Last updated: 2021-10-01

Checks: 7 0

Knit directory: Test/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210926) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 325bfe5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/json/
    Ignored:    data/plan/
    Ignored:    fig/
    Ignored:    workflowr.R

Unstaged changes:
    Modified:   analysis/_site.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/09-30.Rmd) and HTML (docs/09-30.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 325bfe5 cfcforever 2021-10-01 some changes

load data.json

today = "2021-09-30"
cat("data on:", today, "\n")
data on: 2021-09-30 
json_data = fromJSON(file = paste0("data/json/", today, "/position.json"))
cat("Total collected positions: ", length(json_data), "\n")
Total collected positions:  1867384 
tagId_seq = unlist(lapply(json_data, function(x){x["tag_id"][[1]]}))
tagId = unique(tagId_seq)
nb_tag = length(tagId)

cat("Tags are: ", tagId, "\n")
Tags are:  2e55 0db4 2f40 2c57 0d82 2f7b 0baf 28d2 2f77 2a51 19ab 2e8d 2b9c 2dd9 
table(tagId_seq)
tagId_seq
  0baf   0d82   0db4   19ab   28d2   2a51   2b9c   2c57   2dd9   2e55   2e8d 
176791 177024 168257  35349 176557 176988  90351 175357   1199 177082  24287 
  2f40   2f77   2f7b 
176694 134872 176576 

general analysis

dat <- data.frame(tag = unlist(lapply(json_data, function(x){x["tag_id"][[1]]})),
                  x = unlist(lapply(json_data, function(x){x["x"][[1]]})),
                  y = unlist(lapply(json_data, function(x){x["y"][[1]]})),
                  record_timestamp = unlist(lapply(json_data, function(x){x["record_timestamp"][[1]]})))
dat = dat[order(dat$record_timestamp),]
dat = cbind.data.frame(dat, convert_date(dat$record_timestamp))
dat$x = as.numeric(dat$x)
dat$y = as.numeric(dat$y)

names_tag <- read.table(file = "data/tag_names_20210924.txt", header = T, sep = "\t")
names_tag = names_tag[names_tag$id%in%tagId, ]

tagId = names_tag$id
nb_tag = length(tagId)

dat = dat[dat$tag%in%tagId,]
dat$label = factor(dat$tag, levels = names_tag$id, labels = names_tag$label)

list_tag <- split(dat, dat$tag)

quality of collecting data

table_tag <- data.frame(tag = names_tag$id, label = names_tag$label)
table_tag$first_record = NA
table_tag$last_record = NA
table_tag$number = NA
table_tag$number_NA = NA
table_tag$ratio_non_NA = NA
table_tag$freq_1Q = NA
table_tag$freq_median = NA
table_tag$freq_3Q = NA


for (k in 1:nb_tag){
  tag = table_tag$tag[k]
  temp = list_tag[tag][[1]]
  temp$diff_ts = c(0, temp$record_timestamp[-1]-temp$record_timestamp[-nrow(temp)])
  
  table_tag$first_record[k] = head(as.character(temp$date),1)
  table_tag$last_record[k] = tail(as.character(temp$date),1)
  table_tag$number[k] = nrow(temp)
  table_tag$number_NA[k] = sum(is.na(temp$x))
  table_tag$ratio_non_NA[k] = round(1-table_tag$number_NA[k]/table_tag$number[k],2)
  table_tag$freq_1Q[k] = round(quantile(temp$diff_ts, 0.25), 3)
  table_tag$freq_median[k] = round(quantile(temp$diff_ts, 0.5), 3)
  table_tag$freq_3Q[k] = round(quantile(temp$diff_ts, 0.75), 3)
}

kable(table_tag) %>%
  kable_styling(bootstrap_options = "striped", full_width = F)
tag label first_record last_record number number_NA ratio_non_NA freq_1Q freq_median freq_3Q
2a51 BLA 2021-09-30 00:00:00 2021-09-30 23:59:59 176988 17082 0.90 0 0.496 1
2f7b BRA2 2021-09-30 00:00:00 2021-09-30 23:59:59 176576 1711 0.99 0 0.452 1
2f40 BRA4 2021-09-30 00:00:00 2021-09-30 23:59:59 176694 475 1.00 0 0.457 1
2f77 BRP1 2021-09-30 00:00:00 2021-09-30 23:59:59 134872 807 0.99 0 0.546 1
2b9c BRP2 2021-09-30 00:00:00 2021-09-30 16:27:06 90351 118 1.00 0 1.000 1
0d82 CDS1 2021-09-30 00:00:00 2021-09-30 23:59:59 177024 3782 0.98 0 0.452 1
2c57 DYN1 2021-09-30 00:00:00 2021-09-30 23:59:59 175357 2545 0.99 0 0.495 1
2e8d DYN3 2021-09-30 00:00:00 2021-09-30 22:51:47 24287 408 0.98 0 0.566 1
0baf ELC 2021-09-30 00:00:00 2021-09-30 23:59:59 176791 2879 0.98 0 0.500 1
0db4 FAU 2021-09-30 00:00:00 2021-09-30 23:59:59 168257 15496 0.91 0 0.503 1
28d2 ORD 2021-09-30 00:00:00 2021-09-30 23:59:59 176557 9430 0.95 0 0.429 1
2e55 SCO 2021-09-30 00:00:00 2021-09-30 23:59:59 177082 43 1.00 0 0.449 1

plot with NAs

timestamp_breaks = as.numeric(as.POSIXct(paste0(today, " ", sprintf("%02d", 0:23), ":00:00 CEST"))) + 3600*6
p <- ggplot(dat) + theme_bw() + 
  geom_point(aes(x=record_timestamp, y=label, col=label)) +
  scale_x_continuous(breaks = timestamp_breaks, labels = 0:23) +
  coord_cartesian(xlim = c(timestamp_breaks[1], timestamp_breaks[23]+3600)) +
  theme(legend.position = "None") +
  labs(x = "hour", y = "", title = today)
print(p)

plot without NAs

x_na = which(is.na(dat$x))
y_na = which(is.na(dat$y))
cat("if x_na = y_na:", identical(x_na, y_na), "\n")
if x_na = y_na: TRUE 
cat("number of NA positions:", length(x_na), "/", length(tagId_seq), "(=", 
    length(x_na)/length(tagId_seq)*100, "%)", "\n")
number of NA positions: 54776 / 1867384 (= 2.933301 %) 
if (length(x_na)!=0){
  dat = dat[-x_na,]
}
timestamp_breaks = as.numeric(as.POSIXct(paste0(today, " ", sprintf("%02d", 0:23), ":00:00 CEST"))) + 3600*6
p <- ggplot(dat) + theme_bw() + 
  geom_point(aes(x=record_timestamp, y=label, col=label)) +
  scale_x_continuous(breaks = timestamp_breaks, labels = 0:23) +
  coord_cartesian(xlim = c(timestamp_breaks[1], timestamp_breaks[23]+3600)) +
  theme(legend.position = "None") +
  labs(x = "hour", y = "", title = today)
print(p)

list_tag <- split(dat, dat$tag)

for (tag in names(list_tag)){
  if (!is.null(list_tag[tag][[1]])){
    dd = list_tag[tag][[1]]
    dd[,c("x","y")] = dd[,c("x","y")]/100
    rownames(dd) = 1:nrow(dd)
    dd$num = 1:nrow(dd)
    dd$timediff = c(0, dd$record_timestamp[-1] - dd$record_timestamp[-nrow(dd)])
    
    list_tag[tag][[1]] = dd
  }
}
dat = do.call(rbind.data.frame, list_tag)

plot

plan <- read_excel("data/plan/Wall_lignes_firminy.xlsx")
plan = as.data.frame(plan)
plan$`Start X` <- as.numeric(plan$`Start X`)/100
plan$`Start Y` <- as.numeric(plan$`Start Y`)/100
plan$`End X` <- as.numeric(plan$`End X`)/100
plan$`End Y` <- as.numeric(plan$`End Y`)/100
colnames(plan) = c("Name", "Length", "Linetype Scale", "Angle", "Delta X",
                   "Delta Y", "Delta Z", "EndX", "EndY", "EndZ", 
                   "StartX", "StartY", "StartZ")
p <- ggplot(plan) + theme_bw() + 
  geom_segment(aes(x=StartX, y=StartY, xend=EndX, yend=EndY))
for (k in 1:nb_tag){
  tag = names_tag$id[k]
  label = names_tag$label[k]
  cat("\n")
  cat("## ", label, "\n")
  dd = list_tag[tag][[1]]
  q <- p + 
    geom_point(data = dd, aes(x=x,y=y), col="red", size = 1) +
    coord_equal(ratio = 1, xlim = c(-35,5), ylim = c(-60,5)) + 
    labs(x = "", y = "", title = paste0(tag, " - ", names_tag$Matériel[names_tag$id==tag]))
  print(q)
  cat("\n")
}

BLA

BRA2

BRA4

BRP1

BRP2

CDS1

DYN1

DYN3

ELC

FAU

ORD

SCO


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1     lubridate_1.7.10 dplyr_1.0.6      nnet_7.3-14     
 [5] kableExtra_1.1.0 rjson_0.2.20     cowplot_1.1.0    gganimate_1.0.7 
 [9] ggplot2_3.3.3    workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] progress_1.2.2    tidyselect_1.1.0  xfun_0.25         purrr_0.3.4      
 [5] colorspace_1.4-1  vctrs_0.3.8       generics_0.1.0    viridisLite_0.3.0
 [9] htmltools_0.5.0   yaml_2.2.1        utf8_1.1.4        rlang_0.4.11     
[13] later_1.1.0.1     pillar_1.6.0      glue_1.4.1        withr_2.4.2      
[17] DBI_1.1.1         tweenr_1.0.1      lifecycle_1.0.0   stringr_1.4.0    
[21] cellranger_1.1.0  munsell_0.5.0     gtable_0.3.0      rvest_1.0.0      
[25] evaluate_0.14     labeling_0.3      knitr_1.33        httpuv_1.5.4     
[29] fansi_0.4.1       gifski_0.8.6      highr_0.8         Rcpp_1.0.5       
[33] readr_1.4.0       promises_1.1.1    scales_1.1.1      backports_1.1.8  
[37] webshot_0.5.2     farver_2.0.3      fs_1.5.0          hms_1.0.0        
[41] digest_0.6.25     stringi_1.4.6     grid_4.0.2        rprojroot_1.3-2  
[45] tools_4.0.2       magrittr_2.0.1    tibble_3.1.1      crayon_1.4.1     
[49] whisker_0.4       pkgconfig_2.0.3   ellipsis_0.3.1    xml2_1.3.2       
[53] prettyunits_1.1.1 httr_1.4.2        rstudioapi_0.13   assertthat_0.2.1 
[57] rmarkdown_2.10    R6_2.4.1          git2r_0.28.0      compiler_4.0.2