build site.
Rmd 1a30b73 achiocch 2021-08-04 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 1a30b73 achiocch 2021-08-04 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 710904a achiocch 2021-08-03 Build site.
Rmd 16112c3 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, “docs/”))
html 16112c3 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, “docs/”))
html cde8384 achiocch 2021-08-03 Build site.
Rmd d3629d5 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html d3629d5 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html d761be4 achiocch 2021-07-31 Build site.
Rmd b452d2f achiocch 2021-07-30 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html b452d2f achiocch 2021-07-30 wflow_publish(c(“analysis/", "code/”, "docs/*"))
Rmd 1a9f36f achiocch 2021-07-30 reviewed analysis
html 2734c4e achiocch 2021-05-08 Build site.
html a847823 achiocch 2021-05-08 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 9cc52f7 achiocch 2021-05-08 Build site.
html 158d0b4 achiocch 2021-05-08 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 0f262d1 achiocch 2021-05-07 Build site.
html 5167b90 achiocch 2021-05-07 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 05aac7f achiocch 2021-04-23 Build site.
Rmd 5f070a5 achiocch 2021-04-23 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html f5c5265 achiocch 2021-04-19 Build site.
Rmd dc9e069 achiocch 2021-04-19 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html dc9e069 achiocch 2021-04-19 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 17f1eec achiocch 2021-04-10 Build site.
Rmd 4dee231 achiocch 2021-04-10 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 91de221 achiocch 2021-04-05 Build site.
Rmd b6c6b33 achiocch 2021-04-05 updated GO function, and model def
html 4ea1bba achiocch 2021-02-25 Build site.
Rmd 6c21638 achiocch 2021-02-25 wflow_publish(c(“analysis/", "code/”, "docs/*"), update = F)
html 6c21638 achiocch 2021-02-25 wflow_publish(c(“analysis/", "code/”, "docs/*"), update = F)

Home = getwd()

Sensitivity Analyses

Sensitivity EWAS

including SES

collector=data.frame(originalP=results_Deseq$pvalue,
                     originall2FC=results_Deseq$log2FoldChange)

rownames(collector)=paste0("Epi", 1:nrow(collector))

parm="EduPar"

workingcopy = dds_filt
workingcopy=workingcopy[,as.vector(!is.na(colData(dds_filt)[parm]))]
modelpar=as.character(design(dds_filt))[2]
tmpmod=gsub("0", paste0("~ 0 +",parm), modelpar)
tmpmod=gsub("int_dis \\+", "", tmpmod)

modelpar=as.formula(tmpmod)
design(workingcopy) = modelpar

workingcopy = DESeq(workingcopy, parallel = T)
parmres=results(workingcopy)

collector[,paste0(parm,"P")] = parmres$pvalue
collector[,paste0(parm,"l2FC")] = parmres$log2FoldChange

idx=collector$originalP<=thresholdp
idx=collector[,paste0(parm,"P")]<=thresholdp

table(collector$originalP<=thresholdp, collector[paste0(parm,"P")]<=thresholdp) %>% fisher.test()

cor.test(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx],
         method = "spearman")

qqplot(y=-log10(collector[,paste0(parm,"P")]), 
       x = -log(runif(nrow(collector))), xlim=c(0,12),ylim=c(0,12),
       col="gray", ylab="", xlab="")
par(new=T)
qqplot(y=-log10(collector$originalP), 
       x = -log(runif(nrow(collector))),xlim=c(0,12),ylim=c(0,12),
       xlab="expected",ylab="observed")
abline(0,1,col="red")
legend("topleft", pch=1, col=c("black", "gray"), legend=c("original", parm))


plot(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx], pch=16, 
     main="log 2 foldchange", ylab=parm, xlab="original")

excluding int_dis

### excluding int_dist

modelpar=as.character(design(dds_filt))[2]
modelpar=as.formula(paste("~",gsub("int_dis +", "", modelpar)))

design(workingcopy) = modelpar

workingcopy = DESeq(workingcopy, parallel=T)
parmres=results(workingcopy)

parm="wo.int.dis"
collector[,paste0(parm,"P")] = parmres$pvalue
collector[,paste0(parm,"l2FC")] = parmres$log2FoldChange

idx=collector$originalP<=thresholdp
idx=collector[,paste0(parm,"P")]<=thresholdp

table(collector$originalP<=thresholdp, collector[paste0(parm,"P")]<=thresholdp) %>% fisher.test()

cor.test(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx],
         method = "spearman")

qqplot(y=-log10(collector[,paste0(parm,"P")]), 
       x = -log(runif(nrow(collector))), xlim=c(0,12),ylim=c(0,12),
       col="gray", ylab="", xlab="")
par(new=T)
qqplot(y=-log10(collector$originalP), 
       x = -log(runif(nrow(collector))),xlim=c(0,12),ylim=c(0,12),
       xlab="expected",ylab="observed")
abline(0,1,col="red")
legend("topleft", pch=1, col=c("black", "gray"), legend=c("original", parm))


plot(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx], pch=16, 
     main="log 2 foldchange", ylab=parm, xlab="original")

Sensitivity main hit

For the most significant tag of interest (5’ of the SLITRK5 gene), we tested if the group effect is stable if correcting for Ethnicity (PC1-PC4) or CD associated environmental risk factors.

tophit=which.min(results_Deseq$padj)
methdata=log2_cpm[tophit,]
Probdat=as.data.frame(colData(dds_filt))
Probdat$topHit=methdata[rownames(Probdat)]


model0=as.character(design(dds_filt))[2]
model0=as.formula(gsub("0 +", "topHit ~ 0 + ", model0))

lmres=lm(model0, data=Probdat)
lmrescoeff = as.data.frame(coefficients(summary(lmres)))

totestpar=c("site","PC_1", "PC_2", "PC_3", "PC_4", envFact)

ressens=data.frame(matrix(nrow = length(totestpar)+1, ncol=c(3)))
colnames(ressens) = c("beta", "se", "p.value")
rownames(ressens) = c("original", totestpar)

ressens["original",] = lmrescoeff["groupCD", c("Estimate", "Std. Error", "Pr(>|t|)")]

for( parm in totestpar){
  modelpar=as.character(design(dds_filt))[2]
  modelpar=as.formula(gsub("0", paste0("topHit ~ 0 +",parm), modelpar))
  lmres=lm(modelpar, data=Probdat)
  lmrescoeff = as.data.frame(coefficients(summary(lmres)))
  ressens[parm,] = lmrescoeff["groupCD", c("Estimate", "Std. Error", "Pr(>|t|)")] 
}

modelpar=as.character(design(dds_filt))[2]
modelpar=as.formula(gsub("int_dis +", "", gsub("0", "topHit ~ 0", modelpar)))

lmres=lm(modelpar, data=Probdat)
lmrescoeff = as.data.frame(coefficients(summary(lmres)))
ressens["w/o_int_dis",] = lmrescoeff["groupCD", c("Estimate", "Std. Error", "Pr(>|t|)")] 


a = barplot(height = ressens$beta, 
            ylim=rev(range(c(0,ressens$beta-ressens$se)))*1.3, 
            names.arg = rownames(ressens), col=Set3, border = NA, las=3, 
            ylab="beta[se]", main="Effect sensitvity analysis")

arrows(a,ressens$beta, a, ressens$beta+ressens$se, angle = 90, length = 0.1)
arrows(a,ressens$beta, a, ressens$beta-ressens$se, angle = 90, length = 0.1)

text(a, min(ressens$beta-ressens$se)*1.15, 
     formatC(ressens$p.value), cex=0.6, srt=90)

All models are corrected for:
site, Age, Pubstat, int_dis, medication, contraceptives, cigday_1,
site is included as random effect.

original: model defined as 0 + +Age + int_dis + medication + contraceptives + cigday_1 + V8 + group

all other models represent the original model + the variable of interest

Real-time PCR validation

Data loading and parsing

RefGenes = c("GUSB")
Targets_of_Int = c("SLITRK5", "MIR4500HG")
nreplicates = 3
flagscore=Inf #replication quality error

SamplesMeta=read_xlsx(paste0(Home,"/data/RTrawdata/ZelllinienRNA_femNAT.xlsx"))
as.data.frame(SamplesMeta) -> SamplesMeta
                      
SamplesMeta$Pou=paste("POU", SamplesMeta$Pou)
rownames(SamplesMeta)=SamplesMeta$Pou

SamplesMeta$Group = dds_filt$group[match(SamplesMeta$femNATID, dds_filt$ID_femNAT)]


Files=list.files(paste0(Home,"/data/RTrawdata/"), full.names = T)

Files=Files[grepl("_data",Files)]

Sets=unique(substr(basename(Files), 1,8))

Targets_all=vector()
Samples_all=vector()


geoMean=function(x){
  x=x[!is.na(x)]
  if(length(x)==0)
    return(NA)
  else
    return((prod(x))^(1/length(x)))}

for (Set in Sets){

    Setfiles=Files[grep(Set, Files)]

    for( i in 1:length(Setfiles)){
      tmp=read.table(Setfiles[i], skip=8, header=T, sep="\t", comment.char = "", fill=T)[1:96,]
      tmp=tmp[,c("Sample.Name", "Target.Name","CÑ.")]
      colnames(tmp)=c("Sample.Name", "Target.Name", "CT")
      tmp$Target.Name=gsub("SLITRK5_L", "SLITRK5_", tmp$Target.Name)
      tmp$Target.Name=gsub("VD_", "", tmp$Target.Name)
      tmp$Target.Name=gsub("_", "", tmp$Target.Name)
      tmp$Target.Name=substr(tmp$Target.Name,1, regexpr("#", tmp$Target.Name)-1)
      tmp$CT=as.numeric(tmp$CT)
      
      # set bad replicates to NA 
      tmpmu = tapply(tmp$CT, paste0(tmp$Sample.Name,"_",tmp$Target.Name), mean, na.rm=T)
      tmpsd = tapply(tmp$CT, paste0(tmp$Sample.Name,"_",tmp$Target.Name), sd, na.rm=T)
      for (corr in which(tmpsd>flagscore)){
        index=unlist(strsplit(names(tmpmu)[corr], "_"))
        tmp[which(tmp$Sample.Name==index[1] & tmp$Target.Name==index[2]),"CT"] = NA
      }
      assign(paste0("tmp_",Set,"_",i),tmp)
    }
    
    tmp=do.call("rbind", mget(apropos(paste0("tmp_",Set))))
    tmp=tmp[which(!(tmp$Sample.Name==""|is.na(tmp$Sample.Name))), ]
    tmp=tmp[!tmp$Sample.Name=="NTC",]
    
    Samples=unique(tmp$Sample.Name)
    Targets=unique(tmp$Target.Name)
    Samples_all=unique(c(Samples_all, Samples))
    Targets_all=unique(c(Targets_all, Targets))
    
    Reform=data.frame(matrix(NA, nrow=length(Samples), ncol=length(Targets)*nreplicates))
    
    colnames(Reform)=paste0(rep(Targets, each=3), letters[1:nreplicates])
    rownames(Reform)=Samples
    
    for (i in Samples) {
      #print(i)
      for (j in Targets){
        Reform[i,grep(j, colnames(Reform))]=tmp[tmp$Sample.Name==i & tmp$Target.Name==j,"CT"]
      }
    }
    
    HK=colnames(Reform)[grep(paste0(RefGenes, collapse="|"),colnames(Reform))]
    
    GMHK=apply(Reform[,HK], 1, geoMean)
    tmp2=Reform-GMHK
    
    assign(paste0(Set,"_dCT"), tmp2)
    rm(list=c(apropos("tmp"), "Reform", "GMHK"))
    
}
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Samples_all=unique(Samples_all)
Targets_all = unique(Targets_all)

mergedCTtable=data.frame(matrix(NA,ncol=length(Targets_all)*nreplicates, nrow=length(Samples_all)))
colnames(mergedCTtable)=paste0(rep(unique(Targets_all), each=nreplicates), letters[1:nreplicates])
rownames(mergedCTtable)=Samples_all

CTobj=apropos("_dCT")

for( obj in CTobj){
  DF=get(obj)
  for(k in colnames(DF)){
    for(l in rownames(DF)){
      mergedCTtable[l,k]=DF[l,k]
    }
  }
}

CTmeans=colMeans(mergedCTtable, na.rm = T)

meanvec=tapply(CTmeans,gsub(paste0(letters[1:nreplicates],collapse="|"),"",names(CTmeans)), mean, na.rm=T)
meanvec = rep(meanvec, each=nreplicates)
names(meanvec) = paste0(names(meanvec), letters[1:nreplicates])
meanvec=meanvec[colnames(mergedCTtable)]
ddCT=apply(mergedCTtable,1, function(x){x-meanvec}) 

FC=2^-ddCT


SamplesMeta$inset=F
SamplesMeta$inset[SamplesMeta$Pou %in% colnames(FC)]=T

SamplesMeta=SamplesMeta[SamplesMeta$inset,]

CTRLCASEsorter=c(which(SamplesMeta$Group=="CTRL"),which(SamplesMeta$Group=="CD"))
SamplesMeta = SamplesMeta[CTRLCASEsorter, ]

searcher=paste0(Targets_of_Int, collapse = "|")

FC = FC[grepl(searcher, rownames(FC)),SamplesMeta$Pou]

MuFC=apply(FC, 2, function(x){tapply(log2(x), gsub("a|b|c","",rownames(FC)), mean, na.rm=T)})
SDFC=apply(FC, 2, function(x){tapply(log2(x), gsub("a|b|c","",rownames(FC)), sd, na.rm=T)})

plot relative expression by samples

pdf(paste0(Home, "/output/barplots.pdf"))

for(i in Targets_of_Int){
  if(any(!is.na(MuFC[i,]))){
  a=barplot(unlist(MuFC[i,]), col=as.numeric(SamplesMeta[colnames(MuFC),"Group"])+1, main=i, las=3, 
            ylim=c(-max(abs(MuFC[i,])*1.2, na.rm=T), (max(abs(MuFC[i,])*1.2, na.rm=T))))
  arrows(a, MuFC[i,], a, MuFC[i,]+SDFC[i,], angle = 90, length = 0.1)
  arrows(a, MuFC[i,], a, MuFC[i,]-SDFC[i,], angle = 90, length = 0.1)
  legend("topleft", c("case", "control"), col=c(1,2), pch=15, bty="n")
  } else {
    plot(0,0, type="n", main=paste(i, "not detected"))
  }
}

dev.off()
png 
  2 
for(i in Targets_of_Int){
  if(any(!is.na(MuFC[i,]))){
  a=barplot(unlist(MuFC[i,]), col=as.numeric(SamplesMeta[colnames(MuFC),"Group"])+1, main=i, las=3, 
            ylim=c(-max(abs(MuFC[i,])*1.2, na.rm=T), (max(abs(MuFC[i,])*1.2, na.rm=T))))
  arrows(a, MuFC[i,], a, MuFC[i,]+SDFC[i,], angle = 90, length = 0.1)
  arrows(a, MuFC[i,], a, MuFC[i,]-SDFC[i,], angle = 90, length = 0.1)
  legend("topleft", c("case", "control"), col=c(1,2), pch=15, bty="n")
  } else {
    plot(0,0, type="n", main=paste(i, "not detected"))
  }
}

compare across groups

sink(paste0(Home, "/output/ResultsgroupComp.txt"))

Group=SamplesMeta$Group
for(i in Targets_of_Int){
  print(i)
  print(summary(try(lm(unlist(MuFC[i,])~Group))))
  print(t.test(unlist(MuFC[i,])~Group))
}
[1] "SLITRK5"

Call:
lm(formula = unlist(MuFC[i, ]) ~ Group)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.3710 -0.4489  0.1142  0.4382  0.9983 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -0.1703     0.1718  -0.991    0.334
GroupCD       0.5109     0.2975   1.717    0.102

Residual standard error: 0.6427 on 19 degrees of freedom
Multiple R-squared:  0.1343,    Adjusted R-squared:  0.08878 
F-statistic: 2.949 on 1 and 19 DF,  p-value: 0.1022


    Welch Two Sample t-test

data:  unlist(MuFC[i, ]) by Group
t = -2.0316, df = 18.197, p-value = 0.05706
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.03871726  0.01701686
sample estimates:
mean in group CTRL   mean in group CD 
        -0.1702834          0.3405668 

[1] "MIR4500HG"

Call:
lm(formula = unlist(MuFC[i, ]) ~ Group)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.7172 -1.2116 -0.2660  0.5749  5.4474 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -0.6053     0.5683  -1.065    0.301
GroupCD       0.6614     0.9607   0.688    0.500

Residual standard error: 2.049 on 18 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared:  0.02566,   Adjusted R-squared:  -0.02847 
F-statistic: 0.474 on 1 and 18 DF,  p-value: 0.4999


    Welch Two Sample t-test

data:  unlist(MuFC[i, ]) by Group
t = -0.65047, df = 10.602, p-value = 0.5292
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.909646  1.586853
sample estimates:
mean in group CTRL   mean in group CD 
       -0.60525003         0.05614653 
sink()


SamplesMeta$femNATID2=paste0("ID_",gsub("-","_",SamplesMeta$femNATID))

SamplesMeta=SamplesMeta[SamplesMeta$Pou %in% colnames(MuFC),]
MuFC=MuFC[,SamplesMeta$Pou]

TPM4RNA=selEpitpm[,SamplesMeta$femNATID2]
colnames(TPM4RNA)=SamplesMeta$Pou

tags=list()


Targets=Targets_of_Int


sigtags=which(restab$padj<=0.05)

tagsOI=grep(paste0(Targets, collapse = "|"),selEpiMeta$gene)

sigtagsOI = tagsOI[tagsOI %in% sigtags]

fintagsOI=data.frame(tags=sigtagsOI, gene=selEpiMeta[sigtagsOI,"gene"])

#Targ=Targets[1]
#tag=tags[1]

compare against methylation level

pdf(paste0(Home,"/output/RNAvsMETplots.pdf"), width = 15, height = 8)

MuFC=as.data.frame(MuFC)
MuFCsel=MuFC[Targets,]
par(mar=c(5,5,5,3), mfrow=c(1,2))
for (Targ in Targets){
  tags=fintagsOI$tags[grep(Targ, fintagsOI$gene)]
  for (tag in tags){
    data=data.frame(tpm=unlist(TPM4RNA[tag,SamplesMeta$Pou]) , 
                    RT=unlist(MuFCsel[grep(Targ, rownames(MuFCsel)),SamplesMeta$Pou]))
    plot(data$tpm,data$RT, 
         xlab="methylation tpm", 
         ylab = "mRNA log2FC vs mean", 
         ylim=c(-3,3),
         col=4-as.numeric(SamplesMeta$Group), 
         pch=as.numeric(SamplesMeta$Group)+14,
         main=paste(tag, "Meth vs mRNA Expr", Targ))
    legend("topleft", c("control", "case"), pch=c(15,16), col=c(3,2), bty="n")
    a=lm(RT~tpm, data)
    b=summary(a)
    abline(a, col="blue")

    SperCor=cor(data$RT,data$tpm,use = "c", method = "spearman")
    mtext(3, text = paste("beta = ", round(coefficients(a)[2],2), 
                          "; se =", round(b$coefficients[2,2],2), 
                          "; pvalue = ", round(b$coefficients[2,4],3), 
                          "; sperman cor = ", round(SperCor,3)))
  }
}

dev.off()
png 
  2 
MuFC=as.data.frame(MuFC)
MuFCsel=MuFC[Targets,]
par(mar=c(5,5,5,3), mfrow=c(1,2))
for (Targ in Targets){
  tags=fintagsOI$tags[grep(Targ, fintagsOI$gene)]
  for (tag in tags){
    data=data.frame(tpm=unlist(TPM4RNA[tag,SamplesMeta$Pou]) , 
                    RT=unlist(MuFCsel[grep(Targ, rownames(MuFCsel)),SamplesMeta$Pou]))
    plot(data$tpm,data$RT, 
         xlab="methylation tpm", 
         ylab = "mRNA log2FC vs mean", 
         ylim=c(-3,3),
         col=4-as.numeric(SamplesMeta$Group), 
         pch=as.numeric(SamplesMeta$Group)+14,
         main=paste(tag, "Meth vs mRNA Expr", Targ))
    legend("topleft", c("control", "case"), pch=c(15,16), col=c(3,2), bty="n")
    a=lm(RT~tpm, data)
    b=summary(a)
    abline(a, col="blue")
    SperCor=cor(data$RT,data$tpm,use = "c", method = "spearman")
    mtext(3, text = paste("beta = ", round(coefficients(a)[2],2), 
                          "; se =", round(b$coefficients[2,2],2), 
                          "; pvalue = ", round(b$coefficients[2,4],3), 
                          "; Spearman cor = ", round(SperCor,3)))
  }
}

Systems Analysis

Genomic feature enrichment

Significant loci with a p-value <= 0.01 and a absolute log2 fold-change lager 0.5 were tested for enrichment in annotated genomic feature using fisher exact test.

Ranges=rowData(dds_filt)

TotTagsofInterest=sum(Ranges$WaldPvalue_groupCD<=thresholdp & abs(Ranges$groupCD)>thresholdLFC)

Resall=data.frame()
index = Ranges$WaldPvalue_groupCD<=thresholdp& abs(Ranges$groupCD)>thresholdLFC
for (feat in unique(Ranges$feature)){
  tmp=table(Ranges$feature == feat, signif=index)
  resfish=fisher.test(tmp)
  res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
  Resall = rbind(Resall, res)
}
tmp=table(Ranges$tf_binding!="", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resall = rbind(Resall, res)
tmp=table(Ranges$cpg=="cpg", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resall = rbind(Resall, res)
colnames(Resall)=c("OR", "CI95L", "CI95U", "P")
rownames(Resall)=c(unique(Ranges$feature), "TF-binding", "CpG-island")
Resall$Beta = log(Resall$OR)
Resall$SE = (log(Resall$OR)-log(Resall$CI95L))/1.96
Resall$Padj=p.adjust(Resall$P, method = "bonferroni")

Resdown=data.frame()
index = Ranges$WaldPvalue_groupCD<=thresholdp & Ranges$groupCD<thresholdLFC
for (feat in unique(Ranges$feature)){
  tmp=table(Ranges$feature == feat, signif=index)
  resfish=fisher.test(tmp)
  res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
  Resdown = rbind(Resdown, res)
}
tmp=table(Ranges$tf_binding!="", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resdown = rbind(Resdown, res)
tmp=table(Ranges$cpg=="cpg", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resdown = rbind(Resdown, res)
colnames(Resdown)=c("OR", "CI95L", "CI95U", "P")
rownames(Resdown)=c(unique(Ranges$feature), "TF-binding", "CpG-island")
Resdown$Beta = log(Resdown$OR)
Resdown$SE = (log(Resdown$OR)-log(Resdown$CI95L))/1.96
Resdown$Padj=p.adjust(Resdown$P, method = "bonferroni")

Resup=data.frame()
index = Ranges$WaldPvalue_groupCD<=thresholdp & Ranges$groupCD>thresholdLFC
for (feat in unique(Ranges$feature)){
  tmp=table(Ranges$feature == feat, signif=index)
  resfish=fisher.test(tmp)
  res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
  Resup = rbind(Resup, res)
}
tmp=table(Ranges$tf_binding!="", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resup = rbind(Resup, res)
tmp=table(Ranges$cpg=="cpg", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resup = rbind(Resup, res)
colnames(Resup)=c("OR", "CI95L", "CI95U", "P")
rownames(Resup)=c(unique(Ranges$feature), "TF-binding", "CpG-island")
Resup$Beta = log(Resup$OR)
Resup$SE = (log(Resup$OR)-log(Resup$CI95L))/1.96
Resup$Padj=p.adjust(Resup$P, method = "bonferroni")

multiORplot(Resall, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="All diff. methylated loci")

multiORplot(Resup, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="hypomethylated loci")

multiORplot(Resdown, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="Hypermethylated loci")

pdf(paste0(Home, "/output/functional_Enrichemnt.pdf"))
multiORplot(Resall, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="All diff. methylated loci")
multiORplot(Resup, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="hypomethylated loci")
multiORplot(Resdown, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="Hypermethylated loci")
dev.off()
png 
  2 

GO-term Enrichment

Significant loci and differentially methylated regions with a p-value <= 0.01 and an absolute log2 fold-change lager 0.5 were tested for enrichment among GO-terms Molecular Function, Cellular Compartment and Biological Processes, KEGG pathways, Transcription factor Binding sites, Human Protein Atlas Tissue Expression, Human Phenotypes.

getGOresults = function(geneset, genereference){
  resgo = gost(geneset, organism = "hsapiens",
               correction_method = "g_SCS",
               domain_scope = "custom",
               sources = c("GO:BP", "GO:MF", "GO:CC"),
               custom_bg = genereference)
  if(length(resgo) != 0){
    return(resgo)
  } else {
    print("no significant results")
    return(NULL)
  }  
}

gene_univers = getuniquegenes(as.data.frame(rowRanges(dds_filt))$gene)


idx = (results_Deseq$pvalue <= thresholdp & 
         (abs(results_Deseq$log2FoldChange) > thresholdLFC))

genes_reg = getuniquegenes(as.data.frame(rowRanges(dds_filt))$gene[idx])


dmr_genes = unique(resultsdmr_table$name[resultsdmr_table$p.value<=thresholdp & 
                   abs(resultsdmr_table$value)>=thresholdLFC])


Genes_of_interset = list("01_dmregions" = dmr_genes,  
                         "02_dmtag" = genes_reg
                         )

gostres = getGOresults(Genes_of_interset, gene_univers)

gostplot(gostres, capped = TRUE, interactive = T)
p = gostplot(gostres, capped = TRUE, interactive = F)

toptab = gostres$result

pp = publish_gostplot(p, filename = paste0(Home,"/output/gostres.pdf"))
The image is saved to C:/Users/chiocchetti/Projects/femNATCD_MethSeq/output/gostres.pdf
write.xlsx2(toptab, file = paste0(Home,"/output/GOres.xlsx"), sheetName = "GO_enrichment")

Brain Developmental Processes Enrichment tests

Gene sets identified to be deferentially methylated with a p-value <= 0.01 and an absolute log2 fold-change larger 0.5 were tested for enrichment among gene-modules coregulated during Brain expression.

Kang Modules

# define Reference Universe 

KangUnivers<- read.table(paste0(Home,"/data/KangUnivers.txt"), sep="\t", header=T)
colnames(KangUnivers)<-c("EntrezId","Symbol")

Kang_genes<-read.table(paste0(Home,"/data/Kang_dataset_genesMod_version2.txt"),sep="\t",header=TRUE)

#3)Generate Gene universe to be used for single gene lists
tmp=merge(KangUnivers,Kang_genes,by.y="EntrezGene",by.x="EntrezId",all=TRUE) #18826
KangUni_Final<-tmp[duplicated(tmp$EntrezId)==FALSE,] #18675


# Local analysis gene universe
Annotation_list<-data.frame(Symbol = gene_univers)

# match modules 
Annotation_list$Module = Kang_genes$Module[match(Annotation_list$Symbol,Kang_genes$symbol)]

# check if overlapping in gene universes
Annotation_list$univers = Annotation_list$Symbol %in% KangUni_Final$Symbol

# drop duplicates 
Annotation_list = Annotation_list[duplicated(Annotation_list$Symbol)==FALSE,]

# selct only genes that have been detected on both datasets
Annotation_list = Annotation_list[Annotation_list$univers==T,] 

# final reference 
UniversalGeneset=Annotation_list$Symbol

# define Gene lists to test 
# sort and order Modules to be tested

Modules=unique(Annotation_list$Module)
Modules = Modules[! Modules %in% c(NA, "")]
Modules = Modules[order(as.numeric(gsub("M","",Modules)))]

GL_all=list()

for(i in Modules){
  GL_all[[i]]=Annotation_list$Symbol[Annotation_list$Module%in%i]
}
GL_all[["M_all"]]=Kang_genes$symbol[Kang_genes$Module %in% Modules]


GOI1 = Genes_of_interset

Resultsall=list()
for(j in names(GOI1)){
  Res = data.frame()
  for(i in names(GL_all)){
    Modulegene=GL_all[[i]]
    Factorgene=GOI1[[j]]
    Testframe<-fisher.test(table(factor(UniversalGeneset %in% Factorgene,levels=c("TRUE","FALSE")),
                                 factor(UniversalGeneset %in% Modulegene,levels=c("TRUE","FALSE"))))
    beta=log(Testframe$estimate)
    Res[i, "beta"] =beta
    Res[i, "SE"]=abs(beta-log(Testframe$conf.int[1]))/1.96
    Res[i, "Pval"]=Testframe$p.value
    Res[i, "OR"]=(Testframe$estimate)
    Res[i, "ORL"]=(Testframe$conf.int[1])
    Res[i, "ORU"]=(Testframe$conf.int[2])
  }
  Res$Padj = p.adjust(Res$Pval, method = "bonferroni")
  Resultsall[[j]] = Res
  
}
par(mfrow = c(2,1))
for (i in names(Resultsall)){ 
  multiORplot(datatoplot = Resultsall[[i]], pheno=i)
}

par(mfrow = c(1,1))
pdf(paste0(Home, "/output/BrainMod_Enrichemnt.pdf"))
for (i in names(Resultsall)){
  multiORplot(datatoplot = Resultsall[[i]], pheno=i)
}
dev.off()
png 
  2 
Modsig = c()

for(r in names(Resultsall)){
  a=rownames(Resultsall[[r]])[Resultsall[[r]]$Padj<=0.05]
  Modsig = c(Modsig,a)
}

Brain espresseion heatmaps

# show brains and expression
Modsig2=unique(Modsig[Modsig!="M_all"])

load(paste0(Home,"/data/Kang_DataPreprocessing.RData")) #Load the Kang expression data of all genes 
datExprPlot=matriz #Expression data of Kang loaded as Rdata object DataPreprocessing.RData


Genes = GL_all[names(GL_all)!="M_all"]

Genes_expression<-list()

pcatest<-list()
for (i in names(Genes)){
  Genes_expression[[i]]<-matriz[,which(colnames(matriz) %in% Genes[[i]])]
  pcatest[[i]]=prcomp(t(as.matrix(Genes_expression[[i]])),retx=TRUE)
}

# PCA test
PCA<-data.frame(pcatest[[1]]$rotation)
PCA$donor_name<-rownames(PCA)
PC1<-data.frame(PCA[,c(1,ncol(PCA))])

#Combining the age with expression data
list <- strsplit(sampleInfo$age, " ")
library("plyr")
------------------------------------------------------------------------------
You have loaded plyr after dplyr - this is likely to cause problems.
If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
library(plyr); library(dplyr)
------------------------------------------------------------------------------

Attache Paket: 'plyr'
The following object is masked from 'package:matrixStats':

    count
The following object is masked from 'package:IRanges':

    desc
The following object is masked from 'package:S4Vectors':

    rename
The following objects are masked from 'package:dplyr':

    arrange, count, desc, failwith, id, mutate, rename, summarise,
    summarize
The following object is masked from 'package:purrr':

    compact
df <- ldply(list)
colnames(df) <- c("Age", "time")

sampleInfo<-cbind(sampleInfo[,1:9],df)
sampleInfo$Age<-as.numeric(sampleInfo$Age)

sampleInfo$period<-ifelse(sampleInfo$time=="pcw",sampleInfo$Age*7,ifelse(sampleInfo$time=="yrs",sampleInfo$Age*365+270,ifelse(sampleInfo$time=="mos",sampleInfo$Age*30+270,NA)))

#We need it just for the donor names

PCA_matrix<-merge.with.order(PC1,sampleInfo,by.y="SampleID",by.x="donor_name",keep_order=1)

#Select which have phenotype info present 
matriz2<-matriz[which(rownames(matriz) %in% PCA_matrix$donor_name),]
FactorGenes_expression<-list()
#Factors here mean modules
for (i in names(Genes)){
  FactorGenes_expression[[i]]<-matriz2[,which(colnames(matriz2) %in% Genes[[i]])]
}


FactorseGE<-list()
for (i in names(Genes)){
  FactorseGE[[i]]<-FactorGenes_expression[[i]]
}

allModgenes=NULL
colors=vector()
for ( i in names(Genes)){
  allModgenes=cbind(allModgenes,FactorseGE[[i]])
  colors=c(colors, rep(i, ncol(FactorseGE[[i]])))
}


lengths=unlist(lapply(FactorGenes_expression, ncol), use.names = F)

MEorig=moduleEigengenes(allModgenes, colors)

PCA_matrixfreeze=PCA_matrix

index=!PCA_matrix$structure_acronym %in% c("URL", "DTH", "CGE","LGE", "MGE",  "Ocx", "PCx", "M1C-S1C","DIE", "TCx", "CB")
PCA_matrix=PCA_matrix[index,]
ME = MEorig$eigengenes[index,]
matsel = matriz2[index,]

colnames(ME) = gsub("ME", "", colnames(ME))

timepoints=seq(56,15000, length.out=1000)
matrix(c("CB", "THA", "CBC", "MD"), ncol=2 ) -> cnm


brainheatmap=function(Module){
  MEmod=ME[,Module]
  toplot=data.frame(matrix(NA, nrow=length(table(PCA_matrix$structure_acronym)), ncol=998))
  rownames(toplot)=unique(PCA_matrix$structure_acronym)
  target <- c("OFC", "DFC", "VFC", "MFC","M1C","S1C","IPC","A1C","STC","ITC","V1C","HIP","AMY","STR","MD","CBC")
  toplot<-toplot[c(6,2,8,5,11,12,10,9,7,4,14,3,1,13,16,15),]
  
  
  for ( i in unique(PCA_matrix$structure_acronym)){
    index=PCA_matrix$structure_acronym==i
    LOESS=loess(MEmod[index]~PCA_matrix$period[index])
    toplot[i,]=predict(LOESS,newdata = round(exp(seq(log(56),log(15000), length.out=998)),2))
    colnames(toplot)[c(1,77,282,392,640,803,996)]<-
      c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")
  }
  
  
  
  cols=viridis(100)
  labvec <- c(rep(NA, 1000))
  
  labvec[c(1,77,282,392,640,803,996)] <- c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")
  
  
  toplot<-toplot[,1:998]
  date<-c(1:998)
  dateY<-paste0(round(date/365,2),"_Years")
  
  names(toplot)<-dateY
  
  par(xpd=FALSE) 
  heatmap.2(as.matrix(toplot), col = cols, 
            main=Module,
            trace = "none", 
            na.color = "grey",
            Colv = F, Rowv = F,
            labCol = labvec,
            #breaks = seq(-0.1,0.1, length.out=101),
            symkey = T,
            scale = "row",
            key.title = "",
            dendrogram = "none",
            key.xlab = "eigengene",
            density.info = "none",
            #main=paste("Module",1),
            srtCol=90,
            tracecol = "none", 
            cexRow = 1,
            add.expr=eval.parent(abline(v=282),
                                 axis(1,at=c(1,77,282,392,640,803,996),
                                      labels =FALSE)),cexCol = 1)
  
 
}

brainheatmap_gene=function(Genename){
  MEmod=matsel[,Genename]
  toplot=data.frame(matrix(NA, nrow=length(table(PCA_matrix$structure_acronym)), ncol=998))
  rownames(toplot)=unique(PCA_matrix$structure_acronym)
  target <- c("OFC", "DFC", "VFC", "MFC","M1C","S1C","IPC","A1C","STC","ITC","V1C","HIP","AMY","STR","MD","CBC")
  toplot<-toplot[c(6,2,8,5,11,12,10,9,7,4,14,3,1,13,16,15),]


  for ( i in unique(PCA_matrix$structure_acronym)){
    index=PCA_matrix$structure_acronym==i
    LOESS=loess(MEmod[index]~PCA_matrix$period[index])
    toplot[i,]=predict(LOESS,newdata = round(exp(seq(log(56),log(15000), length.out=998)),2))
    colnames(toplot)[c(1,77,282,392,640,803,996)]<-
      c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")
  }



  cols=viridis(100)
  labvec <- c(rep(NA, 1000))

  labvec[c(1,77,282,392,640,803,996)] <- c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")


  toplot<-toplot[,1:998]
  date<-c(1:998)
  dateY<-paste0(round(date/365,2),"_Years")

  names(toplot)<-dateY

  par(xpd=FALSE)
  heatmap.2(as.matrix(toplot), col = cols,
            main=Genename,
            trace = "none",
            na.color = "grey",
            Colv = F, Rowv = F,
            labCol = labvec,
            #breaks = seq(-0.1,0.1, length.out=101),
            symkey = F,
            scale = "none",
            key.title = "",
            dendrogram = "none",
            key.xlab = "eigengene",
            density.info = "none",
            #main=paste("Module",1),
            #srtCol=90,
            tracecol = "none",
            cexRow = 1,
            add.expr=eval.parent(abline(v=282),
                                 axis(1,at=c(1,77,282,392,640,803,996),
                                      labels =FALSE))
            ,cexCol = 1)
}


brainheatmap_gene("SLITRK5")

for(Module in Modsig2){
  brainheatmap(Module)
}

pdf(paste0(Home, "/output/Brain_Module_Heatmap.pdf"))

brainheatmap_gene("SLITRK5")
for(Module in Modsig2){
  brainheatmap(Module)
}
dev.off()
png 
  2 

Risk Factor Mediation Analysis

Risk factor loading and correlation plots

dropfact=c("site", "0", "group")

modelFact=strsplit(as.character(design(dds_filt))[2], " \\+ ")[[1]]


Patdata=as.data.frame(colData(dds_filt))

load(paste0(Home, "/output/envFact.RData"))

envFact=envFact[!envFact %in% dropfact] 
modelFact=modelFact[!modelFact %in% dropfact] 

EpiMarker = c()

# TopHit
Patdata$Epi_TopHit=log2_cpm[base::which.min(results_Deseq$pvalue),]

# 1PC of all diff met
tmp=glmpca(log2_cpm[base::which(results_Deseq$pvalue<=thresholdp),], 1)

Patdata$Epi_all= tmp$factors$dim1
  
EpiMarker = c(EpiMarker, "Epi_TopHit", "Epi_all")

#Brain Modules

Epitestset=GL_all[Modsig]

for(n in names(Epitestset)){
  index=gettaglistforgenelist(genelist = Epitestset[[n]], dds_filt)
  index = base::intersect(index, base::which(results_Deseq$pvalue<=thresholdp))
  # get eigenvalue
  epiname=paste0("Epi_",n)
  tmp=glmpca(log2_cpm[index,], 1)
  Patdata[,epiname]= tmp$factors$dim1
  EpiMarker = c(EpiMarker, epiname)
}

cormat = cor(apply(Patdata[,c("group", envFact, modelFact, EpiMarker)] %>% mutate_all(as.numeric), 2, minmax_scaling),
             use = "pairwise.complete.obs")

par(mfrow=c(1,2))
corrplot(cormat, main="correlations")
corrplot(cormat, order = "hclust", main="correlations ordered")

SEM analysis

fullmodEnv=paste(unique(envFact,modelFact), sep = "+", collapse = "+")

Dataset = Patdata[,c("group", envFact, modelFact,EpiMarker)]

model = "
Epi~0+a*Matsmk+b*Matagg+c*FamScore+d*EduPar+e*n_trauma+Age+int_dis+medication+contraceptives+cigday_1+V8

group~f*Matsmk+g*Matagg+h*FamScore+i*EduPar+j*n_trauma+Age+int_dis+medication+contraceptives+cigday_1+V8+z*Epi

#direct
directMatsmk := f
directMatagg := g
directFamScore := h
directEduPar := i
directn_trauma := j

#indirect
EpiMatsmk := a*z
EpiMatagg := b*z
EpiFamScore := c*z
EpiEduPar := d*z
Epin_trauma := e*z

total := f + g + h + i + j + (a*z)+(b*z)+(c*z)+(d*z)+(e*z)

"

Netlist = list()


nothing = function(x){return(x)}

for (marker in EpiMarker) {
  
  Dataset$Epi = Dataset[,marker]
  Datasetscaled = Dataset %>% mutate_if(is.numeric, minmax_scaling)
  Datasetscaled = Datasetscaled %>% mutate_if(is.factor,ordered)

  fit<-sem(model,data=Datasetscaled)

  sink(paste0(Home,"/output/SEM_summary_group",marker,".txt"))
  summary(fit)
  print(fitMeasures(fit))
  print(parameterEstimates(fit))
  sink()
  
  cat("############################\n")
  cat("############################\n")
  cat(marker, "\n")
  cat("############################\n")
  cat("############################\n")
  
  cat("##Mediation Model ##\n")
  summary(fit)
  cat("\n")
  print(fitMeasures(fit))
  cat("\n")
  print(parameterEstimates(fit))
  cat("\n")
  
  #SOURCE FOR PLOT https://stackoverflow.com/questions/51270032/how-can-i-display-only-significant-path-lines-on-a-path-diagram-r-lavaan-sem
  restab=lavaan::parameterEstimates(fit) %>% dplyr::filter(!is.na(pvalue)) %>% 
    arrange(desc(pvalue)) %>% mutate_if("is.numeric","round",3) %>% 
    dplyr::select(-ci.lower,-ci.upper,-z)
  
  pvalue_cutoff <- 0.05
  
  obj <- semPlot:::semPlotModel(fit)
  original_Pars <- obj@Pars
  
  print(original_Pars)
  
  check_Pars <- obj@Pars %>% dplyr:::filter(!(edge %in% c("int","<->") | lhs == rhs)) # this is the list of parameter to sift thru
  keep_Pars <- obj@Pars %>% dplyr:::filter(edge %in% c("int","<->") | lhs == rhs) # this is the list of parameter to keep asis
  
  test_against <- lavaan::parameterEstimates(fit) %>% dplyr::filter(pvalue < pvalue_cutoff, rhs != lhs)
  
  # for some reason, the rhs and lhs are reversed in the standardizedSolution() output, for some of the values
  # I'll have to reverse it myself, and test against both orders
  
  test_against_rev <- test_against %>% dplyr::rename(rhs2 = lhs, lhs = rhs) %>% dplyr::rename(rhs = rhs2)
  
  checked_Pars <-
    check_Pars %>% semi_join(test_against, by = c("lhs", "rhs")) %>% bind_rows(
      check_Pars %>% semi_join(test_against_rev, by = c("lhs", "rhs"))
    )
  
  obj@Pars <- keep_Pars %>% bind_rows(checked_Pars) %>% 
    mutate_if("is.numeric","round",3) %>% 
    mutate_at(c("lhs","rhs"),~gsub("Epi", marker,.))
  
  obj@Vars = obj@Vars %>% mutate_at(c("name"),~gsub("Epi", marker,.))
  
  DF = obj@Pars
  DF = DF[DF$lhs!=DF$rhs,]
  DF = DF[abs(DF$est)>0.1,]
  
  DF = DF[DF$edge == "~>",] # only include directly modelled effects in figure 
  
  nodes <- data.frame(id=obj@Vars$name, label = obj@Vars$name)
  nodes$color<-Dark8[8]
  nodes$color[nodes$label == "group"] = Dark8[3]
  nodes$color[nodes$label == marker] = Dark8[4]
  nodes$color[nodes$label %in% envFact] = Dark8[5]
  
  if(nrow(DF)>0){
  edges <- data.frame(from = DF$lhs, 
                      to = DF$rhs, 
                      width=abs(DF$est), 
                      arrows ="to")
  
  edges$dashes = F
  edges$label =  DF$est
  edges$color=c("firebrick", "forestgreen")[1:2][factor(sign(DF$est), levels=c(-1,0,1),labels=c(1,2,2))]
  edges$width=2
  }
  else {edges = data.frame(from=NULL, to = NULL)}
  
  cexlab = 18
  plotnet<- visNetwork(nodes, edges,  
                       main=list(text=marker,
                                 style="font-family:arial;font-size:20px;text-align:center"),
                       submain=list(text="significant paths", 
                                    style="font-family:arial;text-align:center")) %>% 
    visEdges(arrows =list(to = list(enabled = TRUE, scaleFactor = 0.7)),
                       font=list(size=cexlab, style="font-family:arial;text-align:center")) %>%
    visNodes(font=list(size=cexlab, style="font-family:arial;text-align:center")) %>%
    
    visPhysics(enabled = T, solver = "forceAtlas2Based")
  
  
  Netlist[[marker]] = plotnet
  htmlfile = paste0(Home,"/output/SEMplot_",marker,".html")
  visSave(plotnet, htmlfile)
  webshot(paste0(Home,"/output/SEMplot_",marker,".html"), zoom = 1, 
          file = paste0(Home,"/output/SEMplot_",marker,".png"))
  
}
Warning in lav_data_full(data = data, group = group, cluster = cluster, :
lavaan WARNING: exogenous variable(s) declared as ordered in data: Matsmk Matagg
int_dis medication contraceptives
Warning in lav_samplestats_step2(UNI = FIT, wt = wt, ov.names = ov.names, :
lavaan WARNING: correlation between variables group and Epi is (nearly) 1.0
############################
############################
Epi_TopHit 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 120 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         25
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                10.983      10.983
  Degrees of freedom                                 1           1
  P-value (Chi-square)                           0.001       0.001
  Scaling correction factor                                  1.000
  Shift parameter                                           -0.000
       simple second-order correction                             

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)   -0.033    0.050   -0.657    0.511
    Matagg     (b)   -0.014    0.072   -0.202    0.840
    FamScore   (c)    0.056    0.076    0.739    0.460
    EduPar     (d)   -0.038    0.108   -0.358    0.721
    n_trauma   (e)    0.085    0.111    0.767    0.443
    Age              -0.090    0.097   -0.929    0.353
    int_dis          -0.074    0.057   -1.310    0.190
    medication       -0.044    0.059   -0.759    0.448
    contrcptvs       -0.017    0.049   -0.341    0.733
    cigday_1         -0.111    0.136   -0.815    0.415
    V8               -0.089    0.568   -0.156    0.876
  group ~                                             
    Matsmk     (f)    0.045    1.077    0.041    0.967
    Matagg     (g)    1.436    2.290    0.627    0.531
    FamScore   (h)    0.440    2.056    0.214    0.831
    EduPar     (i)   -3.687    2.227   -1.655    0.098
    n_trauma   (j)    2.952    1.445    2.043    0.041
    Age              -3.468    2.438   -1.422    0.155
    int_dis           0.802    0.808    0.992    0.321
    medication        0.875    0.817    1.072    0.284
    contrcptvs        0.031    0.843    0.037    0.970
    cigday_1          9.678    7.094    1.364    0.172
    V8               12.694   16.068    0.790    0.430
    Epi        (z)   -6.500    0.589  -11.034    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.000                           
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         10.125    9.268    1.092    0.275

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.023    0.004    5.481    0.000
   .group             0.014                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.045    1.077    0.041    0.967
    directMatagg      1.436    2.290    0.627    0.531
    directFamScore    0.440    2.056    0.214    0.831
    directEduPar     -3.687    2.227   -1.655    0.098
    directn_trauma    2.952    1.445    2.043    0.041
    EpiMatsmk         0.212    0.317    0.667    0.505
    EpiMatagg         0.094    0.468    0.201    0.841
    EpiFamScore      -0.366    0.495   -0.741    0.459
    EpiEduPar         0.250    0.705    0.354    0.723
    Epin_trauma      -0.552    0.722   -0.764    0.445
    total             0.823    4.116    0.200    0.842

                         npar                          fmin 
                       25.000                         0.069 
                        chisq                            df 
                       10.983                         1.000 
                       pvalue                  chisq.scaled 
                        0.001                        10.983 
                    df.scaled                 pvalue.scaled 
                        1.000                         0.001 
         chisq.scaling.factor                baseline.chisq 
                        1.000                       111.273 
                  baseline.df               baseline.pvalue 
                        1.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                      111.273                         1.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         1.000 
                          cfi                           tli 
                        0.909                         0.909 
                         nnfi                           rfi 
                        0.909                         0.901 
                          nfi                          pnfi 
                        0.901                         0.901 
                          ifi                           rni 
                        0.909                         0.909 
                   cfi.scaled                    tli.scaled 
                        0.909                         0.909 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                  nnfi.scaled                   nnfi.robust 
                        0.909                            NA 
                   rfi.scaled                    nfi.scaled 
                        0.901                         0.901 
                   ifi.scaled                    rni.scaled 
                        0.909                         0.909 
                   rni.robust                         rmsea 
                           NA                         0.355 
               rmsea.ci.lower                rmsea.ci.upper 
                        0.188                         0.558 
                 rmsea.pvalue                  rmsea.scaled 
                        0.002                         0.355 
        rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
                        0.188                         0.558 
          rmsea.pvalue.scaled                  rmsea.robust 
                        0.002                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                           NA                            NA 
          rmsea.pvalue.robust                           rmr 
                           NA                         0.459 
                   rmr_nomean                          srmr 
                        0.000                         0.000 
                 srmr_bentler           srmr_bentler_nomean 
                        3.004                         0.000 
                         crmr                   crmr_nomean 
                        3.878                         0.000 
                   srmr_mplus             srmr_mplus_nomean 
                           NA                            NA 
                        cn_05                         cn_01 
                       28.632                        48.726 
                          gfi                          agfi 
                        0.937                        -0.650 
                         pgfi                           mfi 
                        0.036                         0.939 

               lhs  op                                     rhs          label
1              Epi  ~1                                                       
2              Epi   ~                                  Matsmk              a
3              Epi   ~                                  Matagg              b
4              Epi   ~                                FamScore              c
5              Epi   ~                                  EduPar              d
6              Epi   ~                                n_trauma              e
7              Epi   ~                                     Age               
8              Epi   ~                                 int_dis               
9              Epi   ~                              medication               
10             Epi   ~                          contraceptives               
11             Epi   ~                                cigday_1               
12             Epi   ~                                      V8               
13           group   ~                                  Matsmk              f
14           group   ~                                  Matagg              g
15           group   ~                                FamScore              h
16           group   ~                                  EduPar              i
17           group   ~                                n_trauma              j
18           group   ~                                     Age               
19           group   ~                                 int_dis               
20           group   ~                              medication               
21           group   ~                          contraceptives               
22           group   ~                                cigday_1               
23           group   ~                                      V8               
24           group   ~                                     Epi              z
25           group   |                                      t1               
26             Epi  ~~                                     Epi               
27           group  ~~                                   group               
28          Matsmk  ~~                                  Matsmk               
29          Matsmk  ~~                                  Matagg               
30          Matsmk  ~~                                FamScore               
31          Matsmk  ~~                                  EduPar               
32          Matsmk  ~~                                n_trauma               
33          Matsmk  ~~                                     Age               
34          Matsmk  ~~                                 int_dis               
35          Matsmk  ~~                              medication               
36          Matsmk  ~~                          contraceptives               
37          Matsmk  ~~                                cigday_1               
38          Matsmk  ~~                                      V8               
39          Matagg  ~~                                  Matagg               
40          Matagg  ~~                                FamScore               
41          Matagg  ~~                                  EduPar               
42          Matagg  ~~                                n_trauma               
43          Matagg  ~~                                     Age               
44          Matagg  ~~                                 int_dis               
45          Matagg  ~~                              medication               
46          Matagg  ~~                          contraceptives               
47          Matagg  ~~                                cigday_1               
48          Matagg  ~~                                      V8               
49        FamScore  ~~                                FamScore               
50        FamScore  ~~                                  EduPar               
51        FamScore  ~~                                n_trauma               
52        FamScore  ~~                                     Age               
53        FamScore  ~~                                 int_dis               
54        FamScore  ~~                              medication               
55        FamScore  ~~                          contraceptives               
56        FamScore  ~~                                cigday_1               
57        FamScore  ~~                                      V8               
58          EduPar  ~~                                  EduPar               
59          EduPar  ~~                                n_trauma               
60          EduPar  ~~                                     Age               
61          EduPar  ~~                                 int_dis               
62          EduPar  ~~                              medication               
63          EduPar  ~~                          contraceptives               
64          EduPar  ~~                                cigday_1               
65          EduPar  ~~                                      V8               
66        n_trauma  ~~                                n_trauma               
67        n_trauma  ~~                                     Age               
68        n_trauma  ~~                                 int_dis               
69        n_trauma  ~~                              medication               
70        n_trauma  ~~                          contraceptives               
71        n_trauma  ~~                                cigday_1               
72        n_trauma  ~~                                      V8               
73             Age  ~~                                     Age               
74             Age  ~~                                 int_dis               
75             Age  ~~                              medication               
76             Age  ~~                          contraceptives               
77             Age  ~~                                cigday_1               
78             Age  ~~                                      V8               
79         int_dis  ~~                                 int_dis               
80         int_dis  ~~                              medication               
81         int_dis  ~~                          contraceptives               
82         int_dis  ~~                                cigday_1               
83         int_dis  ~~                                      V8               
84      medication  ~~                              medication               
85      medication  ~~                          contraceptives               
86      medication  ~~                                cigday_1               
87      medication  ~~                                      V8               
88  contraceptives  ~~                          contraceptives               
89  contraceptives  ~~                                cigday_1               
90  contraceptives  ~~                                      V8               
91        cigday_1  ~~                                cigday_1               
92        cigday_1  ~~                                      V8               
93              V8  ~~                                      V8               
94           group ~*~                                   group               
95           group  ~1                                                       
96          Matsmk  ~1                                                       
97          Matagg  ~1                                                       
98        FamScore  ~1                                                       
99          EduPar  ~1                                                       
100       n_trauma  ~1                                                       
101            Age  ~1                                                       
102        int_dis  ~1                                                       
103     medication  ~1                                                       
104 contraceptives  ~1                                                       
105       cigday_1  ~1                                                       
106             V8  ~1                                                       
107   directMatsmk  :=                                       f   directMatsmk
108   directMatagg  :=                                       g   directMatagg
109 directFamScore  :=                                       h directFamScore
110   directEduPar  :=                                       i   directEduPar
111 directn_trauma  :=                                       j directn_trauma
112      EpiMatsmk  :=                                     a*z      EpiMatsmk
113      EpiMatagg  :=                                     b*z      EpiMatagg
114    EpiFamScore  :=                                     c*z    EpiFamScore
115      EpiEduPar  :=                                     d*z      EpiEduPar
116    Epin_trauma  :=                                     e*z    Epin_trauma
117          total  := f+g+h+i+j+(a*z)+(b*z)+(c*z)+(d*z)+(e*z)          total
       est     se       z pvalue ci.lower ci.upper
1    0.000  0.000      NA     NA    0.000    0.000
2   -0.033  0.050  -0.657  0.511   -0.130    0.065
3   -0.014  0.072  -0.202  0.840   -0.155    0.126
4    0.056  0.076   0.739  0.460   -0.093    0.206
5   -0.038  0.108  -0.358  0.721   -0.249    0.172
6    0.085  0.111   0.767  0.443   -0.132    0.302
7   -0.090  0.097  -0.929  0.353   -0.280    0.100
8   -0.074  0.057  -1.310  0.190   -0.186    0.037
9   -0.044  0.059  -0.759  0.448   -0.159    0.070
10  -0.017  0.049  -0.341  0.733   -0.113    0.080
11  -0.111  0.136  -0.815  0.415   -0.378    0.156
12  -0.089  0.568  -0.156  0.876   -1.202    1.025
13   0.045  1.077   0.041  0.967   -2.066    2.155
14   1.436  2.290   0.627  0.531   -3.053    5.924
15   0.440  2.056   0.214  0.831   -3.590    4.471
16  -3.687  2.227  -1.655  0.098   -8.052    0.678
17   2.952  1.445   2.043  0.041    0.119    5.784
18  -3.468  2.438  -1.422  0.155   -8.247    1.310
19   0.802  0.808   0.992  0.321   -0.782    2.387
20   0.875  0.817   1.072  0.284   -0.725    2.475
21   0.031  0.843   0.037  0.970   -1.621    1.683
22   9.678  7.094   1.364  0.172   -4.225   23.582
23  12.694 16.068   0.790  0.430  -18.799   44.187
24  -6.500  0.589 -11.034  0.000   -7.654   -5.345
25  10.125  9.268   1.092  0.275   -8.040   28.289
26   0.023  0.004   5.481  0.000    0.015    0.032
27   0.014  0.000      NA     NA    0.014    0.014
28   0.196  0.000      NA     NA    0.196    0.196
29   0.049  0.000      NA     NA    0.049    0.049
30  -0.009  0.000      NA     NA   -0.009   -0.009
31  -0.006  0.000      NA     NA   -0.006   -0.006
32   0.007  0.000      NA     NA    0.007    0.007
33  -0.003  0.000      NA     NA   -0.003   -0.003
34   0.022  0.000      NA     NA    0.022    0.022
35   0.004  0.000      NA     NA    0.004    0.004
36   0.022  0.000      NA     NA    0.022    0.022
37   0.017  0.000      NA     NA    0.017    0.017
38   0.003  0.000      NA     NA    0.003    0.003
39   0.091  0.000      NA     NA    0.091    0.091
40   0.034  0.000      NA     NA    0.034    0.034
41  -0.017  0.000      NA     NA   -0.017   -0.017
42   0.007  0.000      NA     NA    0.007    0.007
43   0.000  0.000      NA     NA    0.000    0.000
44   0.033  0.000      NA     NA    0.033    0.033
45   0.008  0.000      NA     NA    0.008    0.008
46   0.008  0.000      NA     NA    0.008    0.008
47   0.010  0.000      NA     NA    0.010    0.010
48   0.001  0.000      NA     NA    0.001    0.001
49   0.132  0.000      NA     NA    0.132    0.132
50  -0.029  0.000      NA     NA   -0.029   -0.029
51   0.027  0.000      NA     NA    0.027    0.027
52   0.004  0.000      NA     NA    0.004    0.004
53   0.065  0.000      NA     NA    0.065    0.065
54   0.004  0.000      NA     NA    0.004    0.004
55   0.058  0.000      NA     NA    0.058    0.058
56   0.044  0.000      NA     NA    0.044    0.044
57   0.001  0.000      NA     NA    0.001    0.001
58   0.054  0.000      NA     NA    0.054    0.054
59  -0.008  0.000      NA     NA   -0.008   -0.008
60   0.003  0.000      NA     NA    0.003    0.003
61  -0.019  0.000      NA     NA   -0.019   -0.019
62   0.010  0.000      NA     NA    0.010    0.010
63  -0.013  0.000      NA     NA   -0.013   -0.013
64  -0.015  0.000      NA     NA   -0.015   -0.015
65   0.000  0.000      NA     NA    0.000    0.000
66   0.051  0.000      NA     NA    0.051    0.051
67   0.002  0.000      NA     NA    0.002    0.002
68   0.042  0.000      NA     NA    0.042    0.042
69   0.018  0.000      NA     NA    0.018    0.018
70   0.018  0.000      NA     NA    0.018    0.018
71   0.021  0.000      NA     NA    0.021    0.021
72   0.000  0.000      NA     NA    0.000    0.000
73   0.047  0.000      NA     NA    0.047    0.047
74   0.008  0.000      NA     NA    0.008    0.008
75  -0.002  0.000      NA     NA   -0.002   -0.002
76   0.035  0.000      NA     NA    0.035    0.035
77   0.009  0.000      NA     NA    0.009    0.009
78  -0.001  0.000      NA     NA   -0.001   -0.001
79   0.213  0.000      NA     NA    0.213    0.213
80   0.061  0.000      NA     NA    0.061    0.061
81   0.061  0.000      NA     NA    0.061    0.061
82   0.044  0.000      NA     NA    0.044    0.044
83   0.006  0.000      NA     NA    0.006    0.006
84   0.146  0.000      NA     NA    0.146    0.146
85   0.035  0.000      NA     NA    0.035    0.035
86   0.003  0.000      NA     NA    0.003    0.003
87   0.002  0.000      NA     NA    0.002    0.002
88   0.213  0.000      NA     NA    0.213    0.213
89   0.049  0.000      NA     NA    0.049    0.049
90   0.003  0.000      NA     NA    0.003    0.003
91   0.062  0.000      NA     NA    0.062    0.062
92   0.002  0.000      NA     NA    0.002    0.002
93   0.005  0.000      NA     NA    0.005    0.005
94   1.000  0.000      NA     NA    1.000    1.000
95   0.000  0.000      NA     NA    0.000    0.000
96   1.262  0.000      NA     NA    1.262    1.262
97   1.100  0.000      NA     NA    1.100    1.100
98   0.225  0.000      NA     NA    0.225    0.225
99   0.606  0.000      NA     NA    0.606    0.606
100  0.196  0.000      NA     NA    0.196    0.196
101  0.562  0.000      NA     NA    0.562    0.562
102  1.300  0.000      NA     NA    1.300    1.300
103  1.175  0.000      NA     NA    1.175    1.175
104  1.300  0.000      NA     NA    1.300    1.300
105  0.124  0.000      NA     NA    0.124    0.124
106  0.529  0.000      NA     NA    0.529    0.529
107  0.045  1.077   0.041  0.967   -2.066    2.155
108  1.436  2.290   0.627  0.531   -3.053    5.924
109  0.440  2.056   0.214  0.831   -3.590    4.471
110 -3.687  2.227  -1.655  0.098   -8.052    0.678
111  2.952  1.445   2.043  0.041    0.119    5.784
112  0.212  0.317   0.667  0.505   -0.410    0.834
113  0.094  0.468   0.201  0.841   -0.822    1.010
114 -0.366  0.495  -0.741  0.459   -1.336    0.603
115  0.250  0.705   0.354  0.723   -1.133    1.632
116 -0.552  0.722  -0.764  0.445   -1.966    0.863
117  0.823  4.116   0.200  0.842   -7.244    8.889

    label            lhs edge            rhs           est           std group
1                         int            Epi  0.000000e+00  0.0000000000      
2       a         Matsmk   ~>            Epi -3.256588e-02 -0.0872133262      
3       b         Matagg   ~>            Epi -1.446987e-02 -0.0264216647      
4       c       FamScore   ~>            Epi  5.638497e-02  0.1240368759      
5       d         EduPar   ~>            Epi -3.844428e-02 -0.0539309112      
6       e       n_trauma   ~>            Epi  8.486733e-02  0.1163122343      
7                    Age   ~>            Epi -9.011778e-02 -0.1187813737      
8                int_dis   ~>            Epi -7.447595e-02 -0.2077303937      
9             medication   ~>            Epi -4.445644e-02 -0.1028146555      
10        contraceptives   ~>            Epi -1.677936e-02 -0.0468014455      
11              cigday_1   ~>            Epi -1.109172e-01 -0.1663967798      
12                    V8   ~>            Epi -8.888111e-02 -0.0366069081      
13      f         Matsmk   ~>          group  4.459326e-02  0.0049084130      
14      g         Matagg   ~>          group  1.435870e+00  0.1077612172      
15      h       FamScore   ~>          group  4.400941e-01  0.0397910044      
16      i         EduPar   ~>          group -3.687103e+00 -0.2125901823      
17      j       n_trauma   ~>          group  2.951804e+00  0.1662739888      
18                   Age   ~>          group -3.468158e+00 -0.1878834602      
19               int_dis   ~>          group  8.022992e-01  0.0919755115      
20            medication   ~>          group  8.750760e-01  0.0831798224      
21        contraceptives   ~>          group  3.125000e-02  0.0035824979      
22              cigday_1   ~>          group  9.678493e+00  0.5967682503      
23                    V8   ~>          group  1.269351e+01  0.2148757204      
24      z            Epi   ~>          group -6.499590e+00 -0.2671393335      
26                   Epi  <->            Epi  2.334010e-02  0.8538634968      
27                 group  <->          group  1.400533e-02  0.0008655314      
28                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
29                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
30                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
31                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
32                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
33                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
34                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
35                Matsmk  <->     medication  4.113924e-03  0.0242997446      
36                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
37                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
38                Matsmk  <->             V8  2.928139e-03  0.0971189320      
39                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
40                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
41                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
42                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
43                Matagg  <->            Age  3.118694e-04  0.0047405101      
44                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
45                Matagg  <->     medication  7.594937e-03  0.0657951695      
46                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
47                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
48                Matagg  <->             V8  8.272067e-04  0.0402393217      
49              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
50              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
51              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
52              FamScore  <->            Age  3.636947e-03  0.0458878230      
53              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
54              FamScore  <->     medication  4.430380e-03  0.0318580293      
55              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
56              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
57              FamScore  <->             V8  7.814844e-04  0.0315547719      
58                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
59                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
60                EduPar  <->            Age  2.762108e-03  0.0546490350      
61                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
62                EduPar  <->     medication  1.017932e-02  0.1147832062      
63                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
64                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
65                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
66              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
67              n_trauma  <->            Age  1.582278e-03  0.0320439451      
68              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
69              n_trauma  <->     medication  1.763110e-02  0.2034979577      
70              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
71              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
72              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
73                   Age  <->            Age  4.748866e-02  1.0000000000      
74                   Age  <->        int_dis  8.090259e-03  0.0805056484      
75                   Age  <->     medication -1.655660e-03 -0.0198700345      
76                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
77                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
78                   Age  <->             V8 -1.333633e-03 -0.0898732659      
79               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
80               int_dis  <->     medication  6.075949e-02  0.3445843938      
81               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
82               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
83               int_dis  <->             V8  5.645344e-03  0.1797788722      
84            medication  <->     medication  1.462025e-01  1.0000000000      
85            medication  <-> contraceptives  3.544304e-02  0.2010075631      
86            medication  <->       cigday_1  3.275316e-03  0.0345360471      
87            medication  <->             V8  2.084232e-03  0.0800493604      
88        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
89        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
90        contraceptives  <->             V8  2.688833e-03  0.0856272484      
91              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
92              cigday_1  <->             V8  1.509276e-03  0.0893623867      
93                    V8  <->             V8  4.636832e-03  1.0000000000      
94                 group  <->          group  1.000000e+00  1.0000000000      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  1.262500e+00  2.8513745747      
97                        int         Matagg  1.100000e+00  3.6436779343      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  1.300000e+00  2.8190466136      
103                       int     medication  1.175000e+00  3.0729848569      
104                       int contraceptives  1.300000e+00  2.8190466136      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1    TRUE   0
2   FALSE   1
3   FALSE   2
4   FALSE   3
5   FALSE   4
6   FALSE   5
7   FALSE   6
8   FALSE   7
9   FALSE   8
10  FALSE   9
11  FALSE  10
12  FALSE  11
13  FALSE  12
14  FALSE  13
15  FALSE  14
16  FALSE  15
17  FALSE  16
18  FALSE  17
19  FALSE  18
20  FALSE  19
21  FALSE  20
22  FALSE  21
23  FALSE  22
24  FALSE  23
26  FALSE  25
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94   TRUE   0
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
Warning in lav_data_full(data = data, group = group, cluster = cluster, :
lavaan WARNING: exogenous variable(s) declared as ordered in data: Matsmk Matagg
int_dis medication contraceptives

Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan
WARNING: correlation between variables group and Epi is (nearly) 1.0
############################
############################
Epi_all 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 128 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         25
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                 0.227       0.227
  Degrees of freedom                                 1           1
  P-value (Chi-square)                           0.634       0.634
  Scaling correction factor                                  1.000
  Shift parameter                                           -0.000
       simple second-order correction                             

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)    0.014    0.025    0.573    0.567
    Matagg     (b)    0.023    0.038    0.590    0.555
    FamScore   (c)   -0.037    0.042   -0.871    0.384
    EduPar     (d)   -0.090    0.060   -1.514    0.130
    n_trauma   (e)    0.025    0.048    0.523    0.601
    Age               0.034    0.064    0.534    0.593
    int_dis           0.023    0.024    0.934    0.350
    medication        0.007    0.030    0.248    0.804
    contrcptvs       -0.016    0.027   -0.583    0.560
    cigday_1          0.022    0.052    0.425    0.671
    V8                0.060    0.306    0.197    0.844
  group ~                                             
    Matsmk     (f)    0.078    1.107    0.071    0.944
    Matagg     (g)    1.249    2.383    0.524    0.600
    FamScore   (h)    0.526    1.914    0.275    0.783
    EduPar     (i)   -2.316    2.797   -0.828    0.408
    n_trauma   (j)    2.090    1.387    1.506    0.132
    Age              -3.306    1.889   -1.750    0.080
    int_dis           1.003    0.828    1.212    0.226
    medication        1.073    0.724    1.482    0.138
    contrcptvs        0.336    0.720    0.466    0.641
    cigday_1         10.127    7.243    1.398    0.162
    V8               12.524   14.939    0.838    0.402
    Epi        (z)   12.386   20.689    0.599    0.549

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.000                           
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         10.125    9.268    1.092    0.275

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.006    0.001    5.129    0.000
   .group             0.010                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.078    1.107    0.071    0.944
    directMatagg      1.249    2.383    0.524    0.600
    directFamScore    0.526    1.914    0.275    0.783
    directEduPar     -2.316    2.797   -0.828    0.408
    directn_trauma    2.090    1.387    1.506    0.132
    EpiMatsmk         0.178    0.432    0.412    0.680
    EpiMatagg         0.281    0.668    0.420    0.674
    EpiFamScore      -0.452    0.917   -0.493    0.622
    EpiEduPar        -1.121    2.019   -0.555    0.579
    Epin_trauma       0.311    0.788    0.394    0.693
    total             0.823    4.116    0.200    0.842

                         npar                          fmin 
                       25.000                         0.001 
                        chisq                            df 
                        0.227                         1.000 
                       pvalue                  chisq.scaled 
                        0.634                         0.227 
                    df.scaled                 pvalue.scaled 
                        1.000                         0.634 
         chisq.scaling.factor                baseline.chisq 
                        1.000                         0.358 
                  baseline.df               baseline.pvalue 
                        1.000                         0.549 
        baseline.chisq.scaled            baseline.df.scaled 
                        0.358                         1.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.549                         1.000 
                          cfi                           tli 
                        1.000                        -0.205 
                         nnfi                           rfi 
                       -0.205                         0.368 
                          nfi                          pnfi 
                        0.368                         0.368 
                          ifi                           rni 
                        1.000                        -0.205 
                   cfi.scaled                    tli.scaled 
                        1.000                        -0.205 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                  nnfi.scaled                   nnfi.robust 
                       -0.205                            NA 
                   rfi.scaled                    nfi.scaled 
                        0.368                         0.368 
                   ifi.scaled                    rni.scaled 
                        1.000                        -0.205 
                   rni.robust                         rmsea 
                           NA                         0.000 
               rmsea.ci.lower                rmsea.ci.upper 
                        0.000                         0.233 
                 rmsea.pvalue                  rmsea.scaled 
                        0.666                         0.000 
        rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
                        0.000                         0.233 
          rmsea.pvalue.scaled                  rmsea.robust 
                        0.666                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.000                            NA 
          rmsea.pvalue.robust                           rmr 
                           NA                         0.037 
                   rmr_nomean                          srmr 
                        0.000                         0.000 
                 srmr_bentler           srmr_bentler_nomean 
                        0.459                         0.000 
                         crmr                   crmr_nomean 
                        0.593                         0.000 
                   srmr_mplus             srmr_mplus_nomean 
                           NA                            NA 
                        cn_05                         cn_01 
                     1340.677                      2314.866 
                          gfi                          agfi 
                        0.995                         0.877 
                         pgfi                           mfi 
                        0.038                         1.005 

               lhs  op                                     rhs          label
1              Epi  ~1                                                       
2              Epi   ~                                  Matsmk              a
3              Epi   ~                                  Matagg              b
4              Epi   ~                                FamScore              c
5              Epi   ~                                  EduPar              d
6              Epi   ~                                n_trauma              e
7              Epi   ~                                     Age               
8              Epi   ~                                 int_dis               
9              Epi   ~                              medication               
10             Epi   ~                          contraceptives               
11             Epi   ~                                cigday_1               
12             Epi   ~                                      V8               
13           group   ~                                  Matsmk              f
14           group   ~                                  Matagg              g
15           group   ~                                FamScore              h
16           group   ~                                  EduPar              i
17           group   ~                                n_trauma              j
18           group   ~                                     Age               
19           group   ~                                 int_dis               
20           group   ~                              medication               
21           group   ~                          contraceptives               
22           group   ~                                cigday_1               
23           group   ~                                      V8               
24           group   ~                                     Epi              z
25           group   |                                      t1               
26             Epi  ~~                                     Epi               
27           group  ~~                                   group               
28          Matsmk  ~~                                  Matsmk               
29          Matsmk  ~~                                  Matagg               
30          Matsmk  ~~                                FamScore               
31          Matsmk  ~~                                  EduPar               
32          Matsmk  ~~                                n_trauma               
33          Matsmk  ~~                                     Age               
34          Matsmk  ~~                                 int_dis               
35          Matsmk  ~~                              medication               
36          Matsmk  ~~                          contraceptives               
37          Matsmk  ~~                                cigday_1               
38          Matsmk  ~~                                      V8               
39          Matagg  ~~                                  Matagg               
40          Matagg  ~~                                FamScore               
41          Matagg  ~~                                  EduPar               
42          Matagg  ~~                                n_trauma               
43          Matagg  ~~                                     Age               
44          Matagg  ~~                                 int_dis               
45          Matagg  ~~                              medication               
46          Matagg  ~~                          contraceptives               
47          Matagg  ~~                                cigday_1               
48          Matagg  ~~                                      V8               
49        FamScore  ~~                                FamScore               
50        FamScore  ~~                                  EduPar               
51        FamScore  ~~                                n_trauma               
52        FamScore  ~~                                     Age               
53        FamScore  ~~                                 int_dis               
54        FamScore  ~~                              medication               
55        FamScore  ~~                          contraceptives               
56        FamScore  ~~                                cigday_1               
57        FamScore  ~~                                      V8               
58          EduPar  ~~                                  EduPar               
59          EduPar  ~~                                n_trauma               
60          EduPar  ~~                                     Age               
61          EduPar  ~~                                 int_dis               
62          EduPar  ~~                              medication               
63          EduPar  ~~                          contraceptives               
64          EduPar  ~~                                cigday_1               
65          EduPar  ~~                                      V8               
66        n_trauma  ~~                                n_trauma               
67        n_trauma  ~~                                     Age               
68        n_trauma  ~~                                 int_dis               
69        n_trauma  ~~                              medication               
70        n_trauma  ~~                          contraceptives               
71        n_trauma  ~~                                cigday_1               
72        n_trauma  ~~                                      V8               
73             Age  ~~                                     Age               
74             Age  ~~                                 int_dis               
75             Age  ~~                              medication               
76             Age  ~~                          contraceptives               
77             Age  ~~                                cigday_1               
78             Age  ~~                                      V8               
79         int_dis  ~~                                 int_dis               
80         int_dis  ~~                              medication               
81         int_dis  ~~                          contraceptives               
82         int_dis  ~~                                cigday_1               
83         int_dis  ~~                                      V8               
84      medication  ~~                              medication               
85      medication  ~~                          contraceptives               
86      medication  ~~                                cigday_1               
87      medication  ~~                                      V8               
88  contraceptives  ~~                          contraceptives               
89  contraceptives  ~~                                cigday_1               
90  contraceptives  ~~                                      V8               
91        cigday_1  ~~                                cigday_1               
92        cigday_1  ~~                                      V8               
93              V8  ~~                                      V8               
94           group ~*~                                   group               
95           group  ~1                                                       
96          Matsmk  ~1                                                       
97          Matagg  ~1                                                       
98        FamScore  ~1                                                       
99          EduPar  ~1                                                       
100       n_trauma  ~1                                                       
101            Age  ~1                                                       
102        int_dis  ~1                                                       
103     medication  ~1                                                       
104 contraceptives  ~1                                                       
105       cigday_1  ~1                                                       
106             V8  ~1                                                       
107   directMatsmk  :=                                       f   directMatsmk
108   directMatagg  :=                                       g   directMatagg
109 directFamScore  :=                                       h directFamScore
110   directEduPar  :=                                       i   directEduPar
111 directn_trauma  :=                                       j directn_trauma
112      EpiMatsmk  :=                                     a*z      EpiMatsmk
113      EpiMatagg  :=                                     b*z      EpiMatagg
114    EpiFamScore  :=                                     c*z    EpiFamScore
115      EpiEduPar  :=                                     d*z      EpiEduPar
116    Epin_trauma  :=                                     e*z    Epin_trauma
117          total  := f+g+h+i+j+(a*z)+(b*z)+(c*z)+(d*z)+(e*z)          total
       est     se      z pvalue ci.lower ci.upper
1    0.000  0.000     NA     NA    0.000    0.000
2    0.014  0.025  0.573  0.567   -0.035    0.064
3    0.023  0.038  0.590  0.555   -0.053    0.098
4   -0.037  0.042 -0.871  0.384   -0.119    0.046
5   -0.090  0.060 -1.514  0.130   -0.208    0.027
6    0.025  0.048  0.523  0.601   -0.069    0.119
7    0.034  0.064  0.534  0.593   -0.091    0.160
8    0.023  0.024  0.934  0.350   -0.025    0.071
9    0.007  0.030  0.248  0.804   -0.051    0.066
10  -0.016  0.027 -0.583  0.560   -0.069    0.037
11   0.022  0.052  0.425  0.671   -0.079    0.123
12   0.060  0.306  0.197  0.844   -0.540    0.660
13   0.078  1.107  0.071  0.944   -2.092    2.248
14   1.249  2.383  0.524  0.600   -3.421    5.919
15   0.526  1.914  0.275  0.783   -3.226    4.278
16  -2.316  2.797 -0.828  0.408   -7.798    3.165
17   2.090  1.387  1.506  0.132   -0.629    4.808
18  -3.306  1.889 -1.750  0.080   -7.007    0.396
19   1.003  0.828  1.212  0.226   -0.619    2.625
20   1.073  0.724  1.482  0.138   -0.346    2.492
21   0.336  0.720  0.466  0.641   -1.076    1.748
22  10.127  7.243  1.398  0.162   -4.070   24.323
23  12.524 14.939  0.838  0.402  -16.756   41.805
24  12.386 20.689  0.599  0.549  -28.163   52.936
25  10.125  9.268  1.092  0.275   -8.040   28.289
26   0.006  0.001  5.129  0.000    0.004    0.009
27   0.010  0.000     NA     NA    0.010    0.010
28   0.196  0.000     NA     NA    0.196    0.196
29   0.049  0.000     NA     NA    0.049    0.049
30  -0.009  0.000     NA     NA   -0.009   -0.009
31  -0.006  0.000     NA     NA   -0.006   -0.006
32   0.007  0.000     NA     NA    0.007    0.007
33  -0.003  0.000     NA     NA   -0.003   -0.003
34   0.022  0.000     NA     NA    0.022    0.022
35   0.004  0.000     NA     NA    0.004    0.004
36   0.022  0.000     NA     NA    0.022    0.022
37   0.017  0.000     NA     NA    0.017    0.017
38   0.003  0.000     NA     NA    0.003    0.003
39   0.091  0.000     NA     NA    0.091    0.091
40   0.034  0.000     NA     NA    0.034    0.034
41  -0.017  0.000     NA     NA   -0.017   -0.017
42   0.007  0.000     NA     NA    0.007    0.007
43   0.000  0.000     NA     NA    0.000    0.000
44   0.033  0.000     NA     NA    0.033    0.033
45   0.008  0.000     NA     NA    0.008    0.008
46   0.008  0.000     NA     NA    0.008    0.008
47   0.010  0.000     NA     NA    0.010    0.010
48   0.001  0.000     NA     NA    0.001    0.001
49   0.132  0.000     NA     NA    0.132    0.132
50  -0.029  0.000     NA     NA   -0.029   -0.029
51   0.027  0.000     NA     NA    0.027    0.027
52   0.004  0.000     NA     NA    0.004    0.004
53   0.065  0.000     NA     NA    0.065    0.065
54   0.004  0.000     NA     NA    0.004    0.004
55   0.058  0.000     NA     NA    0.058    0.058
56   0.044  0.000     NA     NA    0.044    0.044
57   0.001  0.000     NA     NA    0.001    0.001
58   0.054  0.000     NA     NA    0.054    0.054
59  -0.008  0.000     NA     NA   -0.008   -0.008
60   0.003  0.000     NA     NA    0.003    0.003
61  -0.019  0.000     NA     NA   -0.019   -0.019
62   0.010  0.000     NA     NA    0.010    0.010
63  -0.013  0.000     NA     NA   -0.013   -0.013
64  -0.015  0.000     NA     NA   -0.015   -0.015
65   0.000  0.000     NA     NA    0.000    0.000
66   0.051  0.000     NA     NA    0.051    0.051
67   0.002  0.000     NA     NA    0.002    0.002
68   0.042  0.000     NA     NA    0.042    0.042
69   0.018  0.000     NA     NA    0.018    0.018
70   0.018  0.000     NA     NA    0.018    0.018
71   0.021  0.000     NA     NA    0.021    0.021
72   0.000  0.000     NA     NA    0.000    0.000
73   0.047  0.000     NA     NA    0.047    0.047
74   0.008  0.000     NA     NA    0.008    0.008
75  -0.002  0.000     NA     NA   -0.002   -0.002
76   0.035  0.000     NA     NA    0.035    0.035
77   0.009  0.000     NA     NA    0.009    0.009
78  -0.001  0.000     NA     NA   -0.001   -0.001
79   0.213  0.000     NA     NA    0.213    0.213
80   0.061  0.000     NA     NA    0.061    0.061
81   0.061  0.000     NA     NA    0.061    0.061
82   0.044  0.000     NA     NA    0.044    0.044
83   0.006  0.000     NA     NA    0.006    0.006
84   0.146  0.000     NA     NA    0.146    0.146
85   0.035  0.000     NA     NA    0.035    0.035
86   0.003  0.000     NA     NA    0.003    0.003
87   0.002  0.000     NA     NA    0.002    0.002
88   0.213  0.000     NA     NA    0.213    0.213
89   0.049  0.000     NA     NA    0.049    0.049
90   0.003  0.000     NA     NA    0.003    0.003
91   0.062  0.000     NA     NA    0.062    0.062
92   0.002  0.000     NA     NA    0.002    0.002
93   0.005  0.000     NA     NA    0.005    0.005
94   1.000  0.000     NA     NA    1.000    1.000
95   0.000  0.000     NA     NA    0.000    0.000
96   1.262  0.000     NA     NA    1.262    1.262
97   1.100  0.000     NA     NA    1.100    1.100
98   0.225  0.000     NA     NA    0.225    0.225
99   0.606  0.000     NA     NA    0.606    0.606
100  0.196  0.000     NA     NA    0.196    0.196
101  0.562  0.000     NA     NA    0.562    0.562
102  1.300  0.000     NA     NA    1.300    1.300
103  1.175  0.000     NA     NA    1.175    1.175
104  1.300  0.000     NA     NA    1.300    1.300
105  0.124  0.000     NA     NA    0.124    0.124
106  0.529  0.000     NA     NA    0.529    0.529
107  0.078  1.107  0.071  0.944   -2.092    2.248
108  1.249  2.383  0.524  0.600   -3.421    5.919
109  0.526  1.914  0.275  0.783   -3.226    4.278
110 -2.316  2.797 -0.828  0.408   -7.798    3.165
111  2.090  1.387  1.506  0.132   -0.629    4.808
112  0.178  0.432  0.412  0.680   -0.669    1.025
113  0.281  0.668  0.420  0.674   -1.029    1.591
114 -0.452  0.917 -0.493  0.622   -2.251    1.346
115 -1.121  2.019 -0.555  0.579   -5.078    2.836
116  0.311  0.788  0.394  0.693   -1.233    1.855
117  0.823  4.116  0.200  0.842   -7.244    8.889

    label            lhs edge            rhs           est           std group
1                         int            Epi  0.000000e+00  0.0000000000      
2       a         Matsmk   ~>            Epi  1.438673e-02  0.0741179608      
3       b         Matagg   ~>            Epi  2.267876e-02  0.0796629353      
4       c       FamScore   ~>            Epi -3.652791e-02 -0.1545801451      
5       d         EduPar   ~>            Epi -9.048835e-02 -0.2441969196      
6       e       n_trauma   ~>            Epi  2.508125e-02  0.0661264965      
7                    Age   ~>            Epi  3.417168e-02  0.0866454257      
8                int_dis   ~>            Epi  2.287156e-02  0.1227216492      
9             medication   ~>            Epi  7.364855e-03  0.0327661907      
10        contraceptives   ~>            Epi -1.577718e-02 -0.0846554322      
11              cigday_1   ~>            Epi  2.200542e-02  0.0635063412      
12                    V8   ~>            Epi  6.028765e-02  0.0477664964      
13      f         Matsmk   ~>          group  7.806062e-02  0.0085921909      
14      g         Matagg   ~>          group  1.249013e+00  0.0937377367      
15      h       FamScore   ~>          group  5.260575e-01  0.0475633670      
16      i         EduPar   ~>          group -2.316420e+00 -0.1335596766      
17      j       n_trauma   ~>          group  2.089539e+00  0.1177029115      
18                   Age   ~>          group -3.305688e+00 -0.1790818579      
19               int_dis   ~>          group  1.003070e+00  0.1149918509      
20            medication   ~>          group  1.072802e+00  0.1019745517      
21        contraceptives   ~>          group  3.357290e-01  0.0384879490      
22              cigday_1   ~>          group  1.012685e+01  0.6244133483      
23                    V8   ~>          group  1.252446e+01  0.2120139219      
24      z            Epi   ~>          group  1.238624e+01  0.2646366933      
26                   Epi  <->            Epi  6.453078e-03  0.8736461948      
27                 group  <->          group  9.975117e-03  0.0006164638      
28                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
29                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
30                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
31                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
32                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
33                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
34                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
35                Matsmk  <->     medication  4.113924e-03  0.0242997446      
36                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
37                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
38                Matsmk  <->             V8  2.928139e-03  0.0971189320      
39                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
40                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
41                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
42                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
43                Matagg  <->            Age  3.118694e-04  0.0047405101      
44                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
45                Matagg  <->     medication  7.594937e-03  0.0657951695      
46                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
47                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
48                Matagg  <->             V8  8.272067e-04  0.0402393217      
49              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
50              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
51              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
52              FamScore  <->            Age  3.636947e-03  0.0458878230      
53              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
54              FamScore  <->     medication  4.430380e-03  0.0318580293      
55              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
56              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
57              FamScore  <->             V8  7.814844e-04  0.0315547719      
58                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
59                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
60                EduPar  <->            Age  2.762108e-03  0.0546490350      
61                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
62                EduPar  <->     medication  1.017932e-02  0.1147832062      
63                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
64                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
65                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
66              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
67              n_trauma  <->            Age  1.582278e-03  0.0320439451      
68              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
69              n_trauma  <->     medication  1.763110e-02  0.2034979577      
70              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
71              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
72              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
73                   Age  <->            Age  4.748866e-02  1.0000000000      
74                   Age  <->        int_dis  8.090259e-03  0.0805056484      
75                   Age  <->     medication -1.655660e-03 -0.0198700345      
76                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
77                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
78                   Age  <->             V8 -1.333633e-03 -0.0898732659      
79               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
80               int_dis  <->     medication  6.075949e-02  0.3445843938      
81               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
82               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
83               int_dis  <->             V8  5.645344e-03  0.1797788722      
84            medication  <->     medication  1.462025e-01  1.0000000000      
85            medication  <-> contraceptives  3.544304e-02  0.2010075631      
86            medication  <->       cigday_1  3.275316e-03  0.0345360471      
87            medication  <->             V8  2.084232e-03  0.0800493604      
88        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
89        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
90        contraceptives  <->             V8  2.688833e-03  0.0856272484      
91              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
92              cigday_1  <->             V8  1.509276e-03  0.0893623867      
93                    V8  <->             V8  4.636832e-03  1.0000000000      
94                 group  <->          group  1.000000e+00  1.0000000000      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  1.262500e+00  2.8513745747      
97                        int         Matagg  1.100000e+00  3.6436779343      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  1.300000e+00  2.8190466136      
103                       int     medication  1.175000e+00  3.0729848569      
104                       int contraceptives  1.300000e+00  2.8190466136      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1    TRUE   0
2   FALSE   1
3   FALSE   2
4   FALSE   3
5   FALSE   4
6   FALSE   5
7   FALSE   6
8   FALSE   7
9   FALSE   8
10  FALSE   9
11  FALSE  10
12  FALSE  11
13  FALSE  12
14  FALSE  13
15  FALSE  14
16  FALSE  15
17  FALSE  16
18  FALSE  17
19  FALSE  18
20  FALSE  19
21  FALSE  20
22  FALSE  21
23  FALSE  22
24  FALSE  23
26  FALSE  25
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94   TRUE   0
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
Warning in lav_data_full(data = data, group = group, cluster = cluster, :
lavaan WARNING: exogenous variable(s) declared as ordered in data: Matsmk Matagg
int_dis medication contraceptives
############################
############################
Epi_M2 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 118 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         25
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                26.124      26.124
  Degrees of freedom                                 1           1
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.000
  Shift parameter                                           -0.000
       simple second-order correction                             

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)    0.009    0.042    0.217    0.829
    Matagg     (b)   -0.017    0.064   -0.261    0.794
    FamScore   (c)   -0.054    0.063   -0.853    0.393
    EduPar     (d)   -0.010    0.092   -0.109    0.913
    n_trauma   (e)    0.018    0.096    0.188    0.851
    Age              -0.042    0.101   -0.416    0.677
    int_dis          -0.010    0.038   -0.255    0.799
    medication        0.018    0.039    0.453    0.651
    contrcptvs        0.074    0.053    1.390    0.165
    cigday_1         -0.058    0.091   -0.641    0.522
    V8               -0.522    0.239   -2.187    0.029
  group ~                                             
    Matsmk     (f)    0.335    1.112    0.301    0.764
    Matagg     (g)    1.386    2.234    0.620    0.535
    FamScore   (h)   -0.392    1.882   -0.208    0.835
    EduPar     (i)   -3.524    2.208   -1.596    0.110
    n_trauma   (j)    2.558    1.304    1.962    0.050
    Age              -3.246    2.417   -1.343    0.179
    int_dis           1.203    0.762    1.579    0.114
    medication        1.319    0.808    1.632    0.103
    contrcptvs        0.784    0.728    1.076    0.282
    cigday_1          9.894    7.152    1.383    0.167
    V8                8.740   16.605    0.526    0.599
    Epi        (z)   -8.681    0.632  -13.736    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.000                           
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         10.125    9.268    1.092    0.275

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.013    0.002    6.750    0.000
   .group             0.025                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.335    1.112    0.301    0.764
    directMatagg      1.386    2.234    0.620    0.535
    directFamScore   -0.392    1.882   -0.208    0.835
    directEduPar     -3.524    2.208   -1.596    0.110
    directn_trauma    2.558    1.304    1.962    0.050
    EpiMatsmk        -0.078    0.360   -0.217    0.828
    EpiMatagg         0.144    0.549    0.262    0.793
    EpiFamScore       0.466    0.550    0.847    0.397
    EpiEduPar         0.087    0.796    0.109    0.913
    Epin_trauma      -0.158    0.837   -0.188    0.851
    total             0.823    4.116    0.200    0.842

                         npar                          fmin 
                       25.000                         0.163 
                        chisq                            df 
                       26.124                         1.000 
                       pvalue                  chisq.scaled 
                        0.000                        26.124 
                    df.scaled                 pvalue.scaled 
                        1.000                         0.000 
         chisq.scaling.factor                baseline.chisq 
                        1.000                       171.816 
                  baseline.df               baseline.pvalue 
                        1.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                      171.816                         1.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         1.000 
                          cfi                           tli 
                        0.853                         0.853 
                         nnfi                           rfi 
                        0.853                         0.848 
                          nfi                          pnfi 
                        0.848                         0.848 
                          ifi                           rni 
                        0.853                         0.853 
                   cfi.scaled                    tli.scaled 
                        0.853                         0.853 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                  nnfi.scaled                   nnfi.robust 
                        0.853                            NA 
                   rfi.scaled                    nfi.scaled 
                        0.848                         0.848 
                   ifi.scaled                    rni.scaled 
                        0.853                         0.853 
                   rni.robust                         rmsea 
                           NA                         0.564 
               rmsea.ci.lower                rmsea.ci.upper 
                        0.390                         0.760 
                 rmsea.pvalue                  rmsea.scaled 
                        0.000                         0.564 
        rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
                        0.390                         0.760 
          rmsea.pvalue.scaled                  rmsea.robust 
                        0.000                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                           NA                            NA 
          rmsea.pvalue.robust                           rmr 
                           NA                         0.363 
                   rmr_nomean                          srmr 
                        0.000                         0.000 
                 srmr_bentler           srmr_bentler_nomean 
                        3.188                         0.000 
                         crmr                   crmr_nomean 
                        4.116                         0.000 
                   srmr_mplus             srmr_mplus_nomean 
                           NA                            NA 
                        cn_05                         cn_01 
                       12.617                        21.064 
                          gfi                          agfi 
                        0.902                        -1.544 
                         pgfi                           mfi 
                        0.035                         0.853 

               lhs  op                                     rhs          label
1              Epi  ~1                                                       
2              Epi   ~                                  Matsmk              a
3              Epi   ~                                  Matagg              b
4              Epi   ~                                FamScore              c
5              Epi   ~                                  EduPar              d
6              Epi   ~                                n_trauma              e
7              Epi   ~                                     Age               
8              Epi   ~                                 int_dis               
9              Epi   ~                              medication               
10             Epi   ~                          contraceptives               
11             Epi   ~                                cigday_1               
12             Epi   ~                                      V8               
13           group   ~                                  Matsmk              f
14           group   ~                                  Matagg              g
15           group   ~                                FamScore              h
16           group   ~                                  EduPar              i
17           group   ~                                n_trauma              j
18           group   ~                                     Age               
19           group   ~                                 int_dis               
20           group   ~                              medication               
21           group   ~                          contraceptives               
22           group   ~                                cigday_1               
23           group   ~                                      V8               
24           group   ~                                     Epi              z
25           group   |                                      t1               
26             Epi  ~~                                     Epi               
27           group  ~~                                   group               
28          Matsmk  ~~                                  Matsmk               
29          Matsmk  ~~                                  Matagg               
30          Matsmk  ~~                                FamScore               
31          Matsmk  ~~                                  EduPar               
32          Matsmk  ~~                                n_trauma               
33          Matsmk  ~~                                     Age               
34          Matsmk  ~~                                 int_dis               
35          Matsmk  ~~                              medication               
36          Matsmk  ~~                          contraceptives               
37          Matsmk  ~~                                cigday_1               
38          Matsmk  ~~                                      V8               
39          Matagg  ~~                                  Matagg               
40          Matagg  ~~                                FamScore               
41          Matagg  ~~                                  EduPar               
42          Matagg  ~~                                n_trauma               
43          Matagg  ~~                                     Age               
44          Matagg  ~~                                 int_dis               
45          Matagg  ~~                              medication               
46          Matagg  ~~                          contraceptives               
47          Matagg  ~~                                cigday_1               
48          Matagg  ~~                                      V8               
49        FamScore  ~~                                FamScore               
50        FamScore  ~~                                  EduPar               
51        FamScore  ~~                                n_trauma               
52        FamScore  ~~                                     Age               
53        FamScore  ~~                                 int_dis               
54        FamScore  ~~                              medication               
55        FamScore  ~~                          contraceptives               
56        FamScore  ~~                                cigday_1               
57        FamScore  ~~                                      V8               
58          EduPar  ~~                                  EduPar               
59          EduPar  ~~                                n_trauma               
60          EduPar  ~~                                     Age               
61          EduPar  ~~                                 int_dis               
62          EduPar  ~~                              medication               
63          EduPar  ~~                          contraceptives               
64          EduPar  ~~                                cigday_1               
65          EduPar  ~~                                      V8               
66        n_trauma  ~~                                n_trauma               
67        n_trauma  ~~                                     Age               
68        n_trauma  ~~                                 int_dis               
69        n_trauma  ~~                              medication               
70        n_trauma  ~~                          contraceptives               
71        n_trauma  ~~                                cigday_1               
72        n_trauma  ~~                                      V8               
73             Age  ~~                                     Age               
74             Age  ~~                                 int_dis               
75             Age  ~~                              medication               
76             Age  ~~                          contraceptives               
77             Age  ~~                                cigday_1               
78             Age  ~~                                      V8               
79         int_dis  ~~                                 int_dis               
80         int_dis  ~~                              medication               
81         int_dis  ~~                          contraceptives               
82         int_dis  ~~                                cigday_1               
83         int_dis  ~~                                      V8               
84      medication  ~~                              medication               
85      medication  ~~                          contraceptives               
86      medication  ~~                                cigday_1               
87      medication  ~~                                      V8               
88  contraceptives  ~~                          contraceptives               
89  contraceptives  ~~                                cigday_1               
90  contraceptives  ~~                                      V8               
91        cigday_1  ~~                                cigday_1               
92        cigday_1  ~~                                      V8               
93              V8  ~~                                      V8               
94           group ~*~                                   group               
95           group  ~1                                                       
96          Matsmk  ~1                                                       
97          Matagg  ~1                                                       
98        FamScore  ~1                                                       
99          EduPar  ~1                                                       
100       n_trauma  ~1                                                       
101            Age  ~1                                                       
102        int_dis  ~1                                                       
103     medication  ~1                                                       
104 contraceptives  ~1                                                       
105       cigday_1  ~1                                                       
106             V8  ~1                                                       
107   directMatsmk  :=                                       f   directMatsmk
108   directMatagg  :=                                       g   directMatagg
109 directFamScore  :=                                       h directFamScore
110   directEduPar  :=                                       i   directEduPar
111 directn_trauma  :=                                       j directn_trauma
112      EpiMatsmk  :=                                     a*z      EpiMatsmk
113      EpiMatagg  :=                                     b*z      EpiMatagg
114    EpiFamScore  :=                                     c*z    EpiFamScore
115      EpiEduPar  :=                                     d*z      EpiEduPar
116    Epin_trauma  :=                                     e*z    Epin_trauma
117          total  := f+g+h+i+j+(a*z)+(b*z)+(c*z)+(d*z)+(e*z)          total
       est     se       z pvalue ci.lower ci.upper
1    0.000  0.000      NA     NA    0.000    0.000
2    0.009  0.042   0.217  0.829   -0.073    0.091
3   -0.017  0.064  -0.261  0.794   -0.141    0.108
4   -0.054  0.063  -0.853  0.393   -0.177    0.070
5   -0.010  0.092  -0.109  0.913   -0.190    0.170
6    0.018  0.096   0.188  0.851   -0.171    0.207
7   -0.042  0.101  -0.416  0.677   -0.239    0.155
8   -0.010  0.038  -0.255  0.799   -0.083    0.064
9    0.018  0.039   0.453  0.651   -0.060    0.095
10   0.074  0.053   1.390  0.165   -0.030    0.179
11  -0.058  0.091  -0.641  0.522   -0.236    0.120
12  -0.522  0.239  -2.187  0.029   -0.990   -0.054
13   0.335  1.112   0.301  0.764   -1.845    2.515
14   1.386  2.234   0.620  0.535   -2.992    5.765
15  -0.392  1.882  -0.208  0.835   -4.080    3.296
16  -3.524  2.208  -1.596  0.110   -7.851    0.803
17   2.558  1.304   1.962  0.050    0.003    5.113
18  -3.246  2.417  -1.343  0.179   -7.984    1.493
19   1.203  0.762   1.579  0.114   -0.290    2.696
20   1.319  0.808   1.632  0.103   -0.265    2.903
21   0.784  0.728   1.076  0.282   -0.644    2.212
22   9.894  7.152   1.383  0.167   -4.125   23.912
23   8.740 16.605   0.526  0.599  -23.805   41.285
24  -8.681  0.632 -13.736  0.000   -9.920   -7.443
25  10.125  9.268   1.092  0.275   -8.040   28.289
26   0.013  0.002   6.750  0.000    0.009    0.017
27   0.025  0.000      NA     NA    0.025    0.025
28   0.196  0.000      NA     NA    0.196    0.196
29   0.049  0.000      NA     NA    0.049    0.049
30  -0.009  0.000      NA     NA   -0.009   -0.009
31  -0.006  0.000      NA     NA   -0.006   -0.006
32   0.007  0.000      NA     NA    0.007    0.007
33  -0.003  0.000      NA     NA   -0.003   -0.003
34   0.022  0.000      NA     NA    0.022    0.022
35   0.004  0.000      NA     NA    0.004    0.004
36   0.022  0.000      NA     NA    0.022    0.022
37   0.017  0.000      NA     NA    0.017    0.017
38   0.003  0.000      NA     NA    0.003    0.003
39   0.091  0.000      NA     NA    0.091    0.091
40   0.034  0.000      NA     NA    0.034    0.034
41  -0.017  0.000      NA     NA   -0.017   -0.017
42   0.007  0.000      NA     NA    0.007    0.007
43   0.000  0.000      NA     NA    0.000    0.000
44   0.033  0.000      NA     NA    0.033    0.033
45   0.008  0.000      NA     NA    0.008    0.008
46   0.008  0.000      NA     NA    0.008    0.008
47   0.010  0.000      NA     NA    0.010    0.010
48   0.001  0.000      NA     NA    0.001    0.001
49   0.132  0.000      NA     NA    0.132    0.132
50  -0.029  0.000      NA     NA   -0.029   -0.029
51   0.027  0.000      NA     NA    0.027    0.027
52   0.004  0.000      NA     NA    0.004    0.004
53   0.065  0.000      NA     NA    0.065    0.065
54   0.004  0.000      NA     NA    0.004    0.004
55   0.058  0.000      NA     NA    0.058    0.058
56   0.044  0.000      NA     NA    0.044    0.044
57   0.001  0.000      NA     NA    0.001    0.001
58   0.054  0.000      NA     NA    0.054    0.054
59  -0.008  0.000      NA     NA   -0.008   -0.008
60   0.003  0.000      NA     NA    0.003    0.003
61  -0.019  0.000      NA     NA   -0.019   -0.019
62   0.010  0.000      NA     NA    0.010    0.010
63  -0.013  0.000      NA     NA   -0.013   -0.013
64  -0.015  0.000      NA     NA   -0.015   -0.015
65   0.000  0.000      NA     NA    0.000    0.000
66   0.051  0.000      NA     NA    0.051    0.051
67   0.002  0.000      NA     NA    0.002    0.002
68   0.042  0.000      NA     NA    0.042    0.042
69   0.018  0.000      NA     NA    0.018    0.018
70   0.018  0.000      NA     NA    0.018    0.018
71   0.021  0.000      NA     NA    0.021    0.021
72   0.000  0.000      NA     NA    0.000    0.000
73   0.047  0.000      NA     NA    0.047    0.047
74   0.008  0.000      NA     NA    0.008    0.008
75  -0.002  0.000      NA     NA   -0.002   -0.002
76   0.035  0.000      NA     NA    0.035    0.035
77   0.009  0.000      NA     NA    0.009    0.009
78  -0.001  0.000      NA     NA   -0.001   -0.001
79   0.213  0.000      NA     NA    0.213    0.213
80   0.061  0.000      NA     NA    0.061    0.061
81   0.061  0.000      NA     NA    0.061    0.061
82   0.044  0.000      NA     NA    0.044    0.044
83   0.006  0.000      NA     NA    0.006    0.006
84   0.146  0.000      NA     NA    0.146    0.146
85   0.035  0.000      NA     NA    0.035    0.035
86   0.003  0.000      NA     NA    0.003    0.003
87   0.002  0.000      NA     NA    0.002    0.002
88   0.213  0.000      NA     NA    0.213    0.213
89   0.049  0.000      NA     NA    0.049    0.049
90   0.003  0.000      NA     NA    0.003    0.003
91   0.062  0.000      NA     NA    0.062    0.062
92   0.002  0.000      NA     NA    0.002    0.002
93   0.005  0.000      NA     NA    0.005    0.005
94   1.000  0.000      NA     NA    1.000    1.000
95   0.000  0.000      NA     NA    0.000    0.000
96   1.262  0.000      NA     NA    1.262    1.262
97   1.100  0.000      NA     NA    1.100    1.100
98   0.225  0.000      NA     NA    0.225    0.225
99   0.606  0.000      NA     NA    0.606    0.606
100  0.196  0.000      NA     NA    0.196    0.196
101  0.562  0.000      NA     NA    0.562    0.562
102  1.300  0.000      NA     NA    1.300    1.300
103  1.175  0.000      NA     NA    1.175    1.175
104  1.300  0.000      NA     NA    1.300    1.300
105  0.124  0.000      NA     NA    0.124    0.124
106  0.529  0.000      NA     NA    0.529    0.529
107  0.335  1.112   0.301  0.764   -1.845    2.515
108  1.386  2.234   0.620  0.535   -2.992    5.765
109 -0.392  1.882  -0.208  0.835   -4.080    3.296
110 -3.524  2.208  -1.596  0.110   -7.851    0.803
111  2.558  1.304   1.962  0.050    0.003    5.113
112 -0.078  0.360  -0.217  0.828   -0.784    0.628
113  0.144  0.549   0.262  0.793   -0.932    1.219
114  0.466  0.550   0.847  0.397   -0.612    1.543
115  0.087  0.796   0.109  0.913   -1.472    1.647
116 -0.158  0.837  -0.188  0.851   -1.799    1.483
117  0.823  4.116   0.200  0.842   -7.244    8.889

    label            lhs edge            rhs           est           std group
1                         int            Epi  0.000000e+00  0.0000000000      
2       a         Matsmk   ~>            Epi  9.021716e-03  0.0322271126      
3       b         Matagg   ~>            Epi -1.656132e-02 -0.0403369320      
4       c       FamScore   ~>            Epi -5.363064e-02 -0.1573666645      
5       d         EduPar   ~>            Epi -1.003048e-02 -0.0187689440      
6       e       n_trauma   ~>            Epi  1.817114e-02  0.0332184444      
7                    Age   ~>            Epi -4.183865e-02 -0.0735576351      
8                int_dis   ~>            Epi -9.609875e-03 -0.0357531237      
9             medication   ~>            Epi  1.786833e-02  0.0551209296      
10        contraceptives   ~>            Epi  7.415667e-02  0.2758966699      
11              cigday_1   ~>            Epi -5.823698e-02 -0.1165352164      
12                    V8   ~>            Epi -5.220008e-01 -0.2867722018      
13      f         Matsmk   ~>          group  3.345784e-01  0.0368272899      
14      g         Matagg   ~>          group  1.386144e+00  0.1040293512      
15      h       FamScore   ~>          group -3.919695e-01 -0.0354398363      
16      i         EduPar   ~>          group -3.524309e+00 -0.2032038309      
17      j       n_trauma   ~>          group  2.557950e+00  0.1440883617      
18                   Age   ~>          group -3.245643e+00 -0.1758289829      
19               int_dis   ~>          group  1.202936e+00  0.1379045191      
20            medication   ~>          group  1.319145e+00  0.1253905482      
21        contraceptives   ~>          group  7.840853e-01  0.0898874799      
22              cigday_1   ~>          group  9.893837e+00  0.6100462324      
23                    V8   ~>          group  8.739548e+00  0.1479430148      
24      z            Epi   ~>          group -8.681300e+00 -0.2675003898      
26                   Epi  <->            Epi  1.294098e-02  0.8423209242      
27                 group  <->          group  2.470311e-02  0.0015266558      
28                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
29                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
30                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
31                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
32                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
33                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
34                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
35                Matsmk  <->     medication  4.113924e-03  0.0242997446      
36                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
37                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
38                Matsmk  <->             V8  2.928139e-03  0.0971189320      
39                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
40                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
41                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
42                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
43                Matagg  <->            Age  3.118694e-04  0.0047405101      
44                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
45                Matagg  <->     medication  7.594937e-03  0.0657951695      
46                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
47                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
48                Matagg  <->             V8  8.272067e-04  0.0402393217      
49              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
50              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
51              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
52              FamScore  <->            Age  3.636947e-03  0.0458878230      
53              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
54              FamScore  <->     medication  4.430380e-03  0.0318580293      
55              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
56              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
57              FamScore  <->             V8  7.814844e-04  0.0315547719      
58                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
59                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
60                EduPar  <->            Age  2.762108e-03  0.0546490350      
61                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
62                EduPar  <->     medication  1.017932e-02  0.1147832062      
63                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
64                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
65                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
66              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
67              n_trauma  <->            Age  1.582278e-03  0.0320439451      
68              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
69              n_trauma  <->     medication  1.763110e-02  0.2034979577      
70              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
71              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
72              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
73                   Age  <->            Age  4.748866e-02  1.0000000000      
74                   Age  <->        int_dis  8.090259e-03  0.0805056484      
75                   Age  <->     medication -1.655660e-03 -0.0198700345      
76                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
77                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
78                   Age  <->             V8 -1.333633e-03 -0.0898732659      
79               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
80               int_dis  <->     medication  6.075949e-02  0.3445843938      
81               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
82               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
83               int_dis  <->             V8  5.645344e-03  0.1797788722      
84            medication  <->     medication  1.462025e-01  1.0000000000      
85            medication  <-> contraceptives  3.544304e-02  0.2010075631      
86            medication  <->       cigday_1  3.275316e-03  0.0345360471      
87            medication  <->             V8  2.084232e-03  0.0800493604      
88        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
89        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
90        contraceptives  <->             V8  2.688833e-03  0.0856272484      
91              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
92              cigday_1  <->             V8  1.509276e-03  0.0893623867      
93                    V8  <->             V8  4.636832e-03  1.0000000000      
94                 group  <->          group  1.000000e+00  1.0000000000      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  1.262500e+00  2.8513745747      
97                        int         Matagg  1.100000e+00  3.6436779343      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  1.300000e+00  2.8190466136      
103                       int     medication  1.175000e+00  3.0729848569      
104                       int contraceptives  1.300000e+00  2.8190466136      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1    TRUE   0
2   FALSE   1
3   FALSE   2
4   FALSE   3
5   FALSE   4
6   FALSE   5
7   FALSE   6
8   FALSE   7
9   FALSE   8
10  FALSE   9
11  FALSE  10
12  FALSE  11
13  FALSE  12
14  FALSE  13
15  FALSE  14
16  FALSE  15
17  FALSE  16
18  FALSE  17
19  FALSE  18
20  FALSE  19
21  FALSE  20
22  FALSE  21
23  FALSE  22
24  FALSE  23
26  FALSE  25
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94   TRUE   0
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
Warning in lav_data_full(data = data, group = group, cluster = cluster, :
lavaan WARNING: exogenous variable(s) declared as ordered in data: Matsmk Matagg
int_dis medication contraceptives
############################
############################
Epi_M15 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 119 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         25
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                11.201      11.201
  Degrees of freedom                                 1           1
  P-value (Chi-square)                           0.001       0.001
  Scaling correction factor                                  1.000
  Shift parameter                                            0.000
       simple second-order correction                             

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)   -0.055    0.057   -0.964    0.335
    Matagg     (b)    0.074    0.106    0.695    0.487
    FamScore   (c)    0.113    0.082    1.378    0.168
    EduPar     (d)    0.229    0.104    2.213    0.027
    n_trauma   (e)   -0.062    0.089   -0.701    0.483
    Age              -0.088    0.121   -0.727    0.467
    int_dis          -0.065    0.047   -1.378    0.168
    medication       -0.024    0.056   -0.433    0.665
    contrcptvs        0.032    0.055    0.579    0.562
    cigday_1         -0.052    0.113   -0.458    0.647
    V8                0.007    0.271    0.026    0.979
  group ~                                             
    Matsmk     (f)   -0.073    1.061   -0.069    0.945
    Matagg     (g)    1.971    2.351    0.838    0.402
    FamScore   (h)    0.746    1.901    0.392    0.695
    EduPar     (i)   -2.071    2.241   -0.924    0.355
    n_trauma   (j)    2.029    1.289    1.574    0.115
    Age              -3.407    2.353   -1.448    0.148
    int_dis           0.899    0.769    1.169    0.242
    medication        1.021    0.729    1.400    0.161
    contrcptvs        0.331    0.694    0.476    0.634
    cigday_1         10.090    7.086    1.424    0.154
    V8               13.314   16.711    0.797    0.426
    Epi        (z)   -5.965    1.303   -4.578    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.000                           
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         10.125    9.268    1.092    0.275

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.025    0.005    5.557    0.000
   .group             0.102                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk     -0.073    1.061   -0.069    0.945
    directMatagg      1.971    2.351    0.838    0.402
    directFamScore    0.746    1.901    0.392    0.695
    directEduPar     -2.071    2.241   -0.924    0.355
    directn_trauma    2.029    1.289    1.574    0.115
    EpiMatsmk         0.329    0.338    0.976    0.329
    EpiMatagg        -0.441    0.632   -0.697    0.486
    EpiFamScore      -0.673    0.538   -1.249    0.212
    EpiEduPar        -1.367    0.653   -2.093    0.036
    Epin_trauma       0.371    0.547    0.679    0.497
    total             0.823    4.116    0.200    0.842

                         npar                          fmin 
                       25.000                         0.070 
                        chisq                            df 
                       11.201                         1.000 
                       pvalue                  chisq.scaled 
                        0.001                        11.201 
                    df.scaled                 pvalue.scaled 
                        1.000                         0.001 
         chisq.scaling.factor                baseline.chisq 
                        1.000                        30.016 
                  baseline.df               baseline.pvalue 
                        1.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                       30.016                         1.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         1.000 
                          cfi                           tli 
                        0.648                         0.648 
                         nnfi                           rfi 
                        0.648                         0.627 
                          nfi                          pnfi 
                        0.627                         0.627 
                          ifi                           rni 
                        0.648                         0.648 
                   cfi.scaled                    tli.scaled 
                        0.648                         0.648 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                  nnfi.scaled                   nnfi.robust 
                        0.648                            NA 
                   rfi.scaled                    nfi.scaled 
                        0.627                         0.627 
                   ifi.scaled                    rni.scaled 
                        0.648                         0.648 
                   rni.robust                         rmsea 
                           NA                         0.359 
               rmsea.ci.lower                rmsea.ci.upper 
                        0.191                         0.562 
                 rmsea.pvalue                  rmsea.scaled 
                        0.002                         0.359 
        rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
                        0.191                         0.562 
          rmsea.pvalue.scaled                  rmsea.robust 
                        0.002                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                           NA                            NA 
          rmsea.pvalue.robust                           rmr 
                           NA                         0.284 
                   rmr_nomean                          srmr 
                        0.000                         0.000 
                 srmr_bentler           srmr_bentler_nomean 
                        1.788                         0.000 
                         crmr                   crmr_nomean 
                        2.308                         0.000 
                   srmr_mplus             srmr_mplus_nomean 
                           NA                            NA 
                        cn_05                         cn_01 
                       28.094                        47.797 
                          gfi                          agfi 
                        0.887                        -1.941 
                         pgfi                           mfi 
                        0.034                         0.937 

               lhs  op                                     rhs          label
1              Epi  ~1                                                       
2              Epi   ~                                  Matsmk              a
3              Epi   ~                                  Matagg              b
4              Epi   ~                                FamScore              c
5              Epi   ~                                  EduPar              d
6              Epi   ~                                n_trauma              e
7              Epi   ~                                     Age               
8              Epi   ~                                 int_dis               
9              Epi   ~                              medication               
10             Epi   ~                          contraceptives               
11             Epi   ~                                cigday_1               
12             Epi   ~                                      V8               
13           group   ~                                  Matsmk              f
14           group   ~                                  Matagg              g
15           group   ~                                FamScore              h
16           group   ~                                  EduPar              i
17           group   ~                                n_trauma              j
18           group   ~                                     Age               
19           group   ~                                 int_dis               
20           group   ~                              medication               
21           group   ~                          contraceptives               
22           group   ~                                cigday_1               
23           group   ~                                      V8               
24           group   ~                                     Epi              z
25           group   |                                      t1               
26             Epi  ~~                                     Epi               
27           group  ~~                                   group               
28          Matsmk  ~~                                  Matsmk               
29          Matsmk  ~~                                  Matagg               
30          Matsmk  ~~                                FamScore               
31          Matsmk  ~~                                  EduPar               
32          Matsmk  ~~                                n_trauma               
33          Matsmk  ~~                                     Age               
34          Matsmk  ~~                                 int_dis               
35          Matsmk  ~~                              medication               
36          Matsmk  ~~                          contraceptives               
37          Matsmk  ~~                                cigday_1               
38          Matsmk  ~~                                      V8               
39          Matagg  ~~                                  Matagg               
40          Matagg  ~~                                FamScore               
41          Matagg  ~~                                  EduPar               
42          Matagg  ~~                                n_trauma               
43          Matagg  ~~                                     Age               
44          Matagg  ~~                                 int_dis               
45          Matagg  ~~                              medication               
46          Matagg  ~~                          contraceptives               
47          Matagg  ~~                                cigday_1               
48          Matagg  ~~                                      V8               
49        FamScore  ~~                                FamScore               
50        FamScore  ~~                                  EduPar               
51        FamScore  ~~                                n_trauma               
52        FamScore  ~~                                     Age               
53        FamScore  ~~                                 int_dis               
54        FamScore  ~~                              medication               
55        FamScore  ~~                          contraceptives               
56        FamScore  ~~                                cigday_1               
57        FamScore  ~~                                      V8               
58          EduPar  ~~                                  EduPar               
59          EduPar  ~~                                n_trauma               
60          EduPar  ~~                                     Age               
61          EduPar  ~~                                 int_dis               
62          EduPar  ~~                              medication               
63          EduPar  ~~                          contraceptives               
64          EduPar  ~~                                cigday_1               
65          EduPar  ~~                                      V8               
66        n_trauma  ~~                                n_trauma               
67        n_trauma  ~~                                     Age               
68        n_trauma  ~~                                 int_dis               
69        n_trauma  ~~                              medication               
70        n_trauma  ~~                          contraceptives               
71        n_trauma  ~~                                cigday_1               
72        n_trauma  ~~                                      V8               
73             Age  ~~                                     Age               
74             Age  ~~                                 int_dis               
75             Age  ~~                              medication               
76             Age  ~~                          contraceptives               
77             Age  ~~                                cigday_1               
78             Age  ~~                                      V8               
79         int_dis  ~~                                 int_dis               
80         int_dis  ~~                              medication               
81         int_dis  ~~                          contraceptives               
82         int_dis  ~~                                cigday_1               
83         int_dis  ~~                                      V8               
84      medication  ~~                              medication               
85      medication  ~~                          contraceptives               
86      medication  ~~                                cigday_1               
87      medication  ~~                                      V8               
88  contraceptives  ~~                          contraceptives               
89  contraceptives  ~~                                cigday_1               
90  contraceptives  ~~                                      V8               
91        cigday_1  ~~                                cigday_1               
92        cigday_1  ~~                                      V8               
93              V8  ~~                                      V8               
94           group ~*~                                   group               
95           group  ~1                                                       
96          Matsmk  ~1                                                       
97          Matagg  ~1                                                       
98        FamScore  ~1                                                       
99          EduPar  ~1                                                       
100       n_trauma  ~1                                                       
101            Age  ~1                                                       
102        int_dis  ~1                                                       
103     medication  ~1                                                       
104 contraceptives  ~1                                                       
105       cigday_1  ~1                                                       
106             V8  ~1                                                       
107   directMatsmk  :=                                       f   directMatsmk
108   directMatagg  :=                                       g   directMatagg
109 directFamScore  :=                                       h directFamScore
110   directEduPar  :=                                       i   directEduPar
111 directn_trauma  :=                                       j directn_trauma
112      EpiMatsmk  :=                                     a*z      EpiMatsmk
113      EpiMatagg  :=                                     b*z      EpiMatagg
114    EpiFamScore  :=                                     c*z    EpiFamScore
115      EpiEduPar  :=                                     d*z      EpiEduPar
116    Epin_trauma  :=                                     e*z    Epin_trauma
117          total  := f+g+h+i+j+(a*z)+(b*z)+(c*z)+(d*z)+(e*z)          total
       est     se      z pvalue ci.lower ci.upper
1    0.000  0.000     NA     NA    0.000    0.000
2   -0.055  0.057 -0.964  0.335   -0.168    0.057
3    0.074  0.106  0.695  0.487   -0.134    0.282
4    0.113  0.082  1.378  0.168   -0.048    0.273
5    0.229  0.104  2.213  0.027    0.026    0.432
6   -0.062  0.089 -0.701  0.483   -0.236    0.112
7   -0.088  0.121 -0.727  0.467   -0.325    0.149
8   -0.065  0.047 -1.378  0.168   -0.157    0.027
9   -0.024  0.056 -0.433  0.665   -0.133    0.085
10   0.032  0.055  0.579  0.562   -0.076    0.140
11  -0.052  0.113 -0.458  0.647   -0.274    0.170
12   0.007  0.271  0.026  0.979   -0.524    0.539
13  -0.073  1.061 -0.069  0.945   -2.152    2.006
14   1.971  2.351  0.838  0.402   -2.637    6.579
15   0.746  1.901  0.392  0.695   -2.980    4.472
16  -2.071  2.241 -0.924  0.355   -6.462    2.321
17   2.029  1.289  1.574  0.115   -0.498    4.556
18  -3.407  2.353 -1.448  0.148   -8.018    1.204
19   0.899  0.769  1.169  0.242   -0.608    2.406
20   1.021  0.729  1.400  0.161   -0.408    2.449
21   0.331  0.694  0.476  0.634   -1.030    1.691
22  10.090  7.086  1.424  0.154   -3.798   23.979
23  13.314 16.711  0.797  0.426  -19.439   46.066
24  -5.965  1.303 -4.578  0.000   -8.519   -3.411
25  10.125  9.268  1.092  0.275   -8.040   28.289
26   0.025  0.005  5.557  0.000    0.016    0.034
27   0.102  0.000     NA     NA    0.102    0.102
28   0.196  0.000     NA     NA    0.196    0.196
29   0.049  0.000     NA     NA    0.049    0.049
30  -0.009  0.000     NA     NA   -0.009   -0.009
31  -0.006  0.000     NA     NA   -0.006   -0.006
32   0.007  0.000     NA     NA    0.007    0.007
33  -0.003  0.000     NA     NA   -0.003   -0.003
34   0.022  0.000     NA     NA    0.022    0.022
35   0.004  0.000     NA     NA    0.004    0.004
36   0.022  0.000     NA     NA    0.022    0.022
37   0.017  0.000     NA     NA    0.017    0.017
38   0.003  0.000     NA     NA    0.003    0.003
39   0.091  0.000     NA     NA    0.091    0.091
40   0.034  0.000     NA     NA    0.034    0.034
41  -0.017  0.000     NA     NA   -0.017   -0.017
42   0.007  0.000     NA     NA    0.007    0.007
43   0.000  0.000     NA     NA    0.000    0.000
44   0.033  0.000     NA     NA    0.033    0.033
45   0.008  0.000     NA     NA    0.008    0.008
46   0.008  0.000     NA     NA    0.008    0.008
47   0.010  0.000     NA     NA    0.010    0.010
48   0.001  0.000     NA     NA    0.001    0.001
49   0.132  0.000     NA     NA    0.132    0.132
50  -0.029  0.000     NA     NA   -0.029   -0.029
51   0.027  0.000     NA     NA    0.027    0.027
52   0.004  0.000     NA     NA    0.004    0.004
53   0.065  0.000     NA     NA    0.065    0.065
54   0.004  0.000     NA     NA    0.004    0.004
55   0.058  0.000     NA     NA    0.058    0.058
56   0.044  0.000     NA     NA    0.044    0.044
57   0.001  0.000     NA     NA    0.001    0.001
58   0.054  0.000     NA     NA    0.054    0.054
59  -0.008  0.000     NA     NA   -0.008   -0.008
60   0.003  0.000     NA     NA    0.003    0.003
61  -0.019  0.000     NA     NA   -0.019   -0.019
62   0.010  0.000     NA     NA    0.010    0.010
63  -0.013  0.000     NA     NA   -0.013   -0.013
64  -0.015  0.000     NA     NA   -0.015   -0.015
65   0.000  0.000     NA     NA    0.000    0.000
66   0.051  0.000     NA     NA    0.051    0.051
67   0.002  0.000     NA     NA    0.002    0.002
68   0.042  0.000     NA     NA    0.042    0.042
69   0.018  0.000     NA     NA    0.018    0.018
70   0.018  0.000     NA     NA    0.018    0.018
71   0.021  0.000     NA     NA    0.021    0.021
72   0.000  0.000     NA     NA    0.000    0.000
73   0.047  0.000     NA     NA    0.047    0.047
74   0.008  0.000     NA     NA    0.008    0.008
75  -0.002  0.000     NA     NA   -0.002   -0.002
76   0.035  0.000     NA     NA    0.035    0.035
77   0.009  0.000     NA     NA    0.009    0.009
78  -0.001  0.000     NA     NA   -0.001   -0.001
79   0.213  0.000     NA     NA    0.213    0.213
80   0.061  0.000     NA     NA    0.061    0.061
81   0.061  0.000     NA     NA    0.061    0.061
82   0.044  0.000     NA     NA    0.044    0.044
83   0.006  0.000     NA     NA    0.006    0.006
84   0.146  0.000     NA     NA    0.146    0.146
85   0.035  0.000     NA     NA    0.035    0.035
86   0.003  0.000     NA     NA    0.003    0.003
87   0.002  0.000     NA     NA    0.002    0.002
88   0.213  0.000     NA     NA    0.213    0.213
89   0.049  0.000     NA     NA    0.049    0.049
90   0.003  0.000     NA     NA    0.003    0.003
91   0.062  0.000     NA     NA    0.062    0.062
92   0.002  0.000     NA     NA    0.002    0.002
93   0.005  0.000     NA     NA    0.005    0.005
94   1.000  0.000     NA     NA    1.000    1.000
95   0.000  0.000     NA     NA    0.000    0.000
96   1.262  0.000     NA     NA    1.262    1.262
97   1.100  0.000     NA     NA    1.100    1.100
98   0.225  0.000     NA     NA    0.225    0.225
99   0.606  0.000     NA     NA    0.606    0.606
100  0.196  0.000     NA     NA    0.196    0.196
101  0.562  0.000     NA     NA    0.562    0.562
102  1.300  0.000     NA     NA    1.300    1.300
103  1.175  0.000     NA     NA    1.175    1.175
104  1.300  0.000     NA     NA    1.300    1.300
105  0.124  0.000     NA     NA    0.124    0.124
106  0.529  0.000     NA     NA    0.529    0.529
107 -0.073  1.061 -0.069  0.945   -2.152    2.006
108  1.971  2.351  0.838  0.402   -2.637    6.579
109  0.746  1.901  0.392  0.695   -2.980    4.472
110 -2.071  2.241 -0.924  0.355   -6.462    2.321
111  2.029  1.289  1.574  0.115   -0.498    4.556
112  0.329  0.338  0.976  0.329   -0.332    0.991
113 -0.441  0.632 -0.697  0.486   -1.680    0.799
114 -0.673  0.538 -1.249  0.212   -1.728    0.383
115 -1.367  0.653 -2.093  0.036   -2.647   -0.087
116  0.371  0.547  0.679  0.497   -0.700    1.442
117  0.823  4.116  0.200  0.842   -7.244    8.889

    label            lhs edge            rhs           est           std group
1                         int            Epi  0.000000e+00  0.0000000000      
2       a         Matsmk   ~>            Epi -5.522110e-02 -0.1398958703      
3       b         Matagg   ~>            Epi  7.387035e-02  0.1275984992      
4       c       FamScore   ~>            Epi  1.127425e-01  0.2346145223      
5       d         EduPar   ~>            Epi  2.291129e-01  0.3040432826      
6       e       n_trauma   ~>            Epi -6.219036e-02 -0.0806283423      
7                    Age   ~>            Epi -8.796430e-02 -0.1096791636      
8                int_dis   ~>            Epi -6.492648e-02 -0.1713111729      
9             medication   ~>            Epi -2.404003e-02 -0.0525938818      
10        contraceptives   ~>            Epi  3.188492e-02  0.0841296471      
11              cigday_1   ~>            Epi -5.184015e-02 -0.0735685414      
12                    V8   ~>            Epi  7.148755e-03  0.0027852478      
13      f         Matsmk   ~>          group -7.313450e-02 -0.0080499691      
14      g         Matagg   ~>          group  1.970553e+00  0.1478888885      
15      h       FamScore   ~>          group  7.461208e-01  0.0674603441      
16      i         EduPar   ~>          group -2.070577e+00 -0.1193848885      
17      j       n_trauma   ~>          group  2.029237e+00  0.1143061490      
18                   Age   ~>          group -3.407134e+00 -0.1845776020      
19               int_dis   ~>          group  8.990774e-01  0.1030701633      
20            medication   ~>          group  1.020626e+00  0.0970150375      
21        contraceptives   ~>          group  3.305018e-01  0.0378887036      
22              cigday_1   ~>          group  1.009018e+01  0.6221527723      
23                    V8   ~>          group  1.331385e+01  0.2253767836      
24      z            Epi   ~>          group -5.964978e+00 -0.2591677296      
26                   Epi  <->            Epi  2.524032e-02  0.8263046858      
27                 group  <->          group  1.019252e-01  0.0062989945      
28                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
29                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
30                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
31                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
32                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
33                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
34                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
35                Matsmk  <->     medication  4.113924e-03  0.0242997446      
36                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
37                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
38                Matsmk  <->             V8  2.928139e-03  0.0971189320      
39                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
40                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
41                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
42                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
43                Matagg  <->            Age  3.118694e-04  0.0047405101      
44                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
45                Matagg  <->     medication  7.594937e-03  0.0657951695      
46                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
47                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
48                Matagg  <->             V8  8.272067e-04  0.0402393217      
49              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
50              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
51              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
52              FamScore  <->            Age  3.636947e-03  0.0458878230      
53              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
54              FamScore  <->     medication  4.430380e-03  0.0318580293      
55              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
56              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
57              FamScore  <->             V8  7.814844e-04  0.0315547719      
58                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
59                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
60                EduPar  <->            Age  2.762108e-03  0.0546490350      
61                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
62                EduPar  <->     medication  1.017932e-02  0.1147832062      
63                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
64                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
65                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
66              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
67              n_trauma  <->            Age  1.582278e-03  0.0320439451      
68              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
69              n_trauma  <->     medication  1.763110e-02  0.2034979577      
70              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
71              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
72              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
73                   Age  <->            Age  4.748866e-02  1.0000000000      
74                   Age  <->        int_dis  8.090259e-03  0.0805056484      
75                   Age  <->     medication -1.655660e-03 -0.0198700345      
76                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
77                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
78                   Age  <->             V8 -1.333633e-03 -0.0898732659      
79               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
80               int_dis  <->     medication  6.075949e-02  0.3445843938      
81               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
82               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
83               int_dis  <->             V8  5.645344e-03  0.1797788722      
84            medication  <->     medication  1.462025e-01  1.0000000000      
85            medication  <-> contraceptives  3.544304e-02  0.2010075631      
86            medication  <->       cigday_1  3.275316e-03  0.0345360471      
87            medication  <->             V8  2.084232e-03  0.0800493604      
88        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
89        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
90        contraceptives  <->             V8  2.688833e-03  0.0856272484      
91              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
92              cigday_1  <->             V8  1.509276e-03  0.0893623867      
93                    V8  <->             V8  4.636832e-03  1.0000000000      
94                 group  <->          group  1.000000e+00  1.0000000000      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  1.262500e+00  2.8513745747      
97                        int         Matagg  1.100000e+00  3.6436779343      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  1.300000e+00  2.8190466136      
103                       int     medication  1.175000e+00  3.0729848569      
104                       int contraceptives  1.300000e+00  2.8190466136      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1    TRUE   0
2   FALSE   1
3   FALSE   2
4   FALSE   3
5   FALSE   4
6   FALSE   5
7   FALSE   6
8   FALSE   7
9   FALSE   8
10  FALSE   9
11  FALSE  10
12  FALSE  11
13  FALSE  12
14  FALSE  13
15  FALSE  14
16  FALSE  15
17  FALSE  16
18  FALSE  17
19  FALSE  18
20  FALSE  19
21  FALSE  20
22  FALSE  21
23  FALSE  22
24  FALSE  23
26  FALSE  25
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94   TRUE   0
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
Warning in lav_data_full(data = data, group = group, cluster = cluster, :
lavaan WARNING: exogenous variable(s) declared as ordered in data: Matsmk Matagg
int_dis medication contraceptives

Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan
WARNING: correlation between variables group and Epi is (nearly) 1.0
############################
############################
Epi_M_all 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 123 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         25
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                 0.014       0.014
  Degrees of freedom                                 1           1
  P-value (Chi-square)                           0.906       0.906
  Scaling correction factor                                  1.000
  Shift parameter                                           -0.000
       simple second-order correction                             

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)    0.025    0.082    0.301    0.764
    Matagg     (b)    0.132    0.124    1.068    0.285
    FamScore   (c)   -0.102    0.109   -0.934    0.350
    EduPar     (d)   -0.281    0.169   -1.658    0.097
    n_trauma   (e)    0.074    0.126    0.589    0.556
    Age               0.122    0.179    0.679    0.497
    int_dis           0.085    0.074    1.148    0.251
    medication        0.050    0.080    0.623    0.533
    contrcptvs       -0.074    0.084   -0.872    0.383
    cigday_1          0.168    0.140    1.205    0.228
    V8                0.285    1.060    0.268    0.788
  group ~                                             
    Matsmk     (f)    0.161    1.017    0.158    0.874
    Matagg     (g)    1.018    2.327    0.437    0.662
    FamScore   (h)    0.468    1.959    0.239    0.811
    EduPar     (i)   -2.348    2.257   -1.040    0.298
    n_trauma   (j)    2.111    1.316    1.604    0.109
    Age              -3.354    2.203   -1.523    0.128
    int_dis           0.955    0.779    1.227    0.220
    medication        0.970    0.728    1.333    0.183
    contrcptvs        0.426    0.665    0.641    0.522
    cigday_1          9.746    7.183    1.357    0.175
    V8               12.167   14.326    0.849    0.396
    Epi        (z)    3.880    1.952    1.988    0.047

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.000                           
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         10.125    9.268    1.092    0.275

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.065    0.018    3.666    0.000
   .group             0.016                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.161    1.017    0.158    0.874
    directMatagg      1.018    2.327    0.437    0.662
    directFamScore    0.468    1.959    0.239    0.811
    directEduPar     -2.348    2.257   -1.040    0.298
    directn_trauma    2.111    1.316    1.604    0.109
    EpiMatsmk         0.095    0.322    0.296    0.767
    EpiMatagg         0.512    0.526    0.973    0.330
    EpiFamScore      -0.394    0.458   -0.861    0.389
    EpiEduPar        -1.089    0.818   -1.332    0.183
    Epin_trauma       0.289    0.512    0.564    0.573
    total             0.823    4.116    0.200    0.842

                         npar                          fmin 
                       25.000                         0.000 
                        chisq                            df 
                        0.014                         1.000 
                       pvalue                  chisq.scaled 
                        0.906                         0.014 
                    df.scaled                 pvalue.scaled 
                        1.000                         0.906 
         chisq.scaling.factor                baseline.chisq 
                        1.000                         5.965 
                  baseline.df               baseline.pvalue 
                        1.000                         0.015 
        baseline.chisq.scaled            baseline.df.scaled 
                        5.965                         1.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.015                         1.000 
                          cfi                           tli 
                        1.000                         1.199 
                         nnfi                           rfi 
                        1.199                         0.998 
                          nfi                          pnfi 
                        0.998                         0.998 
                          ifi                           rni 
                        1.199                         1.199 
                   cfi.scaled                    tli.scaled 
                        1.000                         1.199 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                  nnfi.scaled                   nnfi.robust 
                        1.199                            NA 
                   rfi.scaled                    nfi.scaled 
                        0.998                         0.998 
                   ifi.scaled                    rni.scaled 
                        1.199                         1.199 
                   rni.robust                         rmsea 
                           NA                         0.000 
               rmsea.ci.lower                rmsea.ci.upper 
                        0.000                         0.127 
                 rmsea.pvalue                  rmsea.scaled 
                        0.915                         0.000 
        rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
                        0.000                         0.127 
          rmsea.pvalue.scaled                  rmsea.robust 
                        0.915                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.000                            NA 
          rmsea.pvalue.robust                           rmr 
                           NA                         0.031 
                   rmr_nomean                          srmr 
                        0.000                         0.000 
                 srmr_bentler           srmr_bentler_nomean 
                        0.122                         0.000 
                         crmr                   crmr_nomean 
                        0.157                         0.000 
                   srmr_mplus             srmr_mplus_nomean 
                           NA                            NA 
                        cn_05                         cn_01 
                    21767.257                     37595.276 
                          gfi                          agfi 
                        1.000                         0.992 
                         pgfi                           mfi 
                        0.038                         1.006 

               lhs  op                                     rhs          label
1              Epi  ~1                                                       
2              Epi   ~                                  Matsmk              a
3              Epi   ~                                  Matagg              b
4              Epi   ~                                FamScore              c
5              Epi   ~                                  EduPar              d
6              Epi   ~                                n_trauma              e
7              Epi   ~                                     Age               
8              Epi   ~                                 int_dis               
9              Epi   ~                              medication               
10             Epi   ~                          contraceptives               
11             Epi   ~                                cigday_1               
12             Epi   ~                                      V8               
13           group   ~                                  Matsmk              f
14           group   ~                                  Matagg              g
15           group   ~                                FamScore              h
16           group   ~                                  EduPar              i
17           group   ~                                n_trauma              j
18           group   ~                                     Age               
19           group   ~                                 int_dis               
20           group   ~                              medication               
21           group   ~                          contraceptives               
22           group   ~                                cigday_1               
23           group   ~                                      V8               
24           group   ~                                     Epi              z
25           group   |                                      t1               
26             Epi  ~~                                     Epi               
27           group  ~~                                   group               
28          Matsmk  ~~                                  Matsmk               
29          Matsmk  ~~                                  Matagg               
30          Matsmk  ~~                                FamScore               
31          Matsmk  ~~                                  EduPar               
32          Matsmk  ~~                                n_trauma               
33          Matsmk  ~~                                     Age               
34          Matsmk  ~~                                 int_dis               
35          Matsmk  ~~                              medication               
36          Matsmk  ~~                          contraceptives               
37          Matsmk  ~~                                cigday_1               
38          Matsmk  ~~                                      V8               
39          Matagg  ~~                                  Matagg               
40          Matagg  ~~                                FamScore               
41          Matagg  ~~                                  EduPar               
42          Matagg  ~~                                n_trauma               
43          Matagg  ~~                                     Age               
44          Matagg  ~~                                 int_dis               
45          Matagg  ~~                              medication               
46          Matagg  ~~                          contraceptives               
47          Matagg  ~~                                cigday_1               
48          Matagg  ~~                                      V8               
49        FamScore  ~~                                FamScore               
50        FamScore  ~~                                  EduPar               
51        FamScore  ~~                                n_trauma               
52        FamScore  ~~                                     Age               
53        FamScore  ~~                                 int_dis               
54        FamScore  ~~                              medication               
55        FamScore  ~~                          contraceptives               
56        FamScore  ~~                                cigday_1               
57        FamScore  ~~                                      V8               
58          EduPar  ~~                                  EduPar               
59          EduPar  ~~                                n_trauma               
60          EduPar  ~~                                     Age               
61          EduPar  ~~                                 int_dis               
62          EduPar  ~~                              medication               
63          EduPar  ~~                          contraceptives               
64          EduPar  ~~                                cigday_1               
65          EduPar  ~~                                      V8               
66        n_trauma  ~~                                n_trauma               
67        n_trauma  ~~                                     Age               
68        n_trauma  ~~                                 int_dis               
69        n_trauma  ~~                              medication               
70        n_trauma  ~~                          contraceptives               
71        n_trauma  ~~                                cigday_1               
72        n_trauma  ~~                                      V8               
73             Age  ~~                                     Age               
74             Age  ~~                                 int_dis               
75             Age  ~~                              medication               
76             Age  ~~                          contraceptives               
77             Age  ~~                                cigday_1               
78             Age  ~~                                      V8               
79         int_dis  ~~                                 int_dis               
80         int_dis  ~~                              medication               
81         int_dis  ~~                          contraceptives               
82         int_dis  ~~                                cigday_1               
83         int_dis  ~~                                      V8               
84      medication  ~~                              medication               
85      medication  ~~                          contraceptives               
86      medication  ~~                                cigday_1               
87      medication  ~~                                      V8               
88  contraceptives  ~~                          contraceptives               
89  contraceptives  ~~                                cigday_1               
90  contraceptives  ~~                                      V8               
91        cigday_1  ~~                                cigday_1               
92        cigday_1  ~~                                      V8               
93              V8  ~~                                      V8               
94           group ~*~                                   group               
95           group  ~1                                                       
96          Matsmk  ~1                                                       
97          Matagg  ~1                                                       
98        FamScore  ~1                                                       
99          EduPar  ~1                                                       
100       n_trauma  ~1                                                       
101            Age  ~1                                                       
102        int_dis  ~1                                                       
103     medication  ~1                                                       
104 contraceptives  ~1                                                       
105       cigday_1  ~1                                                       
106             V8  ~1                                                       
107   directMatsmk  :=                                       f   directMatsmk
108   directMatagg  :=                                       g   directMatagg
109 directFamScore  :=                                       h directFamScore
110   directEduPar  :=                                       i   directEduPar
111 directn_trauma  :=                                       j directn_trauma
112      EpiMatsmk  :=                                     a*z      EpiMatsmk
113      EpiMatagg  :=                                     b*z      EpiMatagg
114    EpiFamScore  :=                                     c*z    EpiFamScore
115      EpiEduPar  :=                                     d*z      EpiEduPar
116    Epin_trauma  :=                                     e*z    Epin_trauma
117          total  := f+g+h+i+j+(a*z)+(b*z)+(c*z)+(d*z)+(e*z)          total
       est     se      z pvalue ci.lower ci.upper
1    0.000  0.000     NA     NA    0.000    0.000
2    0.025  0.082  0.301  0.764   -0.136    0.185
3    0.132  0.124  1.068  0.285   -0.110    0.374
4   -0.102  0.109 -0.934  0.350   -0.315    0.112
5   -0.281  0.169 -1.658  0.097   -0.613    0.051
6    0.074  0.126  0.589  0.556   -0.173    0.322
7    0.122  0.179  0.679  0.497   -0.230    0.473
8    0.085  0.074  1.148  0.251   -0.060    0.231
9    0.050  0.080  0.623  0.533   -0.107    0.207
10  -0.074  0.084 -0.872  0.383   -0.239    0.092
11   0.168  0.140  1.205  0.228   -0.105    0.442
12   0.285  1.060  0.268  0.788   -1.793    2.362
13   0.161  1.017  0.158  0.874   -1.833    2.155
14   1.018  2.327  0.437  0.662   -3.543    5.578
15   0.468  1.959  0.239  0.811   -3.372    4.307
16  -2.348  2.257 -1.040  0.298   -6.772    2.076
17   2.111  1.316  1.604  0.109   -0.469    4.691
18  -3.354  2.203 -1.523  0.128   -7.671    0.963
19   0.955  0.779  1.227  0.220   -0.571    2.482
20   0.970  0.728  1.333  0.183   -0.457    2.396
21   0.426  0.665  0.641  0.522   -0.877    1.729
22   9.746  7.183  1.357  0.175   -4.333   23.825
23  12.167 14.326  0.849  0.396  -15.911   40.245
24   3.880  1.952  1.988  0.047    0.054    7.706
25  10.125  9.268  1.092  0.275   -8.040   28.289
26   0.065  0.018  3.666  0.000    0.030    0.100
27   0.016  0.000     NA     NA    0.016    0.016
28   0.196  0.000     NA     NA    0.196    0.196
29   0.049  0.000     NA     NA    0.049    0.049
30  -0.009  0.000     NA     NA   -0.009   -0.009
31  -0.006  0.000     NA     NA   -0.006   -0.006
32   0.007  0.000     NA     NA    0.007    0.007
33  -0.003  0.000     NA     NA   -0.003   -0.003
34   0.022  0.000     NA     NA    0.022    0.022
35   0.004  0.000     NA     NA    0.004    0.004
36   0.022  0.000     NA     NA    0.022    0.022
37   0.017  0.000     NA     NA    0.017    0.017
38   0.003  0.000     NA     NA    0.003    0.003
39   0.091  0.000     NA     NA    0.091    0.091
40   0.034  0.000     NA     NA    0.034    0.034
41  -0.017  0.000     NA     NA   -0.017   -0.017
42   0.007  0.000     NA     NA    0.007    0.007
43   0.000  0.000     NA     NA    0.000    0.000
44   0.033  0.000     NA     NA    0.033    0.033
45   0.008  0.000     NA     NA    0.008    0.008
46   0.008  0.000     NA     NA    0.008    0.008
47   0.010  0.000     NA     NA    0.010    0.010
48   0.001  0.000     NA     NA    0.001    0.001
49   0.132  0.000     NA     NA    0.132    0.132
50  -0.029  0.000     NA     NA   -0.029   -0.029
51   0.027  0.000     NA     NA    0.027    0.027
52   0.004  0.000     NA     NA    0.004    0.004
53   0.065  0.000     NA     NA    0.065    0.065
54   0.004  0.000     NA     NA    0.004    0.004
55   0.058  0.000     NA     NA    0.058    0.058
56   0.044  0.000     NA     NA    0.044    0.044
57   0.001  0.000     NA     NA    0.001    0.001
58   0.054  0.000     NA     NA    0.054    0.054
59  -0.008  0.000     NA     NA   -0.008   -0.008
60   0.003  0.000     NA     NA    0.003    0.003
61  -0.019  0.000     NA     NA   -0.019   -0.019
62   0.010  0.000     NA     NA    0.010    0.010
63  -0.013  0.000     NA     NA   -0.013   -0.013
64  -0.015  0.000     NA     NA   -0.015   -0.015
65   0.000  0.000     NA     NA    0.000    0.000
66   0.051  0.000     NA     NA    0.051    0.051
67   0.002  0.000     NA     NA    0.002    0.002
68   0.042  0.000     NA     NA    0.042    0.042
69   0.018  0.000     NA     NA    0.018    0.018
70   0.018  0.000     NA     NA    0.018    0.018
71   0.021  0.000     NA     NA    0.021    0.021
72   0.000  0.000     NA     NA    0.000    0.000
73   0.047  0.000     NA     NA    0.047    0.047
74   0.008  0.000     NA     NA    0.008    0.008
75  -0.002  0.000     NA     NA   -0.002   -0.002
76   0.035  0.000     NA     NA    0.035    0.035
77   0.009  0.000     NA     NA    0.009    0.009
78  -0.001  0.000     NA     NA   -0.001   -0.001
79   0.213  0.000     NA     NA    0.213    0.213
80   0.061  0.000     NA     NA    0.061    0.061
81   0.061  0.000     NA     NA    0.061    0.061
82   0.044  0.000     NA     NA    0.044    0.044
83   0.006  0.000     NA     NA    0.006    0.006
84   0.146  0.000     NA     NA    0.146    0.146
85   0.035  0.000     NA     NA    0.035    0.035
86   0.003  0.000     NA     NA    0.003    0.003
87   0.002  0.000     NA     NA    0.002    0.002
88   0.213  0.000     NA     NA    0.213    0.213
89   0.049  0.000     NA     NA    0.049    0.049
90   0.003  0.000     NA     NA    0.003    0.003
91   0.062  0.000     NA     NA    0.062    0.062
92   0.002  0.000     NA     NA    0.002    0.002
93   0.005  0.000     NA     NA    0.005    0.005
94   1.000  0.000     NA     NA    1.000    1.000
95   0.000  0.000     NA     NA    0.000    0.000
96   1.262  0.000     NA     NA    1.262    1.262
97   1.100  0.000     NA     NA    1.100    1.100
98   0.225  0.000     NA     NA    0.225    0.225
99   0.606  0.000     NA     NA    0.606    0.606
100  0.196  0.000     NA     NA    0.196    0.196
101  0.562  0.000     NA     NA    0.562    0.562
102  1.300  0.000     NA     NA    1.300    1.300
103  1.175  0.000     NA     NA    1.175    1.175
104  1.300  0.000     NA     NA    1.300    1.300
105  0.124  0.000     NA     NA    0.124    0.124
106  0.529  0.000     NA     NA    0.529    0.529
107  0.161  1.017  0.158  0.874   -1.833    2.155
108  1.018  2.327  0.437  0.662   -3.543    5.578
109  0.468  1.959  0.239  0.811   -3.372    4.307
110 -2.348  2.257 -1.040  0.298   -6.772    2.076
111  2.111  1.316  1.604  0.109   -0.469    4.691
112  0.095  0.322  0.296  0.767   -0.536    0.727
113  0.512  0.526  0.973  0.330   -0.519    1.544
114 -0.394  0.458 -0.861  0.389   -1.292    0.503
115 -1.089  0.818 -1.332  0.183   -2.692    0.514
116  0.289  0.512  0.564  0.573   -0.715    1.293
117  0.823  4.116  0.200  0.842   -7.244    8.889

    label            lhs edge            rhs           est           std group
1                         int            Epi  0.000000e+00  0.0000000000      
2       a         Matsmk   ~>            Epi  2.458187e-02  0.0385922837      
3       b         Matagg   ~>            Epi  1.320288e-01  0.1413284916      
4       c       FamScore   ~>            Epi -1.016065e-01 -0.1310311343      
5       d         EduPar   ~>            Epi -2.807576e-01 -0.2308889336      
6       e       n_trauma   ~>            Epi  7.446007e-02  0.0598237809      
7                    Age   ~>            Epi  1.216014e-01  0.0939597536      
8                int_dis   ~>            Epi  8.529375e-02  0.1394654858      
9             medication   ~>            Epi  5.004596e-02  0.0678507995      
10        contraceptives   ~>            Epi -7.362480e-02 -0.1203853560      
11              cigday_1   ~>            Epi  1.683722e-01  0.1480750999      
12                    V8   ~>            Epi  2.846111e-01  0.0687180767      
13      f         Matsmk   ~>          group  1.608808e-01  0.0177082746      
14      g         Matagg   ~>          group  1.017648e+00  0.0763739246      
15      h       FamScore   ~>          group  4.678460e-01  0.0423001889      
16      i         EduPar   ~>          group -2.347896e+00 -0.1353744724      
17      j       n_trauma   ~>          group  2.111297e+00  0.1189285662      
18                   Age   ~>          group -3.354240e+00 -0.1817121386      
19               int_dis   ~>          group  9.554240e-01  0.1095297317      
20            medication   ~>          group  9.698471e-01  0.0921882418      
21        contraceptives   ~>          group  4.259721e-01  0.0488334122      
22              cigday_1   ~>          group  9.746128e+00  0.6009386188      
23                    V8   ~>          group  1.216691e+01  0.2059613011      
24      z            Epi   ~>          group  3.879985e+00  0.2720297660      
26                   Epi  <->            Epi  6.534223e-02  0.8215062284      
27                 group  <->          group  1.631936e-02  0.0010085389      
28                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
29                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
30                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
31                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
32                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
33                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
34                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
35                Matsmk  <->     medication  4.113924e-03  0.0242997446      
36                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
37                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
38                Matsmk  <->             V8  2.928139e-03  0.0971189320      
39                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
40                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
41                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
42                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
43                Matagg  <->            Age  3.118694e-04  0.0047405101      
44                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
45                Matagg  <->     medication  7.594937e-03  0.0657951695      
46                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
47                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
48                Matagg  <->             V8  8.272067e-04  0.0402393217      
49              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
50              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
51              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
52              FamScore  <->            Age  3.636947e-03  0.0458878230      
53              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
54              FamScore  <->     medication  4.430380e-03  0.0318580293      
55              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
56              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
57              FamScore  <->             V8  7.814844e-04  0.0315547719      
58                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
59                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
60                EduPar  <->            Age  2.762108e-03  0.0546490350      
61                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
62                EduPar  <->     medication  1.017932e-02  0.1147832062      
63                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
64                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
65                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
66              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
67              n_trauma  <->            Age  1.582278e-03  0.0320439451      
68              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
69              n_trauma  <->     medication  1.763110e-02  0.2034979577      
70              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
71              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
72              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
73                   Age  <->            Age  4.748866e-02  1.0000000000      
74                   Age  <->        int_dis  8.090259e-03  0.0805056484      
75                   Age  <->     medication -1.655660e-03 -0.0198700345      
76                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
77                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
78                   Age  <->             V8 -1.333633e-03 -0.0898732659      
79               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
80               int_dis  <->     medication  6.075949e-02  0.3445843938      
81               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
82               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
83               int_dis  <->             V8  5.645344e-03  0.1797788722      
84            medication  <->     medication  1.462025e-01  1.0000000000      
85            medication  <-> contraceptives  3.544304e-02  0.2010075631      
86            medication  <->       cigday_1  3.275316e-03  0.0345360471      
87            medication  <->             V8  2.084232e-03  0.0800493604      
88        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
89        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
90        contraceptives  <->             V8  2.688833e-03  0.0856272484      
91              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
92              cigday_1  <->             V8  1.509276e-03  0.0893623867      
93                    V8  <->             V8  4.636832e-03  1.0000000000      
94                 group  <->          group  1.000000e+00  1.0000000000      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  1.262500e+00  2.8513745747      
97                        int         Matagg  1.100000e+00  3.6436779343      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  1.300000e+00  2.8190466136      
103                       int     medication  1.175000e+00  3.0729848569      
104                       int contraceptives  1.300000e+00  2.8190466136      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1    TRUE   0
2   FALSE   1
3   FALSE   2
4   FALSE   3
5   FALSE   4
6   FALSE   5
7   FALSE   6
8   FALSE   7
9   FALSE   8
10  FALSE   9
11  FALSE  10
12  FALSE  11
13  FALSE  12
14  FALSE  13
15  FALSE  14
16  FALSE  15
17  FALSE  16
18  FALSE  17
19  FALSE  18
20  FALSE  19
21  FALSE  20
22  FALSE  21
23  FALSE  22
24  FALSE  23
26  FALSE  25
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94   TRUE   0
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
rmd_paths <-paste0(tempfile(c(names(Netlist))),".Rmd")
names(rmd_paths) <- names(Netlist)

for (n in names(rmd_paths)) {
    sink(file = rmd_paths[n])
    cat("  \n",
        "```{r, echo = FALSE}",
            "Netlist[[n]]",
        "```",
        sep = "  \n")
    sink()
}

Interactive SEM plots

Only direct effects with a significant standardized effect of p<0.05 are shown.

    for (n in names(rmd_paths)) {
        cat(knitr::knit_child(rmd_paths[[n]],
                              quiet= TRUE))
        file.remove(rmd_paths[[n]])
    }

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)

Matrix products: default

Random number generation:
 RNG:     Mersenne-Twister 
 Normal:  Inversion 
 Sample:  Rounding 
 
locale:
[1] LC_COLLATE=German_Germany.1252  LC_CTYPE=German_Germany.1252   
[3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C                   
[5] LC_TIME=German_Germany.1252    

attached base packages:
 [1] grid      parallel  stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] plyr_1.8.6                  scales_1.1.1               
 [3] RCircos_1.2.1               compareGroups_4.4.6        
 [5] readxl_1.3.1                RRHO_1.28.0                
 [7] webshot_0.5.2               visNetwork_2.0.9           
 [9] org.Hs.eg.db_3.12.0         AnnotationDbi_1.52.0       
[11] xlsx_0.6.5                  gprofiler2_0.2.0           
[13] BiocParallel_1.24.1         kableExtra_1.3.1           
[15] glmpca_0.2.0                knitr_1.30                 
[17] DESeq2_1.30.0               SummarizedExperiment_1.20.0
[19] Biobase_2.50.0              MatrixGenerics_1.2.0       
[21] matrixStats_0.57.0          GenomicRanges_1.42.0       
[23] GenomeInfoDb_1.26.2         IRanges_2.24.1             
[25] S4Vectors_0.28.1            BiocGenerics_0.36.0        
[27] forcats_0.5.0               stringr_1.4.0              
[29] dplyr_1.0.2                 purrr_0.3.4                
[31] readr_1.4.0                 tidyr_1.1.2                
[33] tibble_3.0.4                tidyverse_1.3.0            
[35] semPlot_1.1.2               lavaan_0.6-7               
[37] viridis_0.5.1               viridisLite_0.3.0          
[39] WGCNA_1.69                  fastcluster_1.1.25         
[41] dynamicTreeCut_1.63-1       ggplot2_3.3.3              
[43] gplots_3.1.1                corrplot_0.84              
[45] RColorBrewer_1.1-2          workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] coda_0.19-4            bit64_4.0.5            DelayedArray_0.16.0   
  [4] data.table_1.13.6      rpart_4.1-15           RCurl_1.98-1.2        
  [7] doParallel_1.0.16      generics_0.1.0         preprocessCore_1.52.1 
 [10] callr_3.5.1            lambda.r_1.2.4         RSQLite_2.2.2         
 [13] mice_3.12.0            chron_2.3-56           bit_4.0.4             
 [16] xml2_1.3.2             lubridate_1.7.9.2      httpuv_1.5.5          
 [19] assertthat_0.2.1       d3Network_0.5.2.1      xfun_0.20             
 [22] hms_1.0.0              rJava_0.9-13           evaluate_0.14         
 [25] promises_1.1.1         fansi_0.4.1            caTools_1.18.1        
 [28] dbplyr_2.0.0           igraph_1.2.6           DBI_1.1.1             
 [31] geneplotter_1.68.0     tmvnsim_1.0-2          Rsolnp_1.16           
 [34] htmlwidgets_1.5.3      futile.logger_1.4.3    ellipsis_0.3.1        
 [37] crosstalk_1.1.1        backports_1.2.0        pbivnorm_0.6.0        
 [40] annotate_1.68.0        vctrs_0.3.6            abind_1.4-5           
 [43] cachem_1.0.1           withr_2.4.1            HardyWeinberg_1.7.1   
 [46] checkmate_2.0.0        fdrtool_1.2.16         mnormt_2.0.2          
 [49] cluster_2.1.0          mi_1.0                 lazyeval_0.2.2        
 [52] crayon_1.3.4           genefilter_1.72.0      pkgconfig_2.0.3       
 [55] nlme_3.1-151           nnet_7.3-15            rlang_0.4.10          
 [58] lifecycle_0.2.0        kutils_1.70            modelr_0.1.8          
 [61] VennDiagram_1.6.20     cellranger_1.1.0       rprojroot_2.0.2       
 [64] flextable_0.6.2        Matrix_1.2-18          regsem_1.6.2          
 [67] carData_3.0-4          boot_1.3-26            reprex_1.0.0          
 [70] base64enc_0.1-3        processx_3.4.5         whisker_0.4           
 [73] png_0.1-7              rjson_0.2.20           bitops_1.0-6          
 [76] KernSmooth_2.23-18     blob_1.2.1             arm_1.11-2            
 [79] jpeg_0.1-8.1           rockchalk_1.8.144      memoise_2.0.0         
 [82] magrittr_2.0.1         zlibbioc_1.36.0        compiler_4.0.3        
 [85] lme4_1.1-26            cli_2.2.0              XVector_0.30.0        
 [88] pbapply_1.4-3          ps_1.5.0               htmlTable_2.1.0       
 [91] formatR_1.7            Formula_1.2-4          MASS_7.3-53           
 [94] tidyselect_1.1.0       stringi_1.5.3          lisrelToR_0.1.4       
 [97] sem_3.1-11             yaml_2.2.1             OpenMx_2.18.1         
[100] locfit_1.5-9.4         latticeExtra_0.6-29    tools_4.0.3           
[103] matrixcalc_1.0-3       rstudioapi_0.13        uuid_0.1-4            
[106] foreach_1.5.1          foreign_0.8-81         git2r_0.28.0          
[109] gridExtra_2.3          farver_2.0.3           BDgraph_2.63          
[112] digest_0.6.27          shiny_1.6.0            Rcpp_1.0.5            
[115] broom_0.7.3            later_1.1.0.1          writexl_1.3.1         
[118] gdtools_0.2.3          httr_1.4.2             psych_2.0.12          
[121] colorspace_2.0-0       rvest_0.3.6            XML_3.99-0.5          
[124] fs_1.5.0               truncnorm_1.0-8        splines_4.0.3         
[127] statmod_1.4.35         xlsxjars_0.6.1         systemfonts_0.3.2     
[130] plotly_4.9.3           xtable_1.8-4           jsonlite_1.7.2        
[133] nloptr_1.2.2.2         futile.options_1.0.1   corpcor_1.6.9         
[136] glasso_1.11            R6_2.5.0               Hmisc_4.4-2           
[139] mime_0.9               pillar_1.4.7           htmltools_0.5.1.1     
[142] glue_1.4.2             fastmap_1.1.0          minqa_1.2.4           
[145] codetools_0.2-18       lattice_0.20-41        huge_1.3.4.1          
[148] gtools_3.8.2           officer_0.3.16         zip_2.1.1             
[151] GO.db_3.12.1           openxlsx_4.2.3         survival_3.2-7        
[154] rmarkdown_2.6          qgraph_1.6.5           munsell_0.5.0         
[157] GenomeInfoDbData_1.2.4 iterators_1.0.13       impute_1.64.0         
[160] haven_2.3.1            reshape2_1.4.4         gtable_0.3.0