Last updated: 2020-07-21

Checks: 7 0

Knit directory: Cant_eMLR/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d2ed0f8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/GLODAPv2_2016b_MappedClimatologies/
    Ignored:    data/GLODAPv2_2020/
    Ignored:    data/World_Ocean_Atlas_2018/
    Ignored:    data/pCO2_atmosphere/
    Ignored:    dump/
    Ignored:    output/plots/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/read_GLODAPv2_2020.Rmd) and HTML (docs/read_GLODAPv2_2020.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d2ed0f8 jens-daniel-mueller 2020-07-21 harmonied lat lon labeling
html b47adc2 jens-daniel-mueller 2020-07-20 Build site.
Rmd 366d7d5 jens-daniel-mueller 2020-07-20 update plots
html 25812b9 jens-daniel-mueller 2020-07-20 Build site.
Rmd e45a882 jens-daniel-mueller 2020-07-20 basins included, higher grid resolution for maps
html 6a6431e jens-daniel-mueller 2020-07-20 Build site.
Rmd 50be8de jens-daniel-mueller 2020-07-20 formating
html b9769e8 jens-daniel-mueller 2020-07-20 Build site.
Rmd 82120fe jens-daniel-mueller 2020-07-20 nitrate, gamma included, 65N removed
html fe55909 jens-daniel-mueller 2020-07-19 Build site.
Rmd 66540a9 jens-daniel-mueller 2020-07-19 formating and color scale
html 61b3390 jens-daniel-mueller 2020-07-18 Build site.
Rmd d3032c7 jens-daniel-mueller 2020-07-18 formating
html 22b588c jens-daniel-mueller 2020-07-18 Build site.
html 3964fd7 jens-daniel-mueller 2020-07-17 Build site.
Rmd 4685ad7 jens-daniel-mueller 2020-07-17 150m depth limit implemented
html 56c3ed9 jens-daniel-mueller 2020-07-14 Build site.
Rmd aed89af jens-daniel-mueller 2020-07-14 added Rmd for MappedClimatologies
html 74d4abd jens-daniel-mueller 2020-07-14 Build site.
html 1c511ce jens-daniel-mueller 2020-07-14 Build site.
Rmd e03016e jens-daniel-mueller 2020-07-14 split read in per data set

library(tidyverse)
library(lubridate)
library(patchwork)

1 Read master file

  • Data source: GLODAPv2.2020_Merged_Master_File.csv from glodap.info
GLODAP <- read_csv(here::here("data/GLODAPv2_2020/Merged_data_product",
                              "GLODAPv2.2020_Merged_Master_File.csv"),
                   na = "-9999",
                   col_types = cols(.default = col_double()))

# relevant columns
GLODAP <- GLODAP %>% 
  select(cruise:talkqc)

GLODAP <- GLODAP %>% 
  mutate(date = ymd(paste(year, month, day))) %>% 
         #decade = as.factor(floor(year / 10) * 10)) %>% 
  relocate(date)

GLODAP <- GLODAP %>% 
  select(-c(month:minute, 
            maxsampdepth, pressure,
            theta, sigma0:sigma4,
            nitrite:nitritef))

2 Data preparation

2.1 Flags and missing data

flag_f <- 2
flag_qc <- 1

Only samples with all relevant parameters determined were selected. The following flagging criteria were defined:

  • flag f: 2
  • flag qc: 1

Summary statistics were calculated during cleaning process

GLODAP_stats <- GLODAP %>% 
  summarise(total = n())

##

GLODAP <- GLODAP %>% 
  filter(!is.na(tco2))

GLODAP <- GLODAP %>% 
  filter(tco2f == flag_f) %>% 
  select(-tco2f)

GLODAP <- GLODAP %>% 
  filter(tco2qc == flag_qc) %>% 
  select(-tco2qc)

GLODAP_stats_temp <- GLODAP %>% 
  summarise(tco2 = n())

GLODAP_stats <- cbind(GLODAP_stats, GLODAP_stats_temp)
rm(GLODAP_stats_temp)

##

GLODAP <- GLODAP %>% 
  filter(!is.na(talk))

GLODAP <- GLODAP %>% 
  filter(talkf == flag_f) %>% 
  select(-talkf)

GLODAP <- GLODAP %>% 
  filter(talkqc == flag_qc) %>% 
  select(-talkqc)

##

GLODAP <- GLODAP %>% 
  filter(!is.na(phosphate))

GLODAP <- GLODAP %>% 
  filter(phosphatef == flag_f) %>% 
  select(-phosphatef)

GLODAP <- GLODAP %>% 
  filter(phosphateqc == flag_qc) %>% 
  select(-phosphateqc)

GLODAP_stats_temp <- GLODAP %>% 
  summarise(C_star_variables = n())

GLODAP_stats <- cbind(GLODAP_stats, GLODAP_stats_temp)
rm(GLODAP_stats_temp)

##

GLODAP <- GLODAP %>% 
  filter(!is.na(temperature))

##
  
GLODAP <- GLODAP %>% 
  filter(!is.na(salinity))

GLODAP <- GLODAP %>% 
  filter(salinityf == flag_f) %>% 
  select(-salinityf)

GLODAP <- GLODAP %>% 
  filter(salinityqc == flag_qc) %>% 
  select(-salinityqc)

##
  
GLODAP <- GLODAP %>% 
  filter(!is.na(silicate))

GLODAP <- GLODAP %>% 
  filter(silicatef == flag_f) %>% 
  select(-silicatef)

GLODAP <- GLODAP %>% 
  filter(silicateqc == flag_qc) %>% 
  select(-silicateqc)

##
  
GLODAP <- GLODAP %>% 
  filter(!is.na(oxygen))

GLODAP <- GLODAP %>% 
  filter(oxygenf == flag_f) %>% 
  select(-oxygenf)

GLODAP <- GLODAP %>% 
  filter(oxygenqc == flag_qc) %>% 
  select(-oxygenqc)

##

GLODAP <- GLODAP %>% 
  filter(!is.na(aou))

GLODAP <- GLODAP %>% 
  filter(aouf == flag_f) %>% 
  select(-aouf)

##
  
GLODAP <- GLODAP %>% 
  filter(!is.na(nitrate))

GLODAP <- GLODAP %>% 
  filter(nitratef == flag_f) %>% 
  select(-nitratef)

GLODAP <- GLODAP %>% 
  filter(nitrateqc == flag_qc) %>% 
  select(-nitrateqc)

##

GLODAP <- GLODAP %>% 
  filter(!is.na(depth))

GLODAP <- GLODAP %>% 
  filter(!is.na(gamma))

##

GLODAP_stats_temp <- GLODAP %>% 
  summarise(eMLR_variables = n())

GLODAP_stats <- cbind(GLODAP_stats, GLODAP_stats_temp)
rm(GLODAP_stats_temp)
rm(flag_f, flag_qc)

2.2 Spatial boundaries

min_depth <- 150
max_lat <- 65

Only observations with:

  • minimum depth: 150m
  • maximum latitude: 65°N

were taken into consideration.

GLODAP <- GLODAP %>% 
  filter(depth >= min_depth)

GLODAP_stats_temp <- GLODAP %>% 
  summarise(eMLR_variables_150m = n())

GLODAP_stats <- cbind(GLODAP_stats, GLODAP_stats_temp)
rm(GLODAP_stats_temp)

##

GLODAP <- GLODAP %>% 
  filter(latitude <= max_lat)

GLODAP_stats_temp <- GLODAP %>% 
  summarise(eMLR_variables_150m_65N = n())

GLODAP_stats <- cbind(GLODAP_stats, GLODAP_stats_temp)
rm(GLODAP_stats_temp)


GLODAP_stats_long <- GLODAP_stats %>% 
  pivot_longer(1:length(GLODAP_stats), names_to = "parameter", values_to = "n")

GLODAP_stats_long  %>%  write_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
                                             "GLODAPv2.2020_stats.csv"))

rm(GLODAP_stats_long, GLODAP_stats)
rm(min_depth, max_lat)
rm(min_depth, max_lat)

2.3 Reference eras

start <- 1981
JGOFS <- 1999
GOSHIP <- 2012

Samples were assigned to following eras:

  • JGOFS/WOCE: 1981 - 1999
  • GO-SHIP: 2000 - 2012
  • new_era: > 2013
GLODAP <- GLODAP %>%
  filter(year >= start) %>% 
  mutate(era = "JGOFS/WOCE",
         era = if_else(year > JGOFS, "GO-SHIP", era),
         era = if_else(year > GOSHIP, "new_era", era))
# rm(start, JGOFS, GOSHIP)

2.4 Basin mask

basinmask <- read_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                                 "basin_mask_WOA18.csv"))
GLODAP <- GLODAP %>% 
  mutate(lat = cut(latitude, seq(-90, 90, 1), seq(-89.5, 89.5, 1)),
         lat = as.numeric(as.character(lat)),
         lon = cut(longitude, seq(-180, 180, 1), seq(-179.5, 179.5, 1)),
         lon = as.numeric(as.character(lon))) %>% 
  arrange(date) %>% 
  select(-c(latitude,longitude))
GLODAP <- inner_join(GLODAP, basinmask)

rm(basinmask)

2.5 Write summary file

GLODAP  %>%  write_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
                                  "GLODAPv2.2020_clean.csv"))

rm(GLODAP)

3 Overview plots

3.1 Cleaning stats

GLODAP_stats_long <-  read_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
                                             "GLODAPv2.2020_stats.csv"))

GLODAP_stats_long <- GLODAP_stats_long %>%
  mutate(parameter = fct_reorder(parameter, n))

GLODAP_stats_long %>% 
  ggplot(aes(parameter, n/1000))+
  geom_col()+
  coord_flip()+
  labs(y="n (1000)")+
  theme(axis.title.y = element_blank())

rm(GLODAP_stats_long)

3.2 Assign coarse spatial grid

For the following plots, the cleaned data set was re-opened and observations were gridded spatially to 5°x5° intervals.

GLODAP <- read_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
                              "GLODAPv2.2020_clean.csv"))
GLODAP <- GLODAP %>% 
  mutate(lat_grid = cut(lat, seq(-90, 90, 5), seq(-87.5, 87.5, 5)),
         lat_grid = as.numeric(as.character(lat_grid)),
         lon_grid = cut(lon, seq(-180, 180, 5), seq(-177.5, 177.5, 5)),
         lon_grid = as.numeric(as.character(lon_grid))) %>% 
  arrange(date)

3.3 Histogram lats

GLODAP_histogram_lat <- GLODAP %>% 
  group_by(era, lat_grid, basin) %>% 
  tally() %>% 
  ungroup()

GLODAP_histogram_lat %>% 
  ggplot(aes(lat_grid, n, fill=era))+
  geom_col()+
  scale_x_continuous(breaks = seq(-87.5,90,10))+
  scale_fill_brewer(palette = "Dark2")+
  facet_wrap(~basin)+
  coord_flip(expand = 0)

rm(GLODAP_histogram_lat)

3.4 Histogram year

GLODAP_histogram_year <- GLODAP %>% 
  group_by(year, basin) %>% 
  tally() %>% 
  ungroup()

era_median_year <- GLODAP %>% 
  group_by(era) %>% 
  summarise(t_ref = median(year)) %>% 
  ungroup()

GLODAP_histogram_year %>% 
  ggplot()+
  geom_vline(xintercept = c(JGOFS+0.5, GOSHIP+0.5))+
  geom_col(aes(year, n, fill=basin))+
  geom_point(data = era_median_year, aes(t_ref,0, shape="Median year"), size=2, fill="white")+
  scale_fill_brewer(palette = "Dark2")+
  scale_shape_manual(values = 24)+
  coord_cartesian(expand = 0)

rm(GLODAP_histogram_year,
   era_median_year)

3.5 Hovmoeller (lat vs year)

GLODAP_hovmoeller_year <- GLODAP %>% 
  group_by(year, lat_grid, basin) %>% 
  tally() %>% 
  ungroup()

GLODAP_hovmoeller_year %>% 
  ggplot(aes(year, lat_grid, fill=log10(n)))+
  geom_tile()+
  geom_vline(xintercept = c(1999.5, 2012.5))+
  scale_fill_viridis_c(option = "magma", direction = -1)+
  facet_wrap(~basin, ncol=1)

rm(GLODAP_hovmoeller_year)

3.6 Maps by era

mapWorld <- borders("world", colour="gray60", fill="gray60")

GLODAP_map_era <- GLODAP %>% 
  group_by(era, lat, lon) %>% 
  tally() %>% 
  ungroup()

GLODAP_map_era <- GLODAP_map_era %>% 
  mutate(era = factor(era, c("JGOFS/WOCE", "GO-SHIP", "new_era")))

GLODAP_map_era %>%
  ggplot(aes(lon, lat, fill=log10(n)))+
  mapWorld+
  geom_tile()+
  scale_fill_viridis_c(option = "magma", direction = -1)+
  scale_x_continuous(breaks = seq(-180, 180, 30))+
  scale_y_continuous(breaks = seq(-90, 90, 30))+
  coord_quickmap(expand = FALSE)+
  facet_wrap(~era, ncol=1)

rm(GLODAP_map_era,
   mapWorld)

4 Individual cruise sections

Zonal and meridional section plots are produce for each cruise individually and stored locally.

cruises <- GLODAP %>% 
  group_by(cruise) %>% 
  summarise(date_mean = mean(date, na.rm = TRUE),
            n = n()) %>% 
  ungroup() %>% 
  arrange(date_mean)

GLODAP <- full_join(GLODAP, cruises)

mapWorld <- borders("world", colour="gray60", fill="gray60")

n <- 0
for (i_cruise in unique(cruises$cruise)) {

#i_cruise <- unique(cruises$cruise)[1]
n <- n+1
print(n)  
  
GLODAP_cruise <- GLODAP %>%
  filter(cruise == i_cruise) %>% 
  arrange(date)

cruises_cruise <- cruises %>%
  filter(cruise == i_cruise)
  
map <- GLODAP_cruise %>%
  ggplot(aes(lon, lat))+
  mapWorld+
  geom_point(aes(col=date))+
  geom_path()+
  coord_quickmap(expand = FALSE)+
  scale_color_viridis_c(trans = "date")+
  labs(title = paste("Mean date:", cruises_cruise$date_mean,
                     "| cruise:", cruises_cruise$cruise,
                     "| n(samples):", cruises_cruise$n))


lon_section <- GLODAP_cruise %>%
  ggplot(aes(lon, depth))+
  scale_y_reverse()+
  scale_color_viridis_c()

lon_tco2 <- lon_section+
  geom_point(aes(col=tco2))

lon_talk <- lon_section+
  geom_point(aes(col=talk))

lon_phosphate <- lon_section+
  geom_point(aes(col=phosphate))


lat_section <- GLODAP_cruise %>%
  ggplot(aes(lat, depth))+
  scale_y_reverse()+
  scale_color_viridis_c()

lat_tco2 <- lat_section+
  geom_point(aes(col=tco2))

lat_talk <- lat_section+
  geom_point(aes(col=talk))

lat_phosphate <- lat_section+
  geom_point(aes(col=phosphate))

map /
((lat_tco2 / lat_talk / lat_phosphate) |
(lon_tco2 / lon_talk / lon_phosphate))

ggsave(here::here("output/plots/data/all_cruises_clean",
                  paste("GLODAP_cruise_date",
                        cruises_cruise$date_mean,
                        "n",
                        cruises_cruise$n,
                        "cruise",
                        cruises_cruise$cruise,
                        ".png",
                        sep = "_")),
                  width = 9, height = 9)

rm(map,
   lon_section, lat_section,
   lat_tco2, lat_talk, lat_phosphate, lon_tco2, lon_talk, lon_phosphate,
   GLODAP_cruise, cruises_cruise)

}


# library("rnaturalearth")
# library("rnaturalearthdata")
# library("sf")
# 
# world <- ne_countries(scale = "small", returnclass = "sf")
# class(world)
# 
# GLODAP_map <- GLODAP %>% 
#   group_by(lat_grid, lon_grid) %>% 
#   tally() %>% 
#   ungroup()
# 
# ggplot() +
#   geom_raster(data = GLODAP_map, aes(lon_grid, lat_grid))+
#   geom_sf(data = world)+
#   coord_sf(crs = "+proj=robin +lat_0=0 +lon_0=0 +x0=0 +y0=0")


# https://gist.github.com/clauswilke/783e1a8ee3233775c9c3b8bfe531e28a
# https://twitter.com/clauswilke/status/1066024436208406529
# https://www.r-spatial.org/r/2018/10/25/ggplot2-sf.html

5 Open tasks

  • remove marginal seas
  • move A16 cruises from new_era to GO-SHIP era

6 Questions

  • exclude coastal area in general?

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_Germany.1252  LC_CTYPE=English_Germany.1252   
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C                    
[5] LC_TIME=English_Germany.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] patchwork_1.0.1 lubridate_1.7.9 forcats_0.5.0   stringr_1.4.0  
 [5] dplyr_1.0.0     purrr_0.3.4     readr_1.3.1     tidyr_1.1.0    
 [9] tibble_3.0.3    ggplot2_3.3.2   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] RColorBrewer_1.1-2 jsonlite_1.7.0     rstudioapi_0.11    generics_0.0.2    
 [5] magrittr_1.5       farver_2.0.3       gtable_0.3.0       rmarkdown_2.3     
 [9] vctrs_0.3.1        fs_1.4.2           hms_0.5.3          xml2_1.3.2        
[13] pillar_1.4.6       htmltools_0.5.0    haven_2.3.1        later_1.1.0.1     
[17] broom_0.7.0        cellranger_1.1.0   tidyselect_1.1.0   knitr_1.29        
[21] git2r_0.27.1       whisker_0.4        lifecycle_0.2.0    pkgconfig_2.0.3   
[25] R6_2.4.1           digest_0.6.25      xfun_0.15          colorspace_1.4-1  
[29] rprojroot_1.3-2    stringi_1.4.6      yaml_2.2.1         evaluate_0.14     
[33] labeling_0.3       fansi_0.4.1        httr_1.4.1         compiler_3.6.3    
[37] here_0.1           cli_2.0.2          withr_2.2.0        backports_1.1.5   
[41] munsell_0.5.0      DBI_1.1.0          modelr_0.1.8       Rcpp_1.0.5        
[45] readxl_1.3.1       maps_3.3.0         dbplyr_1.4.4       ellipsis_0.3.1    
[49] assertthat_0.2.1   blob_1.2.1         tools_3.6.3        reprex_0.3.0      
[53] viridisLite_0.3.0  httpuv_1.5.4       scales_1.1.1       crayon_1.3.4      
[57] glue_1.4.1         rlang_0.4.7        rvest_0.3.5        promises_1.1.1    
[61] grid_3.6.3