Last updated: 2023-12-06
Checks: 7 0
Knit directory: bgc_argo_r_argodata/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211008)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 83269d5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/variability_temp.Rmd
) and
HTML (docs/variability_temp.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | cec2a2a | ds2n19 | 2023-11-24 | Build site. |
Rmd | 59f5cc4 | ds2n19 | 2023-11-23 | Moved spatiotemporal analysis to use aligned profiles. |
html | 80c16c2 | ds2n19 | 2023-11-15 | Build site. |
html | 4b55c43 | ds2n19 | 2023-10-12 | Build site. |
Rmd | 1ae81b3 | ds2n19 | 2023-10-11 | reworked core load process to work initially by year and then finally create consolidated all years files. |
Rmd | 44f5720 | ds2n19 | 2023-10-09 | manual commit |
html | 7b3d8c5 | pasqualina-vonlanthendinenna | 2022-08-29 | Build site. |
html | bdd516d | pasqualina-vonlanthendinenna | 2022-05-23 | Build site. |
html | 4173c20 | jens-daniel-mueller | 2022-05-12 | Build site. |
html | dfe89d7 | jens-daniel-mueller | 2022-05-12 | Build site. |
html | 710edd4 | jens-daniel-mueller | 2022-05-11 | Build site. |
Rmd | 2f20a76 | jens-daniel-mueller | 2022-05-11 | rebuild all after subsetting AB profiles and code cleaning |
html | b917bd0 | jens-daniel-mueller | 2022-05-11 | Build site. |
html | 6a6e874 | pasqualina-vonlanthendinenna | 2022-04-29 | Build site. |
html | 2d44f8a | pasqualina-vonlanthendinenna | 2022-04-29 | Build site. |
html | e61c08e | pasqualina-vonlanthendinenna | 2022-04-27 | Build site. |
html | 10036ed | pasqualina-vonlanthendinenna | 2022-04-26 | Build site. |
html | c03dd24 | pasqualina-vonlanthendinenna | 2022-04-20 | Build site. |
html | 8805f99 | pasqualina-vonlanthendinenna | 2022-04-11 | Build site. |
html | 6dd0945 | pasqualina-vonlanthendinenna | 2022-03-25 | Build site. |
html | e12a216 | pasqualina-vonlanthendinenna | 2022-03-15 | Build site. |
Rmd | e4d1d1e | pasqualina-vonlanthendinenna | 2022-03-15 | updated to new only flag A data |
html | c8451b9 | pasqualina-vonlanthendinenna | 2022-03-14 | Build site. |
Rmd | 0da56b4 | pasqualina-vonlanthendinenna | 2022-03-14 | added variability pages |
Explore the spatial variability of Argo temperature profiles
theme_set(theme_bw())
path_argo <- '/nfs/kryo/work/updata/bgc_argo_r_argodata'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"
path_updata <- '/nfs/kryo/work/updata'
path_argo <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/bgc_argo'
# /nfs/kryo/work/datasets/ungridded/3d/ocean/floats/bgc_argo/preprocessed_bgc_data
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
region_masks_all_1x1 <- read_rds(file = paste0(path_argo_preprocessed,
"/region_masks_all_1x1.rds"))
region_masks_all_1x1 <- region_masks_all_1x1 %>%
rename(biome = value) %>%
mutate(coast = as.character(coast))
# WOA 18 basin mask
basinmask <-
read_csv(
paste(path_emlr_utilities,
"basin_mask_WOA18.csv",
sep = ""),
col_types = cols("MLR_basins" = col_character())
)
basinmask <- basinmask %>%
filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>%
select(-c(MLR_basins, basin))
# # full argo data (temperature)
# full_argo <-
# read_rds(file = paste0(path_argo_preprocessed, "/bgc_merge_flag_AB.rds")) %>%
# select(
# -c(
# ph_in_situ_total_adjusted:ph_in_situ_total_adjusted_error,
# profile_ph_in_situ_total_qc
# )
# )
#
# # change the date format for compatibility with OceanSODA data
# full_argo <- full_argo %>%
# mutate(year = year(date),
# month = month(date)) %>%
# mutate(date = ymd(format(date, "%Y-%m-15")))
# load validated and vertically aligned temp profiles,
full_argo <-
read_rds(file = paste0(path_argo_preprocessed, "/temp_bgc_observed.rds")) %>%
mutate(date = ymd(format(date, "%Y-%m-15")))
map <-
read_rds(paste(path_emlr_utilities,
"map_landmask_WOA18.rds",
sep = ""))
# keep only southern ocean biomes
region_masks_all_1x1 <- region_masks_all_1x1 %>%
filter(region == 'southern',
biome != 0) %>%
select(-region)
# remove coastal data
region_masks_all_1x1 <- region_masks_all_1x1 %>%
filter(coast == "0")
map +
geom_tile(data = region_masks_all_1x1,
aes(x = lon,
y = lat,
fill = biome))+
lims(y = c(-85, -30))+
scale_fill_brewer(palette = 'Dark2')
Version | Author | Date |
---|---|---|
c8451b9 | pasqualina-vonlanthendinenna | 2022-03-14 |
basinmask <- basinmask %>%
filter(lat < -30)
map +
geom_tile(data = basinmask,
aes(x = lon,
y = lat,
fill = basin_AIP))+
lims(y = c(-85, -30))+
scale_fill_brewer(palette = 'Dark2')
Version | Author | Date |
---|---|---|
c8451b9 | pasqualina-vonlanthendinenna | 2022-03-14 |
full_argo_SO <- inner_join(full_argo, region_masks_all_1x1)
full_argo_SO <- inner_join(full_argo_SO, basinmask)
# full_argo_SO <- full_argo_SO %>%
# unite('platform_cycle', platform_number:cycle_number, sep = '_', remove = FALSE)
# plot the argo temperature profiles according to their longitude, in each biome, basin, and year
full_argo_SO %>%
group_split(biome, basin_AIP, year) %>%
head(12) %>%
map(
~ ggplot(data = .x,
aes(x = temp_adjusted,
y = depth,
group = file_id,
col = lon))+
geom_path(data = .x,
aes(x = temp_adjusted,
y = depth,
group = file_id,
col = lon),
linewidth = 0.3)+
scale_y_reverse()+
scale_color_viridis_c()+
facet_wrap(~month, ncol = 6)+
labs(title = paste0('biome: ', unique(.x$biome), '| basin: ', unique(.x$basin_AIP), ' |', unique(.x$year)),
x = 'Argo temperature (ºC)',
y = 'depth (m)',
col = 'longitude')
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
# color the argo profiles according to their latitude, for each biome, basin, and year
full_argo_SO %>%
group_split(biome, basin_AIP, year) %>%
head(12) %>%
map(
~ ggplot(data = .x,
aes(x = temp_adjusted,
y = depth,
group = file_id,
col = lat))+
geom_path(data = .x,
aes(x = temp_adjusted,
y = depth,
group = file_id,
col = lat),
linewidth = 0.3)+
scale_y_reverse()+
scale_color_viridis_c()+
facet_wrap(~month, ncol = 6)+
labs(title = paste0('biome: ', unique(.x$biome), '| basin: ', unique(.x$basin_AIP), ' |', unique(.x$year)),
x = 'Argo temperature (ºC)',
y = 'depth (m)',
col = 'latitude')
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
# plot all years in each month
full_argo_SO %>%
group_split(biome, basin_AIP) %>%
head(3) %>%
map(
~ ggplot(data = .x,
aes(x = temp_adjusted,
y = depth,
group = file_id,
col = as.character(year)))+
geom_path(data = .x,
aes(x = temp_adjusted,
y = depth,
group = file_id,
col = as.character(year)),
linewidth = 0.3)+
scale_y_reverse()+
facet_wrap(~month, ncol = 6)+
labs(title = paste0('biome: ', unique(.x$biome), '| basin: ', unique(.x$basin_AIP)),
x = 'Argo temperature (ºC)',
y = 'depth (m)',
col = 'year')
)
sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5
Matrix products: default
BLAS: /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggforce_0.4.1 metR_0.13.0 scico_1.3.1 ggOceanMaps_1.3.4
[5] ggspatial_1.1.7 broom_1.0.5 lubridate_1.9.0 timechange_0.1.1
[9] forcats_0.5.2 stringr_1.5.0 dplyr_1.1.3 purrr_1.0.2
[13] readr_2.1.3 tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.4
[17] tidyverse_1.3.2
loaded via a namespace (and not attached):
[1] fs_1.5.2 sf_1.0-9 bit64_4.0.5
[4] RColorBrewer_1.1-3 httr_1.4.4 rprojroot_2.0.3
[7] tools_4.2.2 backports_1.4.1 bslib_0.4.1
[10] utf8_1.2.2 R6_2.5.1 KernSmooth_2.23-20
[13] rgeos_0.5-9 DBI_1.1.3 colorspace_2.0-3
[16] raster_3.6-11 withr_2.5.0 sp_1.5-1
[19] tidyselect_1.2.0 bit_4.0.5 compiler_4.2.2
[22] git2r_0.30.1 cli_3.6.1 rvest_1.0.3
[25] xml2_1.3.3 labeling_0.4.2 sass_0.4.4
[28] checkmate_2.1.0 scales_1.2.1 classInt_0.4-8
[31] proxy_0.4-27 digest_0.6.30 rmarkdown_2.18
[34] pkgconfig_2.0.3 htmltools_0.5.3 highr_0.9
[37] dbplyr_2.2.1 fastmap_1.1.0 rlang_1.1.1
[40] readxl_1.4.1 rstudioapi_0.15.0 farver_2.1.1
[43] jquerylib_0.1.4 generics_0.1.3 jsonlite_1.8.3
[46] vroom_1.6.0 googlesheets4_1.0.1 magrittr_2.0.3
[49] Rcpp_1.0.10 munsell_0.5.0 fansi_1.0.3
[52] lifecycle_1.0.3 terra_1.7-39 stringi_1.7.8
[55] whisker_0.4 yaml_2.3.6 MASS_7.3-58.1
[58] grid_4.2.2 parallel_4.2.2 promises_1.2.0.1
[61] crayon_1.5.2 lattice_0.20-45 haven_2.5.1
[64] hms_1.1.2 knitr_1.41 pillar_1.9.0
[67] codetools_0.2-18 reprex_2.0.2 glue_1.6.2
[70] evaluate_0.18 data.table_1.14.6 modelr_0.1.10
[73] tweenr_2.0.2 vctrs_0.6.4 tzdb_0.3.0
[76] httpuv_1.6.6 cellranger_1.1.0 polyclip_1.10-4
[79] gtable_0.3.1 assertthat_0.2.1 cachem_1.0.6
[82] xfun_0.35 e1071_1.7-12 later_1.3.0
[85] viridisLite_0.4.1 class_7.3-20 googledrive_2.0.0
[88] gargle_1.2.1 memoise_2.0.1 workflowr_1.7.0
[91] units_0.8-0 ellipsis_0.3.2