Last updated: 2020-08-12

Checks: 7 0

Knit directory: Cant_eMLR/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e58d075. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/GLODAPv1_1/
    Ignored:    data/GLODAPv2_2016b_MappedClimatologies/
    Ignored:    data/GLODAPv2_2020/
    Ignored:    data/Gruber_2019/
    Ignored:    data/WOCE/
    Ignored:    data/World_Ocean_Atlas_2018/
    Ignored:    data/dclement/
    Ignored:    data/eMLR/
    Ignored:    data/mapping/
    Ignored:    data/pCO2_atmosphere/
    Ignored:    data/parameters/
    Ignored:    dump/
    Ignored:    figure/

Untracked files:
    Untracked:  code/inventory_calculation.R

Unstaged changes:
    Modified:   analysis/_site.yml
    Deleted:    analysis/license.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mapping.Rmd) and HTML (docs/mapping.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd e58d075 jens-daniel-mueller 2020-08-12 harmonized variable names, added analysis file
html f094087 jens-daniel-mueller 2020-08-12 Build site.
Rmd fa43c80 jens-daniel-mueller 2020-08-12 harmonized coordinates and plotting
html f143b2d jens-daniel-mueller 2020-08-12 Build site.
html 2d179e7 jens-daniel-mueller 2020-08-12 Build site.
Rmd 525cb52 jens-daniel-mueller 2020-08-12 WOA 18 gamma calculation, new lon values in mapping
html 5d33341 jens-daniel-mueller 2020-08-11 Build site.
html 8a010ca jens-daniel-mueller 2020-08-11 Build site.
html a01041a jens-daniel-mueller 2020-08-11 Build site.
html e18e59a jens-daniel-mueller 2020-08-10 Build site.
html 58e0645 jens-daniel-mueller 2020-08-07 Build site.
Rmd e538145 jens-daniel-mueller 2020-08-07 gamma calculation WOA18 from python code
html 7d7900a jens-daniel-mueller 2020-08-07 Build site.
Rmd ceb438a jens-daniel-mueller 2020-08-07 rebuild with Gruber Cant
html 580d2c0 jens-daniel-mueller 2020-08-05 Build site.
Rmd 4031179 jens-daniel-mueller 2020-08-05 cleaning, explanations, formating
html 2d4d2d7 jens-daniel-mueller 2020-08-05 Build site.
Rmd 477a47d jens-daniel-mueller 2020-08-05 cleaning, explanations, formating
html 8fa4005 jens-daniel-mueller 2020-08-05 Build site.
Rmd ef5ef59 jens-daniel-mueller 2020-08-05 Inventories without sign and formating
html 68fc06a jens-daniel-mueller 2020-08-05 Build site.
Rmd 392f594 jens-daniel-mueller 2020-08-05 included inventory maps
html 55d928f jens-daniel-mueller 2020-08-05 Build site.
Rmd baee222 jens-daniel-mueller 2020-08-05 Cant sd included and maps updated
html 478024a jens-daniel-mueller 2020-08-04 Build site.
Rmd 1356e56 jens-daniel-mueller 2020-08-04 Cant plots per basin
html a95daf0 jens-daniel-mueller 2020-08-04 Build site.
Rmd 810fc7b jens-daniel-mueller 2020-08-04 first completed Cant map
html eb244fb jens-daniel-mueller 2020-08-04 Build site.
Rmd c834496 jens-daniel-mueller 2020-08-04 formatting
html e29d39d jens-daniel-mueller 2020-08-04 Build site.
Rmd 1443a30 jens-daniel-mueller 2020-08-04 Included gamma values from Clement based on WOA13
html 9dc5d7f jens-daniel-mueller 2020-07-29 Build site.
html 21524b4 jens-daniel-mueller 2020-07-29 Build site.
html 4f80a27 jens-daniel-mueller 2020-07-28 Build site.
Rmd c63f537 jens-daniel-mueller 2020-07-28 included model coeffcients in mapping
html 4eebe14 jens-daniel-mueller 2020-07-24 Build site.
Rmd 12f9ef2 jens-daniel-mueller 2020-07-24 started neutral density calculation
html 2e08795 jens-daniel-mueller 2020-07-24 Build site.
html 64978a1 jens-daniel-mueller 2020-07-24 Build site.
Rmd 7cbc7ec jens-daniel-mueller 2020-07-24 first publish

library(tidyverse)
library(lubridate)
library(oce)
library(marelac)
library(metR)
library(reticulate)

1 Required data

Currently, following data sets are used for mapping:

  • GLODAPv2_2016b_MappedClimatologies
    • Salinity
    • Temperature
    • Phosphate (+Phosphate*)
    • Silicate
    • Oxygen (+AOU)
  • World Ocean Atlas 2013
    • Neutral densities calculated by D Clement
  • World Ocean Atlas 2018
    • Basin mask
  • eMLR model coefficients

Aim is to use WOA18 neutral density instead of WOA13, but calculation still need to be implemented.

variables <- c("salinity", "temperature", "oxygen", "PO4", "silicate")

for (i_variable in variables) {
  
  # i_variable <- variables[2]
  # print(i_variable)
  
  temp <- read_csv(
    here::here("data/GLODAPv2_2016b_MappedClimatologies/_summarized_files",
               paste(i_variable,".csv", sep = "")))
  
  if (exists("GLODAP_predictors")) {
     GLODAP_predictors <- full_join(GLODAP_predictors, temp)
  }
  
  if (!exists("GLODAP_predictors")) {
    GLODAP_predictors <- temp
  }

}

rm(temp, i_variable, variables)
#min(GLODAP_predictors$lon)

GLODAP_predictors <- GLODAP_predictors %>% 
  rename(sal = salinity,
         tem = temperature)
WOA18_predictors <-
  read_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                       "WOA18_predictors.csv"))

WOA18_predictors <- WOA18_predictors %>% 
  rename(salinity = sal, temperature = tem)
#min(WOA18_predictors$lon)
WOA13 <-
  read_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                       "WOA13_mask_gamma.csv"))

WOA13_gamma <- WOA13 %>% 
  select(-mask)

WOA13_gamma <- WOA13_gamma %>% 
  rename(lat = latitude, lon = longitude) %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon))

rm(WOA13)
# min(WOA13_gamma$lon)
all_lm <- read_csv(here::here("data/eMLR",
                              "all_lm.csv"))

2 Masks

2.1 Read

basinmask <- read_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                                 "basin_mask_WOA18.csv"))

landmask <- read_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                                 "land_mask_WOA18.csv"))

3 Join predictor climatologies

CAVEAT: Coverage of GLODAP climatologies differs slightly for parameters (some are NA in some regions)

3.1 Control plots

Maps of number of observations per horizontal grid cell.

3.1.1 GLODAP climatology

GLODAP_n <- GLODAP_predictors %>% 
  drop_na() %>% 
  group_by(lat, lon) %>% 
  summarise(n = n()) %>% 
  ungroup()

GLODAP_n %>%
  ggplot(aes(lon, lat, fill = n)) +
  geom_raster() +
  scale_fill_viridis_c(direction = -1) +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom")

rm(GLODAP_n)

3.1.2 WOA13 climatology

WOA13_gamma_n <- WOA13_gamma %>% 
  drop_na() %>% 
  group_by(lat, lon) %>% 
  summarise(n = n()) %>% 
  ungroup()

WOA13_gamma_n %>%
  ggplot(aes(lon, lat, fill = n)) +
  geom_raster() +
  scale_fill_viridis_c(direction = -1) +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom")

rm(WOA13_gamma_n)

3.2 WOA13 + GLODAP

Predictor climatologies are merged. Only horizontal grid cells with at least one observation are kept. Rows with NA values are removed.

predictors <- full_join(GLODAP_predictors, WOA13_gamma)
GLODAP_depths <- unique(GLODAP_predictors$depth)

rm(GLODAP_predictors, WOA13_gamma)

predictors <- predictors %>% 
  group_by(lat, lon) %>% 
  mutate(n_oxygen = sum(!is.na(oxygen)),
         n_PO4 = sum(!is.na(PO4)),
         n_silicate = sum(!is.na(silicate)),
         n_sal = sum(!is.na(sal)),
         n_tem = sum(!is.na(tem)),
         n_gamma = sum(!is.na(gamma))) %>% 
  ungroup()

predictors <- predictors %>% 
  filter(n_oxygen > 0,
         n_PO4 > 0,
         n_silicate > 0, 
         n_sal > 0, 
         n_tem > 0, 
         n_gamma > 0) %>% 
  select(-c(n_oxygen, 
            n_PO4, 
            n_silicate, 
            n_sal, 
            n_tem,
            n_gamma))

predictors <- predictors %>% 
  drop_na()

3.2.1 Spatial boundaries

min_depth <- 150
min_bottomdepth <- 500
max_lat <- 65

Only mapped variables were taken into consideration which fullfill the same criteria applied to observational data before MLR fitting:

  • minimum depth: 150m
  • minimum bottom depth: 500m
  • maximum latitude: 65°N
predictors <- predictors %>% 
  filter(depth >= min_depth)

predictors <- predictors %>% 
  filter(lat <= max_lat)

predictors <- predictors %>% 
  group_by(lat, lon) %>% 
  mutate(bottomdepth = max(depth)) %>% 
  ungroup()

predictors <- predictors %>% 
  filter(bottomdepth >= min_bottomdepth) %>% 
  select(-bottomdepth)

rm(min_depth, max_lat, min_bottomdepth)

3.2.2 Basin mask

Please note that some predictor variables are available outside the WOA18 basin mask, but will be removed for further analysis.

predictors <- inner_join(predictors, basinmask)
rm(basinmask)

3.2.3 Maps

Three maps are generated to control succesful merging of data sets.

predictors %>%
  ggplot(aes(lon, lat)) +
  geom_bin2d(binwidth = c(1,1)) +
  scale_fill_viridis_c(direction = -1) +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom")

predictors %>%
  filter(depth == 150) %>% 
  ggplot(aes(lon, lat, fill = PO4)) +
  geom_raster() +
  scale_fill_viridis_c() +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom") +
  labs(title = "150m values")

predictors %>%
  filter(depth == 150) %>% 
  ggplot(aes(lon, lat, fill = gamma)) +
  geom_raster() +
  scale_fill_viridis_c() +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom") +
  labs(title = "150m values")

3.2.4 Predictor profiles

Likewise, predictor profiles for the North Atlantic (lat = 40.5, lon = -20.5) are plotted to control successful merging of the data sets.

N_Atl <- predictors %>% 
  filter(lat == 30.5, lon == 320.5)

N_Atl <- N_Atl %>% 
  select(-basin) %>% 
  pivot_longer(sal:gamma, names_to = "parameter", values_to = "value")

N_Atl %>% 
  ggplot(aes(value, depth)) +
  geom_path() +
  geom_point() +
  scale_y_reverse() +
  facet_wrap(~parameter,
             scales = "free_x",
             ncol = 2)

rm(N_Atl)

3.3 WOA18 + GLODAP

WOA18 data are currently not used. Code chunks in this section are not executed.

predictors <- full_join(GLODAP_predictors, WOA18_predictors)
rm(GLODAP_predictors, WOA18_predictors)

predictors <- predictors %>% 
  group_by(lat, lon) %>% 
  mutate(n_NO3 = sum(!is.na(NO3)),
         n_oxygen = sum(!is.na(oxygen)),
         n_PO4 = sum(!is.na(PO4)),
         n_silicate = sum(!is.na(silicate)),
         n_sal = sum(!is.na(sal)),
         n_tem = sum(!is.na(tem))) %>% 
  ungroup()

predictors <- predictors %>% 
  filter(n_NO3 > 1,
         n_oxygen > 1,
         n_PO4 > 1,
         n_silicate > 1, 
         n_sal > 1, 
         n_tem > 1) %>% 
  select(-c(n_NO3 , n_oxygen , n_PO4 , n_silicate , n_sal , n_tem))

predictors %>%
  ggplot(aes(lon, lat)) +
  geom_bin2d(binwidth = c(1,1)) +
  scale_fill_viridis_c(direction = -1) +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom")

predictors %>%
  filter(depth == 0) %>% 
  ggplot(aes(lon, lat, fill = PO4)) +
  geom_raster() +
  scale_fill_viridis_c() +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom") +
  labs(title = "Surface values")

predictors %>%
  filter(depth == 0) %>% 
  ggplot(aes(lon, lat, fill = tem)) +
  geom_raster() +
  scale_fill_viridis_c() +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom") +
  labs(title = "Surface values")
predictors <- predictors %>% 
  group_by(lat, lon) %>% 
  arrange(depth) %>% 
  mutate(tem = approxfun(depth, tem, rule = 2)(depth),
         sal = approxfun(depth, sal, rule = 2)(depth)) %>% 
  ungroup()


predictors <- predictors %>% 
  filter(depth %in% GLODAP_depths)

4 Prepare predictor fields

4.1 PO4* calculation

Currently, the predictor PO4* is calculated according to Clement and Gruber (2018), ie based on oxygen rather than nitrate.

predictors <- predictors %>% 
  rename(phosphate = PO4) %>% 
  mutate(phosphate_star = phosphate + (oxygen / 170)  - 1.95)

4.2 AOU

4.2.1 Calculation

AOU was calculated as the difference between saturation concentration and observed concentration.

CAVEAT: Algorithms used to calculate oxgen saturation concentration are not yet identical in GLODAP data set (fitting) and predictor climatologies (mapping).

predictors <- predictors %>% 
  mutate(oxygen_sat = gas_satconc(S = sal,
                                  t = tem,
                                  P = 1.013253,
                                  species = "O2"),
         aou = oxygen_sat - oxygen) %>% 
  select(-oxygen_sat)

4.2.2 Atlantic section

Atl_lon <- 335.5

predictors %>% 
  filter(lon == Atl_lon) %>% 
  ggplot(aes(lat, depth, z = aou)) +
  geom_contour_filled() +
  scale_fill_viridis_d(name = "AOU") +
  guides(fill = guide_colorsteps(barheight = unit(7, "cm"))) +
  scale_y_reverse() +
  coord_cartesian(expand = 0)

rm(Atl_lon)

4.3 Isoneutral slabs

slabs_Atl <- c(
-Inf,
26.00,
26.50,
26.75,
27.00,
27.25,
27.50,
27.75,
27.85,
27.95,
28.05,
28.10,
28.15,
28.20,
Inf)

slabs_Ind_Pac <- c(
-Inf,
26.00,
26.50,
26.75,
27.00,
27.25,
27.50,
27.75,
27.85,
27.95,
28.05,
28.10,
Inf)

The following boundaries for isoneutral slabs were defined:

  • Atlantic: -, 26, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 27.85, 27.95, 28.05, 28.1, 28.15, 28.2,
  • Indo-Pacific: -, 26, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 27.85, 27.95, 28.05, 28.1,

Continuous neutral density (gamma) values based on WOA13 are grouped into isoneutral slabs.

predictors_Atl <- predictors %>% 
  filter(basin == "Atlantic") %>% 
  mutate(gamma_slab = cut(gamma, slabs_Atl))

predictors_Ind_Pac <- predictors %>% 
  filter(basin == "Indo-Pacific") %>% 
  mutate(gamma_slab = cut(gamma, slabs_Ind_Pac))

predictors <- bind_rows(predictors_Atl, predictors_Ind_Pac)

rm(predictors_Atl, predictors_Ind_Pac, slabs_Atl, slabs_Ind_Pac)

5 Prepare model coefficients

all_lm <- all_lm %>% 
  select(term, estimate, basin, era, gamma_slab, model)

all_lm <- all_lm %>% 
  mutate(estimate = if_else(is.na(estimate), 0, estimate))

all_lm_wide <- all_lm %>% 
  pivot_wider(names_from = era, values_from = estimate,
              names_prefix = "coeff_")

all_lm_wide <- all_lm_wide %>% 
  mutate(JGOFS_GO = coeff_GO_SHIP - coeff_JGOFS_WOCE,
         GO_new = coeff_new_era - coeff_GO_SHIP) %>% 
  select(-c(coeff_JGOFS_WOCE,
            coeff_GO_SHIP,
            coeff_new_era))

all_lm_long <- all_lm_wide %>% 
  pivot_longer(JGOFS_GO:GO_new, names_to = "eras", values_to = "delta_coeff")

all_lm_wide <- all_lm_long %>% 
  pivot_wider(values_from = delta_coeff,
              names_from = term,
              names_prefix = "delta_coeff_",
              values_fill = 0)

rm(all_lm_long, all_lm)

5.1 Merge MLRs + climatology

Cant <- full_join(predictors, all_lm_wide)

rm(predictors, all_lm_wide)

6 Map Cant

6.1 Apply MLRs to predictor

Cant <- Cant %>% 
  mutate(Cant = `delta_coeff_(Intercept)` +
           delta_coeff_aou * aou +
           delta_coeff_oxygen * oxygen +
           delta_coeff_phosphate * phosphate +
           delta_coeff_phosphate_star * phosphate_star +
           delta_coeff_silicate * silicate +
           delta_coeff_sal * sal + 
           delta_coeff_tem * tem)

6.2 Mean Cant fields

Mean and sd are calculated for Cant in each grid cell (XYZ), basin and era combination. Calculations are performed for all Cant values vs positive values only. This averaging step summarizes the information derived from ten best fitting MLRs.

Cant_model_average <- Cant %>% 
  mutate(Cant_pos = if_else(Cant < 0, 0, Cant)) %>% 
  group_by(lon, lat, depth, eras, basin) %>% 
  summarise(Cant_mean = mean(Cant),
            Cant_sd = sd(Cant),
            Cant_pos_mean = mean(Cant_pos),
            Cant_pos_sd = sd(Cant_pos),
            gamma_mean = mean(gamma)) %>% 
  ungroup()

6.3 Mean Cant sections

For each basin and era combination, the zonal mean Cant is calculated, again for all vs positive only values. Likewise, sd is calculated for the averaging of the mean basin fields.

Cant_model_average_zonal <- Cant_model_average %>% 
  group_by(lat, depth, eras, basin) %>% 
  summarise(Cant_mean_sd = sd(Cant_mean, na.rm = TRUE),
            Cant_mean = mean(Cant_mean, na.rm = TRUE),
            Cant_sd_mean = mean(Cant_sd, na.rm = TRUE),
            Cant_pos_mean_sd = sd(Cant_pos_mean, na.rm = TRUE),
            Cant_pos_mean = mean(Cant_pos_mean, na.rm = TRUE),
            Cant_pos_sd_mean = mean(Cant_pos_sd, na.rm = TRUE),
            gamma_mean = mean(gamma_mean)) %>% 
  ungroup()

7 Neutral density section

7.1 Mean values

The mean zonal distribution of neutral densities was calculated. CAVEAT: Binning here does not reflect the isoneutral density slabs used for MLR fitting.

Cant_model_average_zonal %>% 
  filter(depth <= 4500,
         lat > -60) %>% 
  ggplot(aes(lat, depth, z = gamma_mean)) +
  geom_contour_filled(binwidth = 0.25) +
  scale_fill_viridis_d(name = "Gamma",
                       direction = -1) +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin~eras)

8 Cant sections

8.1 Mean values

Cant_model_average_zonal %>% 
  filter(depth <= 4500,
         lat > -60) %>% 
  ggplot(aes(lat, depth, z = Cant_mean)) +
  geom_contour_fill(breaks = MakeBreaks(5),
                    na.fill = TRUE) +
  scale_fill_divergent(guide = "colorstrip",
                       breaks = MakeBreaks(5),
                       name = "Cant") +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin~eras)

8.2 Mean zonal standard deviation across MLR models

Standard deviation across Cant from all MLR models was calculate for each grid cell (XYZ). The zonal mean of this standard deviation should reflect the uncertainty associated to the predictor selection within each slab and era.

Cant_model_average_zonal %>% 
  filter(depth <= 4500,
         lat > -60) %>% 
  ggplot(aes(lat, depth, z = Cant_sd_mean)) +
  geom_contour_filled() +
  scale_fill_viridis_d(name = "Cant") +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin~eras)

8.3 Zonal standard deviation of mean Cant estimates

Standard deviation of mean Cant values was calculate across all longitudes. This standard deviation should reflect the zonal variability of Cant within the basin and era.

Cant_model_average_zonal %>% 
  filter(depth <= 4500,
         lat > -60) %>% 
  ggplot(aes(lat, depth, z = Cant_mean_sd)) +
  geom_contour_filled() +
  scale_fill_viridis_d(name = "Cant") +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin~eras)

8.4 Mean positive values

Cant_model_average_zonal %>% 
  filter(depth <= 4500,
         lat > -60) %>% 
  ggplot(aes(lat, depth, z = Cant_pos_mean)) +
  geom_contour_filled() +
  scale_fill_viridis_d(name = "Cant") +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin~eras)

9 Cant maps

9.1 Depth layers

Cant concentration for selected depth levels at which mapping was performed.

Cant_model_average %>%
  filter(depth %in% c(150, 500, 1000, 3000)) %>% 
  ggplot(aes(lon, lat, fill = Cant_mean)) + 
  geom_raster() +
  scale_fill_divergent(guide = "colorstrip",
                       breaks = MakeBreaks(5),
                       name = "Cant") +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  coord_quickmap(expand = 0) +
  facet_grid(depth~eras)

9.2 Inventory calculation

To calculate Cant column inventories, we:

  1. Multiple layer thickness with Cant concentration to get a layer inventory
  2. For each horizontal grid cell and era, sum Cant layer inventories from 150 - 3000 m

Step 2 is performed again for all Cant and positive Cant values only

source(here::here("code", "inventory_calculation.R"))

Cant_model_average <- layer_inventory(Cant_model_average, "Cant_mean")

Cant_inv <- Cant_model_average %>% 
  filter(depth <= parameters$inventory_depth) %>% 
  group_by(lon, lat, basin, eras) %>% 
  summarise(cant_inv_pos = sum(layer_inv_pos, na.rm = TRUE) / 1000,
            cant_inv     = sum(layer_inv, na.rm = TRUE) / 1000) %>% 
  ungroup()

9.3 Inventories

!!!! Under construction….

9.3.1 All Cant estimates

map_climatology_inv(Cant_inv, "cant_inv")

9.3.2 Positive Cant estimates

map_climatology_inv(Cant_inv, "cant_inv_pos")

10 Write csv

Cant_model_average %>%
    write_csv(here::here("data/mapping/_summarized_files",
                         "Cant_2020.csv"))

Cant_inv %>%
    write_csv(here::here("data/mapping/_summarized_files",
                         "Cant_inv_2020.csv"))

11 Open tasks

  • Calculate WOA18 neutral density and use WOA18 S, T, and gamma as predictors
  • Switch to Clement’s basin mask or update WOA18 basin mask
  • Check PO4* calculation
  • Harmonize AOU calculation in fitting and mapping
  • Plot Cant sections for individual MLR models

12 Open questions


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_Germany.1252  LC_CTYPE=English_Germany.1252   
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C                    
[5] LC_TIME=English_Germany.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reticulate_1.16 metR_0.7.0      marelac_2.1.10  shape_1.4.4    
 [5] oce_1.2-0       gsw_1.0-5       testthat_2.3.2  lubridate_1.7.9
 [9] forcats_0.5.0   stringr_1.4.0   dplyr_1.0.0     purrr_0.3.4    
[13] readr_1.3.1     tidyr_1.1.0     tibble_3.0.3    ggplot2_3.3.2  
[17] tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2        jsonlite_1.7.0    viridisLite_0.3.0 here_0.1         
 [5] modelr_0.1.8      assertthat_0.2.1  sp_1.4-2          blob_1.2.1       
 [9] cellranger_1.1.0  yaml_2.2.1        pillar_1.4.6      backports_1.1.8  
[13] lattice_0.20-41   glue_1.4.1        digest_0.6.25     promises_1.1.1   
[17] checkmate_2.0.0   rvest_0.3.6       colorspace_1.4-1  plyr_1.8.6       
[21] htmltools_0.5.0   httpuv_1.5.4      Matrix_1.2-18     pkgconfig_2.0.3  
[25] broom_0.7.0       seacarb_3.2.13    haven_2.3.1       scales_1.1.1     
[29] whisker_0.4       later_1.1.0.1     git2r_0.27.1      generics_0.0.2   
[33] farver_2.0.3      ellipsis_0.3.1    withr_2.2.0       cli_2.0.2        
[37] magrittr_1.5      crayon_1.3.4      readxl_1.3.1      memoise_1.1.0    
[41] evaluate_0.14     fs_1.4.2          fansi_0.4.1       xml2_1.3.2       
[45] tools_4.0.2       data.table_1.13.0 hms_0.5.3         lifecycle_0.2.0  
[49] munsell_0.5.0     reprex_0.3.0      isoband_0.2.2     compiler_4.0.2   
[53] rlang_0.4.7       grid_4.0.2        rstudioapi_0.11   labeling_0.3     
[57] rmarkdown_2.3     gtable_0.3.0      DBI_1.1.0         R6_2.4.1         
[61] knitr_1.29        rprojroot_1.3-2   stringi_1.4.6     Rcpp_1.0.5       
[65] vctrs_0.3.2       dbplyr_1.4.4      tidyselect_1.1.0  xfun_0.16