Last updated: 2023-12-07

Checks: 7 0

Knit directory: bgc_argo_r_argodata/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9e185d7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/

Unstaged changes:
    Modified:   code/start_background_job_partial.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/temp_cluster_analysis.Rmd) and HTML (docs/temp_cluster_analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 9e185d7 ds2n19 2023-12-07 Revised menu structure.
Rmd c5005d7 ds2n19 2023-12-07 Revised menu structure.
html e60ebd2 ds2n19 2023-12-07 Build site.
Rmd 23a24d1 ds2n19 2023-12-05 Revised extreme identification. Adjusted profiles for cluster analysis based on max anomaly.
html 12e23ab ds2n19 2023-12-04 Build site.
Rmd f2b7887 ds2n19 2023-12-04 Cluster under surface extreme.
html 31b8905 ds2n19 2023-12-04 Build site.
Rmd 20e0381 ds2n19 2023-12-04 Cluster under surface extreme.
html 2a330f3 ds2n19 2023-12-04 Build site.
Rmd 1231773 ds2n19 2023-12-04 Cluster under surface extreme.
html cd75bb7 ds2n19 2023-12-04 Build site.
Rmd d1088e0 ds2n19 2023-12-04 Cluster under surface extreme.
html a6b9ac3 ds2n19 2023-12-04 Build site.
Rmd c3b9451 ds2n19 2023-12-04 Cluster under surface extreme.
html bb6c7b2 ds2n19 2023-12-03 Build site.
Rmd b83178b ds2n19 2023-12-03 Cluster under surface extreme.
html cfa1850 ds2n19 2023-12-03 Build site.
Rmd d93ff61 ds2n19 2023-12-03 Cluster under surface extreme.
html 9d9ac38 ds2n19 2023-12-01 Build site.
Rmd 27c706c ds2n19 2023-12-01 Cluster under surface extreme.
html ba42bd5 ds2n19 2023-11-30 Build site.
Rmd 964d84d ds2n19 2023-11-30 Cluster under surface extreme.
html 1ad7f89 ds2n19 2023-11-30 Build site.
Rmd 0a8a718 ds2n19 2023-11-30 Cluster under surface extreme.
html 98f3220 ds2n19 2023-11-30 Build site.
Rmd d9e17d4 ds2n19 2023-11-30 Cluster under surface extreme.
html 77cc54e ds2n19 2023-11-24 Build site.
Rmd b24f211 ds2n19 2023-11-24 Cluster under surface extreme.
Rmd 59f5cc4 ds2n19 2023-11-23 Moved spatiotemporal analysis to use aligned profiles.
html 80c16c2 ds2n19 2023-11-15 Build site.
Rmd 3eba518 ds2n19 2023-11-15 Introduction of vertical alignment and cluster analysis to github website.

Tasks

This markdown file carries out cluster analysis on previously created bgc temperature anomaly profiles.

The cluster_analysis_determine_k chunk is used to give an indication of an appropriate number of clusers and this can then set the option opt_num_clusters. Chunk cluster_analysis_cluster_details carried out the cluster analysis and the results are used in subsequent figures.

Set directories

location of pre-prepared data

Set options

Define options that are used to determine what analysis is done

# Options

# opt_analysis_type
# opt_analysis_type = 1 do analysis to determine number of clusters to use
# opt_analysis_type = 2 do cluster analysis and further analysis on the identified clusters clusters
opt_analysis_type <- 2

# opt_num_clusters
# How many clusters are used in the cluster analysis for each depth 1 (600 m), 2 (1000 m) and 3 (1500 m)
opt_num_clusters_min <- c(8, 8, 4)
opt_num_clusters_max <- c(8, 8, 5)
# What is the max depth of each profile_range
opt_max_depth <- c(600, 1000, 1500)
# Which profile range is used
opt_profile_range <- 3

# opt_measure_label, opt_xlim and opt_xbreaks are associated with formatting
opt_measure_label <- "temperature anomaly (°C)"
opt_xlim <- c(-4.5, 4.5)
opt_xbreaks <- c(-4, -2, 0, 2, 4)

# adjusted to be in scale -1 to 1
opt_measure_label_adjusted <- "adjusted temperature anomaly"
opt_xlim_adjusted <- c(-1, 1)
opt_xbreaks_adjusted <- c(-1.0, -0.5, 0, 0.5, 1.0)

# options relating to cluster analysis
opt_n_start <- 15
opt_max_iterations <- 500
opt_n_clusters <- 14 # Max number of clusters to try when determining optimal number of clusters

# opt_extreme_determination
# 1 - based on the trend of de-seasonal data - we believe this results in more summer extremes where variation tend to be greater.
# 2 - based on the trend of de-seasonal data by month. grouping is by lat, lon and month.
opt_extreme_determination <- 2

# Options associated with profiles under surface extreme conditions
# Carried out for 1500m profiles
opt_profile_range = 3
extreme_type <- c('L', 'N', 'H')
opt_num_clusters_ext_min <- c(4, 4, 4)
opt_num_clusters_ext_max <- c(5, 5, 5)

# Option related to normalising the anomaly profiles.
# TRUE - anomaly profiles are normalised by the surface anomaly. Every depth anomaly is divided by the surface anomaly.
#      - The is only carried out for profiles where the abs(surface temp) > 1.
#      - This analysis is carried out in addition to the analysis on base anomaly profiles.  
# FALSE - The normalisation process is not carried out. 
opt_norm_anomaly <- TRUE
theme_set(theme_bw())

map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))

Preparation

Prepare data for cluster analysis

# read data
temp_anomaly_va <- read_rds(file = paste0(path_argo_preprocessed, "/temp_anomaly_va.rds"))

# select profile based on profile_range and he appropriate max depth
temp_anomaly_va <- temp_anomaly_va %>% 
  filter(profile_range == opt_profile_range & depth <= opt_max_depth[opt_profile_range])

# Simplified table ready to pivot
temp_anomaly_va_id <- temp_anomaly_va %>%
  select(file_id,
         depth,
         anomaly,
         year, 
         month, 
         lat, 
         lon)

# wide table with each depth becoming a column
temp_anomaly_va_wide <- temp_anomaly_va_id %>%
  select(file_id, depth, anomaly) %>%
  pivot_wider(names_from = depth, values_from = anomaly)

# Drop any rows with missing values N/A caused by gaps in climatology data
temp_anomaly_va_wide <- temp_anomaly_va_wide %>% 
  drop_na()

# Table for cluster analysis
points <- temp_anomaly_va_wide %>%
  column_to_rownames(var = "file_id")

# normalisation?
if (opt_norm_anomaly) {
  
  surf_anomaly <- abs(temp_anomaly_va_id %>% 
    filter (depth == 5) %>%
    select (file_id, abs_sa = anomaly))
  
  # Get the maximum anomaly for each profile - the normalisation will then fit max to 1
  surf_anomaly <- temp_anomaly_va_id %>%
    group_by(file_id) %>%
    summarise(abs_sa = max(abs(anomaly))) %>%
    ungroup() %>%
    select (file_id, abs_sa)

  temp_anomaly_va_id_normalised <- left_join(temp_anomaly_va_id, surf_anomaly)
  
  #temp_anomaly_va_id_normalised <- temp_anomaly_va_id_normalised %>%
  #  mutate(anomaly = if_else(abs_sa > 1.0, anomaly/abs_sa, anomaly))
  temp_anomaly_va_id_normalised <- temp_anomaly_va_id_normalised %>%
    mutate(anomaly = anomaly/abs_sa)
    
  # wide table with each depth becoming a column
  temp_anomaly_va_wide <- temp_anomaly_va_id_normalised %>%
    select(file_id, depth, anomaly) %>%
    pivot_wider(names_from = depth, values_from = anomaly)
  
  # Drop any rows with missing values N/A caused by gaps in climatology data
  temp_anomaly_va_wide <- temp_anomaly_va_wide %>% 
    drop_na()
  
  # Table for cluster analysis
  points_normalised <- temp_anomaly_va_wide %>%
    column_to_rownames(var = "file_id")

}

Number of clusters

if (opt_analysis_type == 1) {


  # cluster analysis - What k? try between 1 and opt_n_clusters clusters
  kclusts <- 
  tibble(k = 1:opt_n_clusters) %>%
  mutate(
    kclust = map(k, ~kmeans(points, .x, iter.max = opt_max_iterations, nstart = opt_n_start)),
    tidied = map(kclust, tidy),
    glanced = map(kclust, glance),
    augmented = map(kclust, augment, points)
  )
  

  # cluster analysis data
  # clusters <-
  #   kclusts %>%
  #   unnest(cols = c(tidied))
  # 
  # assignments <-
  #   kclusts %>%
  #   unnest(cols = c(augmented))
  
  clusterings <-
    kclusts %>%
    unnest(cols = c(glanced))
  
  # What cluster works best?
  clusterings %>%
  ggplot(aes(k, tot.withinss)) +
    geom_line() +
    geom_point() +
    scale_x_continuous(breaks = c(2, 4, 6, 8, 10, 12, 14)) +
    labs(
      title = paste0('within ss by number of clusters: ', opt_max_depth[i_range], ' m profiles'),
      x = 'number of clusters',
      y = 'within ss'
    )

}

Cluster analysis

Cluster means

Based on all floats regardless of surface condition.

if (opt_analysis_type == 2) {
  
  for (iType in 1:2) {
    for (inum_clusters in opt_num_clusters_min[opt_profile_range]:opt_num_clusters_max[opt_profile_range]) {
      if (iType == 1) {

        set.seed(1)
        kclusts <-
          tibble(k = inum_clusters) %>%
          mutate(kclust = map(k, ~ kmeans(points, .x, iter.max = opt_max_iterations, nstart = opt_n_start)),
            tidied = map(kclust, tidy),
            glanced = map(kclust, glance),
            augmented = map(kclust, augment, points)
          )
        
        profile_id <-
          kclusts %>%
          unnest(cols = c(augmented)) %>%
          select(file_id = .rownames,
                 cluster = .cluster) %>%
          mutate(file_id = as.numeric(file_id),
                 cluster = as.character(cluster))
        
        # Add cluster to temp_anomaly_va
        temp_anomaly_cluster <-
          full_join(temp_anomaly_va_id, profile_id)
        
        # Add profile_type field
        temp_anomaly_cluster <- temp_anomaly_cluster %>%
          mutate(profile_type = 'base')
        
        # Check null clusters
        temp_anomaly_cluster <- temp_anomaly_cluster %>%
          filter(!is.na(cluster))
        
        # Create table to be used for later analysis and Set the number of clusters field
        if (!exists('temp_anomaly_cluster_all')) {
          temp_anomaly_cluster_all <- temp_anomaly_cluster %>%
            mutate(num_clusters = inum_clusters)
        } else {
          temp_anomaly_cluster_all <-
            rbind(
              temp_anomaly_cluster_all,
              temp_anomaly_cluster %>%
                mutate(num_clusters = inum_clusters)
            )
        }
        
      } else if (iType == 2 & opt_norm_anomaly) {

        set.seed(1)
        kclusts <-
          tibble(k = inum_clusters) %>%
          mutate(kclust = map(k, ~ kmeans(points_normalised, .x, iter.max = opt_max_iterations, nstart = opt_n_start)),
            tidied = map(kclust, tidy),
            glanced = map(kclust, glance),
            augmented = map(kclust, augment, points)
          )
        
        profile_id <-
          kclusts %>%
          unnest(cols = c(augmented)) %>%
          select(file_id = .rownames,
                 cluster = .cluster) %>%
          mutate(file_id = as.numeric(file_id),
                 cluster = as.character(cluster))
        
        # Add cluster to temp_anomaly_va
        temp_anomaly_cluster_norm <-
          full_join(temp_anomaly_va_id_normalised %>% select(-c(abs_sa)) ,
                    profile_id)
        
        # Add profile_type field
        temp_anomaly_cluster_norm <- temp_anomaly_cluster_norm %>%
          mutate(profile_type = 'adjusted')
        
        # Check null clusters
        temp_anomaly_cluster_norm <- temp_anomaly_cluster_norm %>%
          filter(!is.na(cluster))
        
        # Create table to be used for later analysis and Set the number of clusters field
        if (!exists('temp_anomaly_cluster_all')) {
          temp_anomaly_cluster_all <- temp_anomaly_cluster_norm %>%
            mutate(num_clusters = inum_clusters)
        } else {
          temp_anomaly_cluster_all <-
            rbind(
              temp_anomaly_cluster_all,
              temp_anomaly_cluster_norm %>%
                mutate(num_clusters = inum_clusters)
            )
        }
        
      }
      
    }
  }
  
  # Plot cluster mean
  anomaly_cluster_mean <- temp_anomaly_cluster_all %>%
    group_by(profile_type, num_clusters, cluster, depth) %>%
    summarise(
      count_cluster = n(),
      anomaly_mean = mean(anomaly, na.rm = TRUE),
      anomaly_sd = sd(anomaly, na.rm = TRUE)
    ) %>%
    ungroup()
  
  anomaly_cluster_mean_year <- temp_anomaly_cluster_all %>%
    group_by(profile_type, num_clusters, cluster, depth, year) %>%
    summarise(
      count_cluster = n(),
      anomaly_mean = mean(anomaly, na.rm = TRUE),
      anomaly_sd = sd(anomaly, na.rm = TRUE)
    ) %>%
    ungroup()
  
  anomaly_year_mean <- temp_anomaly_cluster_all %>%
    group_by(profile_type, num_clusters, cluster, year) %>%
    summarise(
      count_cluster = n(),
      anomaly_mean = mean(anomaly, na.rm = TRUE),
      anomaly_sd = sd(anomaly, na.rm = TRUE)
    ) %>%
    ungroup()
  
  anomaly_year_mean <- anomaly_year_mean %>%
    group_by(profile_type, num_clusters, year) %>%
    summarise(anomaly_mean = mean(anomaly_mean, na.rm = TRUE)) %>%
    ungroup ()

  # Determine profile count by cluster and year
  # Count the measurements
  cluster_by_year <- temp_anomaly_cluster_all %>% 
    count(profile_type, num_clusters, file_id, cluster, year,
          name = "count_cluster")

  # Convert to profiles
  cluster_by_year <- cluster_by_year %>% 
    count(profile_type, num_clusters, cluster, year,
          name = "count_cluster")
  
  # total of each type of cluster
  cluster_count <- cluster_by_year %>%
    group_by(profile_type, num_clusters, cluster) %>% 
    summarise(count_profiles = sum(count_cluster)) %>%
    ungroup()
  
  anomaly_cluster_mean <- left_join(anomaly_cluster_mean, cluster_count)
  
  # create figure of cluster mean profiles
  anomaly_cluster_mean %>%
    filter (profile_type == "base") %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ ggplot(data = .x,) +
        geom_path(aes(x = anomaly_mean,
                      y = depth)) +
        geom_ribbon(
          aes(
            xmax = anomaly_mean + anomaly_sd,
            xmin = anomaly_mean - anomaly_sd,
            y = depth
          ),
          alpha = 0.2
        ) +
        geom_vline(xintercept = 0) +
        scale_y_reverse() +
        facet_wrap(~ paste0(cluster, " (", formatC(count_profiles, big.mark=",") , ")")) +
        coord_cartesian(xlim = opt_xlim) +
        scale_x_continuous(breaks = opt_xbreaks) +
        labs(
          title = paste0(
            'Overall mean anomaly profiles by cluster \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          ),
          x = opt_measure_label,
          y = 'depth (m)'
        )
    )
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
cd75bb7 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
cd75bb7 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  # repeat for adjusted profiles profiles
  anomaly_cluster_mean %>%
    filter (profile_type == "adjusted") %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ ggplot(data = .x,) +
        geom_path(aes(x = anomaly_mean,
                      y = depth)) +
        geom_ribbon(
          aes(
            xmax = anomaly_mean + anomaly_sd,
            xmin = anomaly_mean - anomaly_sd,
            y = depth
          ),
          alpha = 0.2
        ) +
        geom_vline(xintercept = 0) +
        scale_y_reverse() +
        facet_wrap(~ paste0(cluster, " (", formatC(count_profiles, big.mark=",") , ")")) +
        coord_cartesian(xlim = opt_xlim_adjusted) +
        scale_x_continuous(breaks = opt_xbreaks_adjusted) +
        labs(
          title = paste0(
            'Overall mean anomaly profiles by cluster \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          ),
          x = opt_measure_label_adjusted,
          y = 'depth (m)'
        )
    )
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

Cluster mean by year

if (opt_analysis_type == 2) {

  # cluster means by year
  anomaly_cluster_mean_year %>%
    filter (profile_type == "base") %>%
    mutate(year = as.factor(year)) %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ ggplot(data = .x, ) +
        geom_path(aes(
          x = anomaly_mean,
          y = depth,
          col = year
        )) +
        geom_vline(xintercept = 0) +
        scale_y_reverse() +
        facet_wrap(~ cluster) +
        coord_cartesian(xlim = opt_xlim) +
        scale_x_continuous(breaks = opt_xbreaks) +
        scale_color_viridis_d() +
        labs(
          title = paste0(
            'Overall mean anomaly profiles by cluster \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          ),
          x = opt_measure_label,
          y = 'depth (m)'
        )
    )
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
cd75bb7 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
cd75bb7 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {
  
  # Repeat for adjusted profiles
  anomaly_cluster_mean_year %>%
    filter (profile_type == "adjusted") %>%
    mutate(year = as.factor(year)) %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ ggplot(data = .x, ) +
        geom_path(aes(
          x = anomaly_mean,
          y = depth,
          col = year
        )) +
        geom_vline(xintercept = 0) +
        scale_y_reverse() +
        facet_wrap(~ cluster) +
        coord_cartesian(xlim = opt_xlim_adjusted) +
        scale_x_continuous(breaks = opt_xbreaks_adjusted) +
        scale_color_viridis_d() +
        labs(
          title = paste0(
            'Overall mean anomaly profiles by cluster \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          ),
          x = opt_measure_label_adjusted,
          y = 'depth (m)'
        )
    )
  
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

Cluster climatology

# A nice short alternative, uses the package ggpmisc
anomaly_year_mean %>%
  ggplot(aes(x = year,
             y = anomaly_mean)) +
  stat_poly_line() +
  stat_poly_eq(use_label(c("eq", "R2","P", "n"))) +
  geom_point()

Cluster by year

count of each cluster by year

if (opt_analysis_type == 2) {

  year_min <- min(cluster_by_year$year)
  year_max <- max(cluster_by_year$year)
  
  # create figure
  cluster_by_year %>%
    filter (profile_type == "base") %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ ggplot(data = .x, aes(
          x = year,
          y = count_cluster,
          col = cluster,
          group = cluster
        )) +
        geom_point() +
        geom_line() +
        scale_x_continuous(breaks = seq(year_min, year_max, 2)) +
        scale_color_brewer(palette = 'Dark2') +
        labs(
          title = paste0(
            'Count of profiles by year and cluster \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          ),
          x = 'year',
          y = 'number of profiles',
          col = 'cluster'
        )
    )
  
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
80c16c2 ds2n19 2023-11-15

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  year_min <- min(cluster_by_year$year)
  year_max <- max(cluster_by_year$year)
  
  # create figure
  cluster_by_year %>%
    filter (profile_type == "adjusted") %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ ggplot(data = .x, aes(
          x = year,
          y = count_cluster,
          col = cluster,
          group = cluster
        )) +
        geom_point() +
        geom_line() +
        scale_x_continuous(breaks = seq(year_min, year_max, 2)) +
        scale_color_brewer(palette = 'Dark2') +
        labs(
          title = paste0(
            'Count of profiles by year and cluster \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          ),
          x = 'year',
          y = 'number of profiles',
          col = 'cluster'
        )
    )
  
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

Cluster by month

count of each cluster by month of year

if (opt_analysis_type == 2) {

  # Determine profile count by cluster and year
  # Count the measurements
  cluster_by_year <- temp_anomaly_cluster_all %>% 
    count(profile_type, num_clusters, file_id, cluster, month,
          name = "count_cluster")

  # Convert to profiles
  cluster_by_year <- cluster_by_year %>% 
    count(profile_type, num_clusters, cluster, month,
          name = "count_cluster")

  # create figure
  cluster_by_year %>%
    filter (profile_type == "base") %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ ggplot(
        data = .x,
        aes(
          x = month,
          y = count_cluster,
          col = cluster,
          group = cluster
        )
      ) +
        geom_point() +
        geom_line() +
        scale_x_continuous(breaks = seq(1, 12, 2)) +
        scale_color_brewer(palette = 'Dark2') +
        labs(
          title = paste0(
            'Count of profiles by month and cluster \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          ),
          x = 'month',
          y = 'number of profiles',
          col = 'cluster'
        )
    )
  
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
80c16c2 ds2n19 2023-11-15

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  # create figure
  cluster_by_year %>%
    filter (profile_type == "adjusted") %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ ggplot(
        data = .x,
        aes(
          x = month,
          y = count_cluster,
          col = cluster,
          group = cluster
        )
      ) +
        geom_point() +
        geom_line() +
        scale_x_continuous(breaks = seq(1, 12, 2)) +
        scale_color_brewer(palette = 'Dark2') +
        labs(
          title = paste0(
            'Count of profiles by month and cluster \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          ),
          x = 'month',
          y = 'number of profiles',
          col = 'cluster'
        )
    )
  
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

Cluster spatial

location of each cluster on map, spatial analysis

if (opt_analysis_type == 2) {

  # create figure
  temp_anomaly_cluster_all %>%
    filter (profile_type == "base") %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ map +
        geom_tile(data = .x,
                  aes(
                    x = lon,
                    y = lat,
                    fill = cluster
                  )) +
        lims(y = c(-85,-30)) +
        scale_fill_brewer(palette = 'Dark2') +
        labs(
          title = paste0(
            'cluster spatial distribution \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          ),
        )
    )
  
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  # create figure
  temp_anomaly_cluster_all %>%
    filter (profile_type == "adjusted") %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ map +
        geom_tile(data = .x,
                  aes(
                    x = lon,
                    y = lat,
                    fill = cluster
                  )) +
        lims(y = c(-85,-30)) +
        scale_fill_brewer(palette = 'Dark2') +
        labs(
          title = paste0(
            'cluster spatial distribution \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          ),
        )
    )
  
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

location of each cluster on separate maps, spatial analysis

if (opt_analysis_type == 2) {

  # create figure
map +
  geom_tile(data = temp_anomaly_cluster,
            aes(x = lon,
                y = lat,
                fill = cluster)) +
  lims(y = c(-85, -30)) +
  scale_fill_brewer(palette = 'Dark2') +
  facet_wrap( ~ cluster, ncol = 2) +
  labs(title = 'cluster spatial distribution')

}

Cluster spatial counts

count of measurements for each cluster on separate maps, spatial analysis

if (opt_analysis_type == 2) {

  # Count profiles    
  cluster_by_location <- temp_anomaly_cluster_all %>%
    count(profile_type, num_clusters, file_id, lat, lon, cluster,
          name = "count_cluster")
  
  # create figure
  cluster_by_location %>%
    filter (profile_type == "base") %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ map +
        geom_tile(data = .x %>%
                    count(lat, lon, cluster),
                  aes(
                    x = lon,
                    y = lat,
                    fill = n
                  )) +
        lims(y = c(-85,-30)) +
        scale_fill_gradient(low = "blue",
                            high = "red",
                            trans = "log10") +
        facet_wrap(~ cluster, ncol = 2) +
        labs(
          title = paste0(
            'cluster spatial distribution \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          )
        )
    )

}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  # create figure
  cluster_by_location %>%
    filter (profile_type == "adjusted") %>%
    group_split(profile_type, num_clusters) %>%
    map(
      ~ map +
        geom_tile(data = .x %>%
                    count(lat, lon, cluster),
                  aes(
                    x = lon,
                    y = lat,
                    fill = n
                  )) +
        lims(y = c(-85,-30)) +
        scale_fill_gradient(low = "blue",
                            high = "red",
                            trans = "log10") +
        facet_wrap(~ cluster, ncol = 2) +
        labs(
          title = paste0(
            'cluster spatial distribution \n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          )
        )
    )
  
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

Cluster spatial year location of each cluster on map, spatial analysis by year

if (opt_analysis_type == 2) {

  # create figure
  temp_anomaly_cluster_all %>%
    group_split(profile_type, num_clusters, year) %>%
    map(
      ~ map +
        geom_tile(data = .x,
                  aes(
                    x = lon,
                    y = lat,
                    fill = cluster
                  )) +
        #lims(y = c(-85, -30))+
        scale_fill_brewer(palette = 'Dark2') +
        facet_wrap(~ cluster, ncol = 2) +
        labs(
          title = paste0(
            'cluster spatial distribution ', unique(.x$year), '\n',
            'type = ', unique(.x$profile_type), ', ', 
            'num clusters = ', unique(.x$num_clusters)
          )
        )
    )
      
}

Cluster by surface Extreme

# ---------------------------------------------------------------------------------------------
# read data
# ---------------------------------------------------------------------------------------------
# load previously created OceanSODA extreme data. date, position and nature of extreme
if (opt_extreme_determination == 1){
  temp_extreme <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_01.rds")) %>%
    select(lon, lat, date, temp_extreme)
} else if (opt_extreme_determination == 2){
  temp_extreme <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_02.rds")) %>%
    select(lon, lat, date, temp_extreme)
}

# -------------------------------------------------------------------------------------------------------------
# Temp - review incidences of extremes based on method.
# -------------------------------------------------------------------------------------------------------------
# 
#   temp_extreme_info_01 <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_01.rds")) %>%
#     select(lon, lat, date, temp_extreme)
# 
# temp_extreme_info_01 <- temp_extreme_info_01 %>%
#   group_by(temp_extreme, date) %>%
#   summarise(n = n()) %>%
#   ungroup()
# 
# temp_extreme_info_01 %>%
#   filter (temp_extreme %in% c('H', 'L') & date >= '2013-01-01') %>%
#   ggplot(aes(
#            x = date,
#            y = n,
#            col = temp_extreme
#          )) +
#   geom_point() +
#   geom_line() +
#   lims(y = c(0,3200)) +
#   labs(
#     x = 'date',
#     y = 'number of extreme pixels',
#     col = 'extreme type',
#     title = paste0(
#       'Count of extreme pixels - single trend'
#     )
#   )
# 
# 
# temp_extreme_info_02 <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_02.rds")) %>%
#     select(lon, lat, date, temp_extreme)
# 
# temp_extreme_info_02 <- temp_extreme_info_02 %>%
#   group_by(temp_extreme, date) %>%
#   summarise(n = n()) %>%
#   ungroup()
# 
# temp_extreme_info_02 %>%
#   filter (temp_extreme %in% c('H', 'L') & date >= '2013-01-01') %>%
#   ggplot(aes(
#            x = date,
#            y = n,
#            col = temp_extreme
#          )) +
#   geom_point() +
#   geom_line() +
#   lims(y = c(0,3200)) +
#   labs(
#     x = 'date',
#     y = 'number of extreme pixels',
#     col = 'extreme type',
#     title = paste0(
#       'Count of extreme pixels - monthly trends'
#     )
#   )
#   
# -------------------------------------------------------------------------------------------------------------
  
# read data
temp_anomaly_va <- read_rds(file = paste0(path_argo_preprocessed, "/temp_anomaly_va.rds")) %>%
  mutate(date = ymd(format(date, "%Y-%m-15")))

# Add the OceanSODA extreme condition
temp_anomaly_va <- left_join(temp_anomaly_va, temp_extreme)

# If temp_extreme is NA set it to N
temp_anomaly_va <- temp_anomaly_va %>% replace_na(list(temp_extreme = 'N'))
temp_anomaly_va <- temp_anomaly_va %>% mutate (profile_type = 'base')

# Create a replica data set with profile_type = adjusted 
if (opt_norm_anomaly){
  # mark as adjusted
  temp_anomaly_va_norm <- temp_anomaly_va %>% mutate (profile_type = 'adjusted')

  # Determine surface anomaly for each profile
  # surf_anomaly <- abs(temp_anomaly_va_norm %>% 
  #   filter (depth == 5) %>%
  #   select (file_id, abs_sa = anomaly))

  # Get the maximum anomaly for each profile - the normalisation will then fit max to 1
  surf_anomaly <- temp_anomaly_va %>%
    group_by(file_id) %>%
    summarise(abs_sa = max(abs(anomaly))) %>%
    ungroup() %>%
    select (file_id, abs_sa)
  
  temp_anomaly_va_norm <- left_join(temp_anomaly_va_norm, surf_anomaly)
    
  # Carry out the adjustment
  #temp_anomaly_va_norm <- temp_anomaly_va_norm %>%
  #  mutate(anomaly = if_else(abs_sa > 1.0, anomaly/abs_sa, anomaly))
  temp_anomaly_va_norm <- temp_anomaly_va_norm %>%
    mutate(anomaly = anomaly/abs_sa)
  
  #remove the surface anomaly field
  temp_anomaly_va_norm <- temp_anomaly_va_norm %>% select(-c(abs_sa))
  
  # Append to base profiles
  temp_anomaly_va <- rbind(temp_anomaly_va, temp_anomaly_va_norm)
  
}

profile_types <- c('adjusted', 'base')

# loop through profile_type
for (iprofile_type in 1:2) {

  sel_profile_type = profile_types[iprofile_type]
    
  # loop through surface condition
  for (i in 1:3) {
  
    # ---------------------------------------------------------------------------------------------
    # Preparation
    # ---------------------------------------------------------------------------------------------
    # select profile based on profile_range and he appropriate max depth
    temp_anomaly_va_id <- temp_anomaly_va %>% 
      filter(profile_range == opt_profile_range & depth <= opt_max_depth[opt_profile_range] & temp_extreme == extreme_type[i] & profile_type == sel_profile_type)
    
    # Simplified table ready to pivot
    temp_anomaly_va_id <- temp_anomaly_va_id %>%
      select(file_id,
             depth,
             anomaly,
             year, 
             month, 
             lat, 
             lon)
    
    # wide table with each depth becoming a column
    temp_anomaly_va_wide <- temp_anomaly_va_id %>%
      select(file_id, depth, anomaly) %>%
      pivot_wider(names_from = depth, values_from = anomaly)
    
    # Drop any rows with missing values N/A caused by gaps in climatology data
    temp_anomaly_va_wide <- temp_anomaly_va_wide %>% 
      drop_na()
    
    # Table for cluster analysis
    points <- temp_anomaly_va_wide %>%
      column_to_rownames(var = "file_id")
    
    # ---------------------------------------------------------------------------------------------
    # cluster analysis
    # ---------------------------------------------------------------------------------------------
    # loop through number of clusters
    for (inum_clusters in opt_num_clusters_ext_min[i]:opt_num_clusters_ext_max[i]) {    
  
      set.seed(1)
      kclusts <-
        tibble(k = inum_clusters) %>%
        mutate(
          kclust = map(k, ~ kmeans(points, .x, iter.max = opt_max_iterations, nstart = opt_n_start)),
          tidied = map(kclust, tidy),
          glanced = map(kclust, glance),
          augmented = map(kclust, augment, points)
        )
      
      profile_id <-
        kclusts %>%
        unnest(cols = c(augmented)) %>%
        select(file_id = .rownames,
               cluster = .cluster) %>% 
        mutate(file_id = as.numeric(file_id),
               cluster = as.character(cluster))
      
      # Add cluster to temp_anomaly_va
      temp_anomaly_cluster <- full_join(temp_anomaly_va_id, profile_id)
      
      # Plot cluster mean
      temp_anomaly_cluster <- temp_anomaly_cluster %>% 
        filter(!is.na(cluster))
      
      # cluster mean
      anomaly_cluster_mean <- temp_anomaly_cluster %>%
        group_by(cluster, depth) %>%
        summarise(
          count_cluster = n(),
          anomaly_mean = mean(anomaly, na.rm = TRUE),
          anomaly_sd = sd(anomaly, na.rm = TRUE)
        ) %>%
        ungroup()
      
      anomaly_cluster_mean_year <- temp_anomaly_cluster %>%
        group_by(cluster, depth, year) %>%
        summarise(
          count_cluster = n(),
          anomaly_mean = mean(anomaly, na.rm = TRUE),
          anomaly_sd = sd(anomaly, na.rm = TRUE)
        ) %>%
        ungroup()
      
      anomaly_year_mean <- temp_anomaly_cluster %>%
        group_by(cluster, year) %>%
        summarise(
          count_cluster = n(),
          anomaly_mean = mean(anomaly, na.rm = TRUE),
          anomaly_sd = sd(anomaly, na.rm = TRUE)
        ) %>%
        ungroup()
      
      anomaly_year_mean <- anomaly_year_mean %>%
        group_by(year) %>%
        summarise(anomaly_mean = mean(anomaly_mean, na.rm = TRUE)) %>%
        ungroup ()
      
      if (!exists('anomaly_cluster_mean_ext')) {
        anomaly_cluster_mean_ext <-
          anomaly_cluster_mean %>% mutate(
            temp_extreme_order = i,
            temp_extreme = extreme_type[i],
            num_clusters = inum_clusters,
            profile_type = sel_profile_type
          )
        anomaly_cluster_mean_year_ext <-
          anomaly_cluster_mean_year %>% mutate(
            temp_extreme_order = i,
            temp_extreme = extreme_type[i],
            num_clusters = inum_clusters,
            profile_type = sel_profile_type
          )
        anomaly_year_mean_ext <-
          anomaly_year_mean %>% mutate(
            temp_extreme_order = i,
            temp_extreme = extreme_type[i],
            num_clusters = inum_clusters,
            profile_type = sel_profile_type
          )
        temp_anomaly_cluster_ext <-
          temp_anomaly_cluster %>% mutate(
            temp_extreme_order = i,
            temp_extreme = extreme_type[i],
            num_clusters = inum_clusters,
            profile_type = sel_profile_type
          )
      } else {
        anomaly_cluster_mean_ext <-
          rbind(
            anomaly_cluster_mean_ext,
            anomaly_cluster_mean %>% mutate(
              temp_extreme_order = i,
              temp_extreme = extreme_type[i],
              num_clusters = inum_clusters,
              profile_type = sel_profile_type
            )
          )
        anomaly_cluster_mean_year_ext <-
          rbind(
            anomaly_cluster_mean_year_ext,
            anomaly_cluster_mean_year %>% mutate(
              temp_extreme_order = i,
              temp_extreme = extreme_type[i],
              num_clusters = inum_clusters,
              profile_type = sel_profile_type
            )
          )
        anomaly_year_mean_ext <-
          rbind(
            anomaly_year_mean_ext,
            anomaly_year_mean %>% mutate(
              temp_extreme_order = i,
              temp_extreme = extreme_type[i],
              num_clusters = inum_clusters,
              profile_type = sel_profile_type
            )
          )
        temp_anomaly_cluster_ext <-
          rbind(
            temp_anomaly_cluster_ext,
            temp_anomaly_cluster_ext <-
              temp_anomaly_cluster %>% mutate(
                temp_extreme_order = i,
                temp_extreme = extreme_type[i],
                num_clusters = inum_clusters,
                profile_type = sel_profile_type
              )
          )
      }
  
    }
    
  }
  
}

Cluster means

# Determine profile count by cluster and year
# Count the measurements
cluster_by_year <- temp_anomaly_cluster_ext %>% 
  count(profile_type, num_clusters, temp_extreme, temp_extreme_order, file_id, cluster, year,
        name = "count_cluster")

#cluster_by_year %>% filter (num_clusters == 5 & temp_extreme == 'N')

# Convert to profiles
cluster_by_year <- cluster_by_year %>% 
  count(profile_type, num_clusters, temp_extreme, temp_extreme_order, cluster, year,
        name = "count_cluster")

# total of each type of cluster
cluster_count <- cluster_by_year %>%
  group_by(profile_type, num_clusters, temp_extreme, temp_extreme_order, cluster) %>% 
  summarise(count_profiles = sum(count_cluster)) %>%
  ungroup()

anomaly_cluster_mean_ext <- left_join(anomaly_cluster_mean_ext, cluster_count)
  
# create figure of cluster mean profiles
anomaly_cluster_mean_ext %>%
  filter (profile_type == "base") %>%
  group_split(profile_type, num_clusters, temp_extreme_order) %>%
  map(
    ~  ggplot(data = .x, ) +
      geom_path(aes(x = anomaly_mean,
                    y = depth)) +
      geom_ribbon(
        aes(
          xmax = anomaly_mean + anomaly_sd,
          xmin = anomaly_mean - anomaly_sd,
          y = depth
        ),
        alpha = 0.2
      ) +
      geom_vline(xintercept = 0) +
      scale_y_reverse() +
      #facet_wrap(~ cluster) +
      facet_wrap(~ paste0(cluster, " (", formatC(count_profiles, big.mark=",") , ")")) +
      coord_cartesian(xlim = opt_xlim) +
      scale_x_continuous(breaks = opt_xbreaks) +
      labs(
        title = paste0(
          'Overall mean anomaly profiles by cluster \n',
          'profile type: ', unique(.x$profile_type), ', ', 
          'surface extreme: ', unique(.x$temp_extreme), ', ', 
          'number clusters: ', unique(.x$num_clusters)
        ),
        x = opt_measure_label,
        y = 'depth (m)'
      )
  )
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  # create figure of cluster mean profiles
  anomaly_cluster_mean_ext %>%
    filter (profile_type == "adjusted") %>%
    group_split(profile_type, num_clusters, temp_extreme_order) %>%
    map(
      ~  ggplot(data = .x, ) +
        geom_path(aes(x = anomaly_mean,
                      y = depth)) +
        geom_ribbon(
          aes(
            xmax = anomaly_mean + anomaly_sd,
            xmin = anomaly_mean - anomaly_sd,
            y = depth
          ),
          alpha = 0.2
        ) +
        geom_vline(xintercept = 0) +
        scale_y_reverse() +
        #facet_wrap(~ cluster) +
        facet_wrap(~ paste0(cluster, " (", formatC(count_profiles, big.mark=",") , ")")) +
        coord_cartesian(xlim = opt_xlim_adjusted) +
        scale_x_continuous(breaks = opt_xbreaks_adjusted) +
        labs(
          title = paste0(
            'Overall mean anomaly profiles by cluster \n',
            'profile type: ', unique(.x$profile_type), ', ', 
            'surface extreme: ', unique(.x$temp_extreme), ', ', 
            'number clusters: ', unique(.x$num_clusters)
          ),
          x = opt_measure_label_adjusted,
          y = 'depth (m)'
        )
    )

}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

Clusters mean by year

# cluster means by year
anomaly_cluster_mean_year_ext %>%
  filter (profile_type == "base") %>%
  mutate(year = as.factor(year)) %>%
  group_split(profile_type, num_clusters, temp_extreme_order) %>%
  map(
    ~  ggplot(data = .x,) +
      geom_path(aes(
        x = anomaly_mean,
        y = depth,
        col = year
      )) +
      geom_vline(xintercept = 0) +
      scale_y_reverse() +
      facet_wrap(~ cluster) +
      coord_cartesian(xlim = opt_xlim) +
      scale_x_continuous(breaks = opt_xbreaks) +
      scale_color_viridis_d() +
      labs(
        title = paste0(
          'Overall mean anomaly profiles by cluster by year \n',
          'profile type: ', unique(.x$profile_type), ', ', 
          'surface extreme: ', unique(.x$temp_extreme), ', ', 
          'number clusters: ', unique(.x$num_clusters)
        ),
        x = opt_measure_label,
        y = 'depth (m)'
      )
  )
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  # cluster means by year
  anomaly_cluster_mean_year_ext %>%
    filter (profile_type == "adjusted") %>%
    mutate(year = as.factor(year)) %>%
    group_split(profile_type, num_clusters, temp_extreme_order) %>%
    map(
      ~  ggplot(data = .x,) +
        geom_path(aes(
          x = anomaly_mean,
          y = depth,
          col = year
        )) +
        geom_vline(xintercept = 0) +
        scale_y_reverse() +
        facet_wrap(~ cluster) +
        coord_cartesian(xlim = opt_xlim_adjusted) +
        scale_x_continuous(breaks = opt_xbreaks_adjusted) +
        scale_color_viridis_d() +
        labs(
          title = paste0(
            'Overall mean anomaly profiles by cluster by year \n',
            'profile type: ', unique(.x$profile_type), ', ', 
            'surface extreme: ', unique(.x$temp_extreme), ', ', 
            'number clusters: ', unique(.x$num_clusters)
          ),
          x = opt_measure_label_adjusted,
          y = 'depth (m)'
        )
    )

}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

Cluster by year

count of each cluster by year

# Determine profile count by extreme and cluster and year
# Count the measurements
cluster_by_year <- temp_anomaly_cluster_ext %>% 
  count(file_id, profile_type, num_clusters, temp_extreme_order, temp_extreme, cluster, year,
        name = "count_cluster")
# Convert to profiles
cluster_by_year <- cluster_by_year %>% 
  count(profile_type, num_clusters, temp_extreme_order, temp_extreme, cluster, year,
        name = "count_cluster")

year_min <- min(cluster_by_year$year)
year_max <- max(cluster_by_year$year)

# create figure
cluster_by_year %>%
  filter (profile_type == "base") %>%
  group_split(profile_type, num_clusters, temp_extreme_order) %>%
  map(
    ~ ggplot(
      data = .x,
      aes(
        x = year,
        y = count_cluster,
        col = cluster,
        group = cluster
      )
    ) +
      geom_point() +
      geom_line() +
      scale_x_continuous(breaks = seq(year_min, year_max, 2)) +
      scale_color_brewer(palette = 'Dark2') +
      labs(
        x = 'year',
        y = 'number of profiles',
        col = 'cluster',
        title = paste0(
          'Count of profiles by year and cluster \n',
          'profile type: ', unique(.x$profile_type), ', ', 
          'surface extreme: ', unique(.x$temp_extreme), ', ', 
          'number clusters: ', unique(.x$num_clusters)
        )
      )
  )
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  # create figure
  cluster_by_year %>%
    filter (profile_type == "adjusted") %>%
    group_split(profile_type, num_clusters, temp_extreme_order) %>%
    map(
      ~ ggplot(
        data = .x,
        aes(
          x = year,
          y = count_cluster,
          col = cluster,
          group = cluster
        )
      ) +
        geom_point() +
        geom_line() +
        scale_x_continuous(breaks = seq(year_min, year_max, 2)) +
        scale_color_brewer(palette = 'Dark2') +
        labs(
          x = 'year',
          y = 'number of profiles',
          col = 'cluster',
          title = paste0(
            'Count of profiles by year and cluster \n',
            'profile type: ', unique(.x$profile_type), ', ', 
            'surface extreme: ', unique(.x$temp_extreme), ', ', 
            'number clusters: ', unique(.x$num_clusters)
          )
        )
    )
    
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

Cluster by month

count of each cluster by month of year

# Determine profile count by cluster and year
# Count the measurements
cluster_by_year <- temp_anomaly_cluster_ext %>% 
  count(file_id, profile_type, num_clusters, temp_extreme_order, temp_extreme, cluster, month,
        name = "count_cluster")
# Convert to profiles
cluster_by_year <- cluster_by_year %>% 
  count(profile_type, num_clusters, temp_extreme_order, temp_extreme, cluster, month,
        name = "count_cluster")

# create figure
cluster_by_year %>%
  filter (profile_type == "base") %>%
  group_split(profile_type, num_clusters, temp_extreme_order) %>%
  map(
    ~ ggplot(
      data = .x,
      aes(
        x = month,
        y = count_cluster,
        col = cluster,
        group = cluster
      )
    ) +
      geom_point() +
      geom_line() +
      scale_x_continuous(breaks = seq(1, 12, 2)) +
      scale_color_brewer(palette = 'Dark2') +
      labs(
        x = 'month',
        y = 'number of profiles',
        col = 'cluster',
        title = paste0(
          'Count of profiles by month and cluster \n',
          'profile type: ', unique(.x$profile_type), ', ', 
          'surface extreme: ', unique(.x$temp_extreme), ', ', 
          'number clusters: ', unique(.x$num_clusters)
        )
      )
  )
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  # create figure
  cluster_by_year %>%
    filter (profile_type == "adjusted") %>%
    group_split(profile_type, num_clusters, temp_extreme_order) %>%
    map(
      ~ ggplot(
        data = .x,
        aes(
          x = month,
          y = count_cluster,
          col = cluster,
          group = cluster
        )
      ) +
        geom_point() +
        geom_line() +
        scale_x_continuous(breaks = seq(1, 12, 2)) +
        scale_color_brewer(palette = 'Dark2') +
        labs(
          x = 'month',
          y = 'number of profiles',
          col = 'cluster',
          title = paste0(
            'Count of profiles by month and cluster \n',
            'profile type: ', unique(.x$profile_type), ', ', 
            'surface extreme: ', unique(.x$temp_extreme), ', ', 
            'number clusters: ', unique(.x$num_clusters)
          )
        )
    )
  
}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

Cluster spatial

location of each cluster on map, spatial analysis

# create figure combined
temp_anomaly_cluster_ext %>%
  filter (profile_type == "base") %>%
  group_split(profile_type, num_clusters, temp_extreme_order) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(
                  x = lon,
                  y = lat,
                  fill = cluster
                )) +
      lims(y = c(-85,-30)) +
      scale_fill_brewer(palette = 'Dark2') +
      labs(
        title = paste0(
          'cluster spatial distribution \n',
          'profile type: ', unique(.x$profile_type), ', ', 
          'surface extreme: ', unique(.x$temp_extreme), ', ', 
          'number clusters: ', unique(.x$num_clusters)
        )
      )
  )
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  # create figure combined
  temp_anomaly_cluster_ext %>%
    filter (profile_type == "adjusted") %>%
    group_split(profile_type, num_clusters, temp_extreme_order) %>%
    map(
      ~ map +
        geom_tile(data = .x,
                  aes(
                    x = lon,
                    y = lat,
                    fill = cluster
                  )) +
        lims(y = c(-85,-30)) +
        scale_fill_brewer(palette = 'Dark2') +
        labs(
          title = paste0(
            'cluster spatial distribution \n',
            'profile type: ', unique(.x$profile_type), ', ', 
            'surface extreme: ', unique(.x$temp_extreme), ', ', 
            'number clusters: ', unique(.x$num_clusters)
          )
        )
    )

}
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

Spatial by cluster location of each cluster on map, spatial analysis

# create figure by cluster
temp_anomaly_cluster_ext %>%
  group_split(profile_type, num_clusters, temp_extreme_order) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(
                  x = lon,
                  y = lat,
                  fill = cluster
                )) +
      lims(y = c(-85,-30)) +
      scale_fill_brewer(palette = 'Dark2') +
      facet_wrap( ~ cluster, ncol = 2) +
      labs(
        title = paste0(
          'cluster spatial distribution \n',
          'profile type: ', unique(.x$profile_type), ', ', 
          'surface extreme: ', unique(.x$temp_extreme), ', ', 
          'number clusters: ', unique(.x$num_clusters)
        )
      )
  )

Cluster spatial counts

location of each cluster on map, spatial analysis

# Count profiles    
cluster_by_location <- temp_anomaly_cluster_ext %>%
  count(profile_type, num_clusters, temp_extreme_order, temp_extreme, file_id, lat, lon, cluster,
        name = "count_cluster")


# create figure
cluster_by_location %>%
  filter (profile_type == "base") %>%
  group_split(profile_type, num_clusters, temp_extreme_order) %>%
  map(
    ~ map +
      geom_tile(data = .x %>%
                  count(lat, lon, cluster),
                aes(
                  x = lon,
                  y = lat,
                  fill = n
                )) +
      lims(y = c(-85,-30)) +
      scale_fill_gradient(low = "blue",
                          high = "red",
                          trans = "log10") +
      facet_wrap(~ cluster, ncol = 2) +
      labs(
        title = paste0(
          'cluster spatial distribution \n',
          'profile type: ', unique(.x$profile_type), ', ', 
          'surface extreme: ', unique(.x$temp_extreme), ', ', 
          'number clusters: ', unique(.x$num_clusters)
        )
      )
  )
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30
77cc54e ds2n19 2023-11-24

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04
a6b9ac3 ds2n19 2023-12-04
bb6c7b2 ds2n19 2023-12-03
cfa1850 ds2n19 2023-12-03
9d9ac38 ds2n19 2023-12-01
ba42bd5 ds2n19 2023-11-30
1ad7f89 ds2n19 2023-11-30
98f3220 ds2n19 2023-11-30

Adjusted profiles

if (opt_norm_anomaly) {

  cluster_by_location %>%
    filter (profile_type == "adjusted") %>%
    group_split(profile_type, num_clusters, temp_extreme_order) %>%
    map(
      ~ map +
        geom_tile(data = .x %>%
                    count(lat, lon, cluster),
                  aes(
                    x = lon,
                    y = lat,
                    fill = n
                  )) +
        lims(y = c(-85,-30)) +
        scale_fill_gradient(low = "blue",
                            high = "red",
                            trans = "log10") +
        facet_wrap(~ cluster, ncol = 2) +
        labs(
          title = paste0(
            'cluster spatial distribution \n',
            'profile type: ', unique(.x$profile_type), ', ', 
            'surface extreme: ', unique(.x$temp_extreme), ', ', 
            'number clusters: ', unique(.x$num_clusters)
          )
        )
    )
    
}    
[[1]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[2]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[3]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[4]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[5]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

[[6]]

Version Author Date
12e23ab ds2n19 2023-12-04
31b8905 ds2n19 2023-12-04
2a330f3 ds2n19 2023-12-04

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] yardstick_1.2.0    workflowsets_1.0.1 workflows_1.1.3    tune_1.1.2        
 [5] rsample_1.2.0      recipes_1.0.8      parsnip_1.1.1      modeldata_1.2.0   
 [9] infer_1.0.5        dials_1.2.0        scales_1.2.1       broom_1.0.5       
[13] tidymodels_1.1.1   ggpmisc_0.5.4-1    ggpp_0.5.5         ggforce_0.4.1     
[17] gsw_1.1-1          gridExtra_2.3      lubridate_1.9.0    timechange_0.1.1  
[21] argodata_0.1.0     forcats_0.5.2      stringr_1.5.0      dplyr_1.1.3       
[25] purrr_1.0.2        readr_2.1.3        tidyr_1.3.0        tibble_3.2.1      
[29] ggplot2_3.4.4      tidyverse_1.3.2   

loaded via a namespace (and not attached):
  [1] googledrive_2.0.0   colorspace_2.0-3    ellipsis_0.3.2     
  [4] class_7.3-20        rprojroot_2.0.3     fs_1.5.2           
  [7] rstudioapi_0.15.0   furrr_0.3.1         listenv_0.8.0      
 [10] farver_2.1.1        MatrixModels_0.5-1  prodlim_2019.11.13 
 [13] fansi_1.0.3         xml2_1.3.3          codetools_0.2-18   
 [16] splines_4.2.2       cachem_1.0.6        knitr_1.41         
 [19] polyclip_1.10-4     polynom_1.4-1       jsonlite_1.8.3     
 [22] workflowr_1.7.0     dbplyr_2.2.1        compiler_4.2.2     
 [25] httr_1.4.4          backports_1.4.1     assertthat_0.2.1   
 [28] Matrix_1.5-3        fastmap_1.1.0       gargle_1.2.1       
 [31] cli_3.6.1           later_1.3.0         tweenr_2.0.2       
 [34] htmltools_0.5.3     quantreg_5.94       tools_4.2.2        
 [37] gtable_0.3.1        glue_1.6.2          Rcpp_1.0.10        
 [40] cellranger_1.1.0    jquerylib_0.1.4     RNetCDF_2.6-1      
 [43] DiceDesign_1.9      vctrs_0.6.4         iterators_1.0.14   
 [46] timeDate_4021.106   xfun_0.35           gower_1.0.0        
 [49] globals_0.16.2      rvest_1.0.3         lifecycle_1.0.3    
 [52] googlesheets4_1.0.1 future_1.29.0       MASS_7.3-58.1      
 [55] ipred_0.9-13        hms_1.1.2           promises_1.2.0.1   
 [58] parallel_4.2.2      SparseM_1.81        RColorBrewer_1.1-3 
 [61] yaml_2.3.6          sass_0.4.4          rpart_4.1.19       
 [64] stringi_1.7.8       highr_0.9           foreach_1.5.2      
 [67] lhs_1.1.6           hardhat_1.3.0       lava_1.7.0         
 [70] rlang_1.1.1         pkgconfig_2.0.3     evaluate_0.18      
 [73] lattice_0.20-45     labeling_0.4.2      tidyselect_1.2.0   
 [76] parallelly_1.32.1   magrittr_2.0.3      R6_2.5.1           
 [79] generics_0.1.3      DBI_1.1.3           pillar_1.9.0       
 [82] haven_2.5.1         whisker_0.4         withr_2.5.0        
 [85] survival_3.4-0      nnet_7.3-18         future.apply_1.10.0
 [88] modelr_0.1.10       crayon_1.5.2        utf8_1.2.2         
 [91] tzdb_0.3.0          rmarkdown_2.18      grid_4.2.2         
 [94] readxl_1.4.1        git2r_0.30.1        reprex_2.0.2       
 [97] digest_0.6.30       httpuv_1.6.6        GPfit_1.0-8        
[100] munsell_0.5.0       viridisLite_0.4.1   bslib_0.4.1