Last updated: 2024-05-24

Checks: 7 0

Knit directory: bgc_argo_r_argodata/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a4c7c05. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/draft.Rmd
    Untracked:  load_argo_core_output.txt
    Untracked:  poster_profile_argo.png

Unstaged changes:
    Deleted:    analysis/MHWs_categorisation.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/anomaly_SST_2023.Rmd
    Modified:   analysis/child/cluster_analysis_base.Rmd
    Modified:   analysis/coverage_maps_North_Atlantic.Rmd
    Modified:   analysis/load_argo_core.Rmd
    Modified:   analysis/load_broullon_DIC_TA_clim.Rmd
    Modified:   analysis/temp_core_align_climatology.Rmd
    Modified:   code/Workflowr_project_managment.R
    Modified:   code/start_background_job.R
    Modified:   code/start_background_job_load.R
    Modified:   code/start_background_job_partial.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/MHWs_vertical_anomaly.Rmd) and HTML (docs/MHWs_vertical_anomaly.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd a4c7c05 mlarriere 2024-05-24 Absolute maximum anomalies categorisation
Rmd cebda03 mlarriere 2024-05-22 Hovmoeller plot
html 3ac87c9 mlarriere 2024-05-20 Build site.
Rmd 5304024 mlarriere 2024-05-20 choosing extent
html b0fb164 mlarriere 2024-05-16 Build site.
Rmd fbf0c64 mlarriere 2024-05-16 latitude, longitude and day of the month graphs
html 22e0206 mlarriere 2024-05-16 Build site.
Rmd d0f58b6 mlarriere 2024-05-16 latitude, longitude and day of the month graphs
html 96d4b76 mlarriere 2024-05-14 Build site.
Rmd 91e6028 mlarriere 2024-05-13 adding subsection CESM comparison
html af6594f mlarriere 2024-05-13 Build site.
Rmd 30f9250 mlarriere 2024-05-13 Adding CESM subsection

Task

Focusing on 2023 Only core Argo - focus on temperature anomalies

Dependencies

temp_core_va.rds - temperature of core argo floats after vertical alignment.

core_metadata.rds - File with metadata concerning the floats such as platform number, cycle number, date, lat, lon and quality control results.

temp_anomaly_va.rds - file containing the temperature anomalies (temp core - climatology).

2023_mhw_raw.csv - CSV file containing the categorization of surface marine heatwaves, in 2023 and in a 0.25°x0.25° grid.

Outputs

2023_surface_mhws_1x1.rds - file containing the categorization of surface marine heatwaves in a 1°x1° grid, in 2023.

path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"
path_basin_mask <- "/nfs/kryo/work/datasets/gridded/ocean/interior/reccap2/supplementary/"
path_argo <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/bgc_argo'
path_argo_core <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata_2024-03-13'

path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")

path_mhw<- '/net/kryo/work/datasets/gridded/ocean/2d/obs/mhw'
#Area of interest: North Atlantic north west - lat:(60,30), lon:(-70,-30), North Atlantic east - lat:(0,40), lon:(-30,0)
chosen_extent <- list(
  lat_min = 0, #30
  lat_max = 40, #60
  lon_min = -30, #-70
  lon_max = 0 #-30
)  

name_extent<- "East" #Northwest

Load data

Load biomes

Load Argo floats data

Load SST anomaly

#Read SST anomaly, computed using climatology:2009-2019 (from anomaly_SST_2023.Rmd)
sst_anomaly_northAtlantic<- read_rds(paste(path_argo_core_preprocessed, "/SST_anomaly2023_NorthAtlantic_clim2004-2019.rds", sep = ""))

Argo floats

Distribution over North Atlantic basin

#Histogram -- number of floats per month and biome
unique_platforms_per_month <- core_anomaly_with_platform_2023 %>%
   group_by(month) %>%
  filter(lat>0, lat<70, lon>-80, lon<0) %>% 
   summarize(unique_platforms = n_distinct(platform_number))


hist <- ggplot(unique_platforms_per_month, aes(x = factor(month), y = unique_platforms)) +
    geom_bar(stat = "identity", fill = "darkred") +
    labs(title = "Amount of platform per month, in North Atlantic, 2023", 
         x = "Months", y = "Number of argo floats", fill = "Biomes") +
    theme_minimal() +
    guides(fill = FALSE)
    # scale_fill_manual(values = c("1" = "#1034A6", "2" = "#f59c04", "3" = "darkred"),
    #               labels = c("1" = "SPSS", "2" = "STSS", "3" = "STPS")) +
    # theme_minimal()

print(hist)

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
#Number of cycle per platform
# cycle_counts <- core_anomaly_with_platform_2023 %>%
#   group_by(platform_number) %>%
#   summarise(cycle_count = n_distinct(cycle_number))
# print(cycle_counts)
#Join the SST anomaly with the anomaly profiles
core_anomaly_with_platform_2023<-core_anomaly_with_platform_2023 %>% 
  filter(!is.na(depth)) %>% 
  select(-profile_range, -day_of_year)

complete_anomaly_profile<- core_anomaly_with_platform_2023 %>%
  inner_join(sst_anomaly_northAtlantic, by = c("lat", "lon", "month"))

#---Chosen subset
core_anomaly_2023_natlantic_subset<- complete_anomaly_profile %>% 
 filter(lat > chosen_extent$lat_min, lat < chosen_extent$lat_max, 
         lon > chosen_extent$lon_min, lon < chosen_extent$lon_max) %>% 
  select(-interpolated_temp) 

cycles_per_platform <-core_anomaly_2023_natlantic_subset %>%
  group_by(platform_number) %>%
  summarize(unique_cycles = toString(unique(cycle_number)))

months_per_float <- core_anomaly_2023_natlantic_subset %>%
  group_by(platform_number) %>%
  summarize(unique_months = toString(unique(month)))

Distribution over East-North Atlantic

Using the SST map computed in “anomaly_SST_2023.Rmd” and ClimateReanalyser, we identify 2 areas of particular interest for SST anomalies in 2023 in the North Atlantic Ocean:

  • Northeast, near the Canada/USA coast. SST anomaly particularly strong in summer and autumn (JJA and SON).

  • East coast of the North Atlantic Ocean. Here, SST anomalies are high on an annual basis, with a sharp increase from June onwards.

#PLatfrom in the east north atlantic over 2023
platform_counts <- aggregate(platform_number ~ month, data = core_anomaly_2023_natlantic_subset, FUN = function(x) length(unique(x)))
cycle_count_per_platform_month <- core_anomaly_2023_natlantic_subset %>%
  group_by(month, platform_number) %>%
  summarise(cycle_count = n_distinct(cycle_number))


custom_labeller <- function(variable, value) {
  month_count <- platform_counts[platform_counts$month == value, "platform_number"]
  return(paste("Month:", value, "\nNumber of floats:", month_count))
}

#PLot
sst_anomaly_northAtlantic_subset<-sst_anomaly_northAtlantic %>% 
   filter(lat > chosen_extent$lat_min, lat < chosen_extent$lat_max, 
         lon > chosen_extent$lon_min, lon < chosen_extent$lon_max)

ggplot() +
  geom_tile(data=sst_anomaly_northAtlantic_subset, aes(x = lon, y = lat, fill = SST_anomaly)) + #tile with SST
  geom_point(data = core_anomaly_2023_natlantic_subset, aes(x = lon, y = lat), color = "black") + # Point for float position
  geom_map(data = world_coordinates, map = world_coordinates, aes(long, lat, map_id = region), fill = "grey") + #base map
  lims(x = c(chosen_extent$lon_min, chosen_extent$lon_max), y=c(chosen_extent$lat_min, chosen_extent$lat_max)) + 
  coord_quickmap(expand = 0) +
  scale_fill_viridis_c(option = "magma") +
  labs(title = "Platform Locations",
       subtitle = "Resolution: 1°x1°, SST from SOM",
       color = "Months with float") +
  theme(plot.title = element_text(size = 16), 
        plot.subtitle = element_text(size = 12),
        legend.text = element_text(size = 10),  
        legend.title = element_text(size = 12, face = "bold"),
        legend.key.width = unit(0.5, "cm"),
                legend.key.height = unit(2, "cm"))+
    facet_wrap(~month, ncol = 3, labeller = custom_labeller)

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13

Anomaly profiles

Individual float

unique_platform<-core_anomaly_2023_natlantic_subset %>% 
  filter(platform_number==1902323)


# ggplot(unique_platform, aes(x = anomaly, y = depth, color = factor(cycle_number))) +
#   geom_path() +
#   geom_vline(xintercept = 0) +
#   scale_y_reverse() +
#   coord_cartesian(xlim = c(-6, 6), ylim = c(200, 0)) +
#   labs(title = 'Anomaly profiles by month',
#        subtitle= paste0('Platform ', unique(unique_platform$platform_number)),
#        x = 'Temperature (°C)', y = 'Depth (m)', color = 'Cycle Number') +
#   scale_color_viridis(discrete = TRUE) + 
#   facet_wrap(~month, scales = "free", ncol = 3)



ggplot() +
  geom_path(data=unique_platform, aes(x = anomaly, y = depth, color = factor(month), group = cycle_number)) +
  geom_vline(xintercept = 0) +
  scale_y_reverse() +
  coord_cartesian(xlim = c(-6, 6), ylim = c(200, 0)) +
    scale_color_manual(values = colorRampPalette(c("#2796A5", "#F3712B", "#880D1E"))(12)) +
    labs(title = 'SST anomalies propagation \nof a single float',
         subtitle = 'Location: Canaries Islands (Eddies corridor)',
       x = 'Temperature (°C)', y = 'Depth (m)', color = 'Months') +
   theme(plot.title = element_text(size = 18), 
        plot.subtitle = element_text(size = 14),
        legend.text = element_text(size = 12),  
        legend.title = element_text(size = 14, face = "bold"),
        legend.background = element_rect(fill = "transparent", color='transparent'),
        legend.position=c(.91,.28),
    )

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
# unique_platform_base_map<- base_map + lims(x=c(-30,-10), y=c(0,20))

# unique_coords_with_cycles <- unique_platform %>%
#   distinct(lat, lon, .keep_all = TRUE) %>%
#   group_by(lat, lon) %>%
#   summarise(cycle_numbers = toString(unique(cycle_number)))

# #base map and SST anomaly
# map_anomaly_east <- unique_platform_base_map + 
#   geom_tile(data = east_sst_anomaly, aes(x = lon, y = lat, fill = SST_anomaly)) +
#   scale_fill_gradientn(colors = continuous_palette, limits = scale_limits, breaks = scale_breaks) +
#   labs(fill = "SST Anomaly") +
#   theme_minimal()
# 
# #trajetory
# map_anomaly_east + 
#   geom_point(data = unique_coords_with_cycles, aes(x = lon, y = lat, color = cycle_numbers), size = 2) +
#   scale_color_discrete(name = "Cycle Number", guide = guide_legend(title.position = "top")) +
#   labs(title = 'Float position') +
#   theme(legend.position = "bottom")+
#     guides(fill = guide_colorbar(barwidth = 20, barheight = 1, title.position = "top"))

Coloring by lat/lon

#Calculating monthly mean anomaly + std for each lat/lon pair of the area
anomaly_lat_lon <- core_anomaly_2023_natlantic_subset %>%
  group_by(lat, lon, depth, month, platform_number, cycle_number) %>%
  summarise(
    temp_count = n(),
    temp_anomaly_mean = mean(anomaly, na.rm = TRUE)
    )

# Longitude - gradient north-south
longitude<- ggplot(anomaly_lat_lon, aes(x = temp_anomaly_mean, y = depth, group = interaction(platform_number, cycle_number), color = as.numeric(lon))) +
  geom_path() +
  geom_vline(xintercept = 0) +
  scale_y_reverse(limits = c(200, 0)) +
  coord_cartesian(xlim = c(-6, 6)) +
  facet_wrap(~ month, ncol = 3) +
  labs(title = "Anomaly Profiles for all longitudes", 
       subtitle = "All floats and cycles included",
       x = "Temperature (°C)", y = "Depth (m)", color = "Longitude") + 
  scale_color_viridis_c()

# Latitude - gradient west-east
latitude<- ggplot(anomaly_lat_lon, aes(x = temp_anomaly_mean, y = depth, group = interaction(platform_number, cycle_number), color = as.numeric(lat))) +
  geom_path() +
  geom_vline(xintercept = 0) +
  scale_y_reverse(limits = c(200, 0)) +
  coord_cartesian(xlim = c(-6, 6)) +
  facet_wrap(~ month, ncol = 3) +
  labs(title = "Anomaly Profile for all latitudes", 
       subtitle = "All floats and cycles included",
       x = "Temperature (°C)", y = "Depth (m)", color = "Latitude") +  
  scale_color_viridis_c()


combined_plot <- latitude + longitude + plot_layout(ncol = 2)
combined_plot

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13

Coloring by SST anomaly

# calculate mean anomaly data
anomaly_summary <- core_anomaly_2023_natlantic_subset %>%
  group_by(platform_number, depth, month, cycle_number, SST_anomaly) %>%
  summarise(
    temp_count = n(),
    temp_anomaly_mean = mean(anomaly, na.rm = TRUE)
  )

#plot for the SST anomalies
ggplot(anomaly_summary, aes(x = temp_anomaly_mean, y = depth, group = interaction(platform_number, cycle_number), color = as.numeric(SST_anomaly))) +
  geom_path() +
  geom_vline(xintercept = 0) +
  scale_y_reverse(limits = c(200, 0)) +
  coord_cartesian(xlim = c(-6, 6)) +
    facet_wrap(~ month, ncol = 3) +
  labs(title = "Mean Anomaly Profile as a function of SST anomaly",
       x = "Temperature (°C)", y = "Depth (m)", color = "SST Anomaly") +
  scale_color_viridis_c()

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13

Day within the month

# calculate mean anomaly data
anomaly_summary_day <- core_anomaly_2023_natlantic_subset %>%
  group_by(platform_number, depth, month, cycle_number, day) %>%
  summarise(
    temp_count = n(),
    temp_anomaly_mean = mean(anomaly, na.rm = TRUE)
  )
#plot for time during month
ggplot(anomaly_summary_day, aes(x = temp_anomaly_mean, y = depth, group = interaction(platform_number, cycle_number), color = as.numeric(day))) +
  geom_path() +
  geom_vline(xintercept = 0) +
  scale_y_reverse(limits = c(200, 0)) +
  coord_cartesian(xlim = c(-6, 6)) +
    facet_wrap(~ month, ncol = 3) +
  labs(title = "Mean Anomaly Profile",
       x = "Temperature (°C)", y = "Depth (m)", color = "day within the month") +
  scale_color_viridis_c()

Version Author Date
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13

Monthly anomaly profiles

# datsets with the cycle number per float across months
cycles_per_platform_month<- core_anomaly_2023_natlantic_subset %>%
  group_by(platform_number, month) %>%
  summarize(unique_cycles = toString(unique(cycle_number)))

# Calculating monthly mean anomaly over the east area by averaging the anomaly of each float present
anomaly_mean <- core_anomaly_2023_natlantic_subset %>% 
  group_by(depth, month) %>% 
  summarise(temp_count = n(),
            temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
            temp_anomaly_sd = sd(anomaly, na.rm = TRUE))

#For each mont put the SST anomaly next to the anomaly path
for (m in unique(core_anomaly_2023_natlantic_subset$month)) {
  # Filter data 
  map_data <- filter(sst_anomaly_northAtlantic_subset, month == m)
  anomaly_data <- filter(anomaly_mean, month == m)

  # Plot for temperature anomaly map
  map_plot <- ggplot() +
    geom_tile(data=map_data, aes(x = lon, y = lat, fill = SST_anomaly)) +
    geom_map(data = world_coordinates, map = world_coordinates, aes(long, lat, map_id = region), fill = "grey") + #base map
    lims(x = c(chosen_extent$lon_min, chosen_extent$lon_max), y=c(chosen_extent$lat_min, chosen_extent$lat_max)) + 
    coord_quickmap(expand = 0) +
    scale_fill_viridis_c(option = "magma") +
    labs(title = paste("SST Anomaly (°C) in North Atlantic - 2023", month.name[as.numeric(m)]), 
         subtitle = paste0("Extent: ", name_extent),
         x = "Longitude", y = "Latitude") +
    theme(legend.position = 'right', legend.key.height = unit(2, "cm"))
  
  # Plot for anomaly profiles
  anomaly_plot <- ggplot(anomaly_data, aes(x = temp_anomaly_mean, y = depth, color = factor(month))) +
    geom_path() +
    geom_ribbon(aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
                    xmin = temp_anomaly_mean - temp_anomaly_sd,
                    y = depth), alpha = 0.2) +
    geom_vline(xintercept = 0) +
    scale_y_reverse() +
    coord_cartesian(xlim = c(-4, 4), ylim = c(200, 0)) +
    labs(title = paste('Associated anomaly profile in', month.name[as.numeric(m)]), 
         subtitle = paste0("from surface to 200m", "\nNumber of platform:",  nrow(filter(cycles_per_platform_month, month==m))),
         x = 'Temperature (°C)', y = 'Depth (m)') +
    theme_minimal()+
        guides(color = FALSE)

  
  #plots side by side
  combined_plot <- grid.arrange(map_plot, anomaly_plot, ncol = 2)
  print(combined_plot)
}

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
# Vertical anomaly profile for the North Atlantic subset region - monthly 
anomaly_plot_monthly <- ggplot(anomaly_mean, aes(x = temp_anomaly_mean, y = depth, color = factor(month))) +
  geom_path() +
  geom_ribbon(aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
                  xmin = temp_anomaly_mean - temp_anomaly_sd,
                  y = depth), alpha = 0.2) +
  geom_vline(xintercept = 0) +
  scale_y_reverse() +
  coord_cartesian(xlim = c(-4, 4), ylim = c(200, 0)) +
  labs(title = paste('Monthly anomaly profile'), 
         subtitle = paste0("Extent: ", name_extent),
       x = 'Temperature (°C)', y = 'Depth (m)') +
  guides(color = FALSE)+
  facet_wrap(~month)

print(anomaly_plot_monthly)

Version Author Date
3ac87c9 mlarriere 2024-05-20
22e0206 mlarriere 2024-05-16
af6594f mlarriere 2024-05-13
# Calculating monthly mean anomaly over the east area by averaging the anomaly of each float present
anomaly_2months <- core_anomaly_2023_natlantic_subset %>% 
  mutate(period=(as.numeric(month)+1)%/%2)
anomaly_2months<-anomaly_2months %>% 
  group_by(depth, period) %>% 
  summarise(temp_count = n(),
            temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
            temp_anomaly_sd = sd(anomaly, na.rm = TRUE))


anomaly_2023<-core_anomaly_2023_natlantic_subset %>% 
  group_by(depth) %>% 
  summarise(temp_count = n(),
            temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
            temp_anomaly_sd = sd(anomaly, na.rm = TRUE))

# Vertical anomaly profile for the North atlatinc east region - monthly 
ggplot() +
  geom_path(data=anomaly_2months, aes(x = temp_anomaly_mean, y = depth, color = factor(period))) +
  geom_ribbon(data=anomaly_2023, aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
                                                xmin = temp_anomaly_mean - temp_anomaly_sd,
                                                y = depth, fill = "spread"), alpha = 0.2) +
  geom_vline(xintercept = 0) +
  scale_y_reverse() +
  coord_cartesian(xlim = c(-4, 4), ylim = c(200, 0)) +
  labs(title = paste('Propagation of SST anomalies in the water column'), 
       subtitle = paste0("Extent: ", name_extent, " North Atlantic bassin in 2023"),
       x = 'Temperature (°C)', y = 'Depth (m)') +
  scale_color_manual(values =  colorRampPalette(c("blue", "orange", "darkred"))(6),
                     breaks = unique(anomaly_2months$period),
                     labels =c("Jan-Feb", "March-April", "May-June", "July-Aug", "Sept-Oct", "Nov-Dec")) +
  scale_fill_manual(values = "grey", # Manual fill color setting
                    labels = "yearly") + # Label for the legend
  theme(plot.title = element_text(size = 18), 
        plot.subtitle = element_text(size = 12),
    legend.text = element_text(size = 14)) +
  guides(color = guide_legend(title="Period"), 
         fill = guide_legend(title = "Spread")) # Legend for the ribbon

Version Author Date
3ac87c9 mlarriere 2024-05-20

Hovmoeller plot

#---WEEKLY
#adding the week of the year
core_anomaly_2023_natlantic_subset <- core_anomaly_2023_natlantic_subset %>%
  mutate(week = week(date))

#---WEEKLY
anomaly_weekly<-core_anomaly_2023_natlantic_subset %>% 
  group_by(depth, week) %>% 
  summarise(temp_count = n(),
            temp_anomaly_mean = mean(anomaly, na.rm = TRUE))

#---2WEEKS
# Calculating monthly mean anomaly over the east area by averaging the anomaly of each float present
anomaly_2weekly <- core_anomaly_2023_natlantic_subset %>% 
  mutate(week2=(week+1)%/%2) %>% 
  group_by(depth, week2) %>% 
  summarise(temp_count = n(),
            temp_anomaly_mean = mean(anomaly, na.rm = TRUE))

#---MONTHLY
anomaly_monthly <- core_anomaly_2023_natlantic_subset %>% 
  group_by(depth, month) %>% 
  summarise(temp_count = n(),
            temp_anomaly_mean = mean(anomaly, na.rm = TRUE))

#---Hovmoeller plot
breaks_seq=seq(-0.5,2, by=0.5)
labels_name=as.character(seq(-0.5,2, by=0.5))
ggplot(data=anomaly_2weekly, aes(x = week2, y = depth, z = temp_anomaly_mean)) +
 geom_contour_filled(aes(fill = after_stat(level_mid))) + #color = 'gray20', linewidth = 0.5,
  scale_fill_gradient2(name='T°C anomaly', low = "darkblue", high = "darkred",
                      breaks=seq(-0.5,2, by=0.5), labels=as.character(seq(-0.5,2, by=0.5))) + 
  coord_cartesian(ylim = c(200, 0), expand = 0) +
  labs(title = "Temporal progression of SST anomalies penetration in 2023",
       subtitle = paste0("Extent: ", name_extent, ", temporal resolution: 2 weeks"),
       x = "Week of Year",       y = "Depth (m)") +
  theme_minimal() +
  theme(plot.title = element_text(size = 16),
        plot.subtitle = element_text(size = 12),
        legend.text = element_text(size = 10),
        legend.title = element_text(size = 12, face = "bold"),
        legend.key.width = unit(0.5, "cm"),
        legend.key.height = unit(2, "cm")
        )

Absolute maximum anomalies categorisation

#Absolute max anomalies for each lat-lon
abs_max_SSTanomalies<-core_anomaly_2023_natlantic_subset %>% 
  filter(!is.na(anomaly), depth<=200) %>% 
  group_by(lat, lon) %>%
  summarize(max_SST_anomaly = max(abs(anomaly), na.rm = TRUE))
  

ggplot()+
  geom_tile(data=abs_max_SSTanomalies, aes(lon, lat, fill = max_SST_anomaly)) +
  geom_map(data = world_coordinates, map = world_coordinates, aes(long, lat, map_id = region), fill = "grey") +
  lims(x = c(chosen_extent$lon_min, chosen_extent$lon_max), y=c(chosen_extent$lat_min, chosen_extent$lat_max)) + 
  scale_fill_viridis_c(option = "magma") +
  labs(title = "Absolute Maximum SST anomaly, annual average 2023",
       fill = "Absolute max SST anomalies [°C]")+
  coord_quickmap(expand = 0)+
   theme(plot.title = element_text(size = 16), 
        plot.subtitle = element_text(size = 12),
        legend.text = element_text(size = 10),  
        legend.title = element_text(size = 11) )

#Mean depth at which  max anomaly is found
mean_depth_max_anomaly<- inner_join(abs_max_SSTanomalies,core_anomaly_2023_natlantic_subset, by=c('lat', 'lon'))
mean_depth_max_anomaly <- mean_depth_max_anomaly %>%
  filter(abs(anomaly) == max_SST_anomaly)

library(scico)

ggplot()+
  geom_tile(data=mean_depth_max_anomaly, aes(lon, lat, fill = depth)) +
  geom_map(data = world_coordinates, map = world_coordinates, aes(long, lat, map_id = region), fill = "grey") +
  lims(x = c(chosen_extent$lon_min, chosen_extent$lon_max), y=c(chosen_extent$lat_min, chosen_extent$lat_max)) + 
  scale_fill_scico(palette = "lajolla", direction = -1) +

  # scale_fill_gradient2(name = 'Depth[m]', low = "darkblue", high = "darkred", midpoint = 100, 
  #                      guide = "colorbar",
  #                      breaks=seq(0,1500, by=100), labels=as.character(seq(0,1500, by=100))) + 
  labs(title = "Depth of max anomaly [m]",
       subtitle = 'midpoint: 200m',
       fill = "Absolute max SST anomalies [°C]")+
  coord_quickmap(expand = 0)+
   theme(plot.title = element_text(size = 16), 
        plot.subtitle = element_text(size = 12),
        legend.text = element_text(size = 10),  
        legend.title = element_text(size = 11),
         legend.key.width = unit(0.5, "cm"),
        legend.key.height = unit(2, "cm")
        )


sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] scico_1.3.1          patchwork_1.1.2      broom_1.0.5         
 [4] paletteer_1.6.0      cluster_2.1.6        gridExtra_2.3       
 [7] scatterplot3d_0.3-44 viridis_0.6.2        viridisLite_0.4.1   
[10] ggOceanMaps_1.3.4    ggspatial_1.1.7      oce_1.7-10          
[13] gsw_1.1-1            lubridate_1.9.0      timechange_0.1.1    
[16] forcats_0.5.2        stringr_1.5.0        dplyr_1.1.3         
[19] purrr_1.0.2          readr_2.1.3          tidyr_1.3.0         
[22] tibble_3.2.1         ggplot2_3.4.4        tidyverse_1.3.2     
[25] workflowr_1.7.0     

loaded via a namespace (and not attached):
 [1] googledrive_2.0.0   colorspace_2.0-3    ellipsis_0.3.2     
 [4] class_7.3-20        rprojroot_2.0.3     fs_1.5.2           
 [7] rstudioapi_0.15.0   proxy_0.4-27        farver_2.1.1       
[10] fansi_1.0.3         xml2_1.3.3          codetools_0.2-18   
[13] cachem_1.0.6        knitr_1.41          jsonlite_1.8.3     
[16] dbplyr_2.2.1        rgeos_0.5-9         compiler_4.2.2     
[19] httr_1.4.4          backports_1.4.1     assertthat_0.2.1   
[22] fastmap_1.1.0       gargle_1.2.1        cli_3.6.1          
[25] later_1.3.0         htmltools_0.5.8.1   tools_4.2.2        
[28] gtable_0.3.1        glue_1.6.2          maps_3.4.1         
[31] Rcpp_1.0.10         cellranger_1.1.0    jquerylib_0.1.4    
[34] RNetCDF_2.6-1       raster_3.6-11       vctrs_0.6.4        
[37] lwgeom_0.2-10       xfun_0.35           ps_1.7.2           
[40] rvest_1.0.3         lifecycle_1.0.3     ncmeta_0.3.5       
[43] googlesheets4_1.0.1 terra_1.7-65        getPass_0.2-2      
[46] scales_1.2.1        hms_1.1.2           promises_1.2.0.1   
[49] parallel_4.2.2      rematch2_2.1.2      yaml_2.3.6         
[52] sass_0.4.4          stringi_1.7.8       highr_0.9          
[55] e1071_1.7-12        rlang_1.1.1         pkgconfig_2.0.3    
[58] evaluate_0.18       lattice_0.20-45     sf_1.0-9           
[61] labeling_0.4.2      processx_3.8.0      tidyselect_1.2.0   
[64] magrittr_2.0.3      R6_2.5.1            generics_0.1.3     
[67] DBI_1.2.2           pillar_1.9.0        haven_2.5.1        
[70] whisker_0.4         withr_2.5.0         units_0.8-0        
[73] stars_0.6-0         abind_1.4-5         sp_1.5-1           
[76] modelr_0.1.10       crayon_1.5.2        KernSmooth_2.23-20 
[79] utf8_1.2.2          tzdb_0.3.0          rmarkdown_2.18     
[82] isoband_0.2.6       grid_4.2.2          readxl_1.4.1       
[85] callr_3.7.3         git2r_0.30.1        reprex_2.0.2       
[88] digest_0.6.30       classInt_0.4-8      httpuv_1.6.6       
[91] munsell_0.5.0       bslib_0.4.1