Last updated: 2023-12-07
Checks: 7 0
Knit directory: bgc_argo_r_argodata/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211008)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 6ec79f9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/
Untracked files:
Untracked: code/coverage_maps.Rmd
Unstaged changes:
Modified: code/start_background_job_partial.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/coverage_maps.Rmd
) and
HTML (docs/coverage_maps.html
) files. If you’ve configured
a remote Git repository (see ?wflow_git_remote
), click on
the hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 6ec79f9 | ds2n19 | 2023-12-07 | Revised coverage analysis. |
html | e60ebd2 | ds2n19 | 2023-12-07 | Build site. |
html | 80c16c2 | ds2n19 | 2023-11-15 | Build site. |
html | 93b4545 | ds2n19 | 2023-10-18 | Build site. |
html | c16000b | ds2n19 | 2023-10-12 | Build site. |
html | 770b125 | ds2n19 | 2023-10-11 | Build site. |
html | 13ae27f | ds2n19 | 2023-10-09 | Build site. |
Rmd | fc05391 | ds2n19 | 2023-10-09 | Changed core Argo location folders and run for 2013, 2014 and 2022 |
html | 1e972c5 | ds2n19 | 2023-10-02 | Build site. |
html | 6377b31 | ds2n19 | 2023-10-02 | Build site. |
html | 7b3d8c5 | pasqualina-vonlanthendinenna | 2022-08-29 | Build site. |
Rmd | 8e81570 | pasqualina-vonlanthendinenna | 2022-08-29 | load and add in core-argo data (1 month) |
html | bdd516d | pasqualina-vonlanthendinenna | 2022-05-23 | Build site. |
html | 4173c20 | jens-daniel-mueller | 2022-05-12 | Build site. |
html | dfe89d7 | jens-daniel-mueller | 2022-05-12 | Build site. |
html | 710edd4 | jens-daniel-mueller | 2022-05-11 | Build site. |
html | 68eff8b | jens-daniel-mueller | 2022-05-11 | Build site. |
html | 6a6e874 | pasqualina-vonlanthendinenna | 2022-04-29 | Build site. |
html | 2d44f8a | pasqualina-vonlanthendinenna | 2022-04-29 | Build site. |
html | e61c08e | pasqualina-vonlanthendinenna | 2022-04-27 | Build site. |
html | 10036ed | pasqualina-vonlanthendinenna | 2022-04-26 | Build site. |
html | c03dd24 | pasqualina-vonlanthendinenna | 2022-04-20 | Build site. |
html | 8805f99 | pasqualina-vonlanthendinenna | 2022-04-11 | Build site. |
html | 905d82f | pasqualina-vonlanthendinenna | 2022-02-15 | Build site. |
html | b8a6482 | pasqualina-vonlanthendinenna | 2022-01-03 | Build site. |
html | 7f3cfe7 | pasqualina-vonlanthendinenna | 2021-12-17 | Build site. |
Rmd | c4cce1a | pasqualina-vonlanthendinenna | 2021-12-17 | updated cache data |
html | 123e5db | pasqualina-vonlanthendinenna | 2021-12-07 | Build site. |
Rmd | f8abe59 | pasqualina-vonlanthendinenna | 2021-12-07 | suppressed output messages and updated plots |
html | 930ea26 | pasqualina-vonlanthendinenna | 2021-11-26 | Build site. |
html | e09c60b | pasqualina-vonlanthendinenna | 2021-11-26 | Build site. |
html | 1305d6b | pasqualina-vonlanthendinenna | 2021-11-26 | Build site. |
html | 5e2b8a5 | pasqualina-vonlanthendinenna | 2021-11-26 | Build site. |
html | 3df4daf | pasqualina-vonlanthendinenna | 2021-11-26 | Build site. |
html | 7a01367 | pasqualina-vonlanthendinenna | 2021-11-12 | Build site. |
html | 284003d | pasqualina-vonlanthendinenna | 2021-11-11 | Build site. |
html | 6276d6c | pasqualina-vonlanthendinenna | 2021-11-11 | Build site. |
html | a103f60 | pasqualina-vonlanthendinenna | 2021-11-05 | Build site. |
Rmd | 31576f9 | pasqualina-vonlanthendinenna | 2021-11-05 | changed QC flag maps |
html | fbd5bac | pasqualina-vonlanthendinenna | 2021-11-04 | Build site. |
html | 68977a1 | pasqualina-vonlanthendinenna | 2021-10-26 | Build site. |
Rmd | 062b272 | pasqualina-vonlanthendinenna | 2021-10-26 | added ggsave |
html | b57291a | pasqualina-vonlanthendinenna | 2021-10-26 | Build site. |
html | bba33bf | pasqualina-vonlanthendinenna | 2021-10-26 | Build site. |
Rmd | 4bc1859 | pasqualina-vonlanthendinenna | 2021-10-26 | run with full data |
html | f7ef44f | jens-daniel-mueller | 2021-10-22 | Build site. |
Rmd | ee2b3f3 | jens-daniel-mueller | 2021-10-22 | code revision |
html | aa7280d | jens-daniel-mueller | 2021-10-22 | Build site. |
Rmd | ca7ba6b | jens-daniel-mueller | 2021-10-22 | adding revised code |
html | d84c904 | pasqualina-vonlanthendinenna | 2021-10-22 | Build site. |
html | 8ecdb43 | pasqualina-vonlanthendinenna | 2021-10-22 | Build site. |
html | c81f21c | pasqualina-vonlanthendinenna | 2021-10-21 | Build site. |
html | 62d8519 | pasqualina-vonlanthendinenna | 2021-10-20 | Build site. |
html | b8feac2 | pasqualina-vonlanthendinenna | 2021-10-20 | Build site. |
html | 701fffa | pasqualina-vonlanthendinenna | 2021-10-20 | Build site. |
Rmd | b88a839 | pasqualina-vonlanthendinenna | 2021-10-20 | adding revised code |
Map the location of oxygen, pH, and nitrate observations recorded by BGC-Argo floats
Read the files created in loading_data.html:
bgc_temp <- read_rds(file = paste0(path_argo_preprocessed, "/temp_bgc_va.rds")) %>%
filter(!is.na(year))
bgc_ph <- read_rds(file = paste0(path_argo_preprocessed, "/pH_bgc_va.rds")) %>%
filter(!is.na(year))
bgc_doxy <- read_rds(file = paste0(path_argo_preprocessed, "/doxy_bgc_va.rds")) %>%
filter(!is.na(year))
bgc_nitrate <- read_rds(file = paste0(path_argo_preprocessed, "/nitrate_bgc_va.rds")) %>%
filter(!is.na(year))
bgc_chla <- read_rds(file = paste0(path_argo_preprocessed, "/chla_bgc_va.rds")) %>%
filter(!is.na(year))
core_temp <- read_rds(file = paste0(path_argo_core_preprocessed, "/temp_core_va.rds")) %>%
filter(!is.na(year))
basinmask <-
read_csv(paste(path_emlr_utilities,
"basin_mask_WOA18.csv",
sep = ""),
col_types = cols("MLR_basins" = col_character()))
basinmask <- basinmask %>%
filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>%
select(lon, lat, basin_AIP)
map <-
read_rds(paste(path_emlr_utilities,
"map_landmask_WOA18.rds",
sep = ""))
# Number of measurements
core_count <- core_temp %>%
group_by(year, file_id, lat, lon) %>%
summarise(count_measures = n()) %>%
ungroup()
# Number of profiles
core_count <- core_count %>%
group_by(year, lat, lon) %>%
summarise(count_profiles = n()) %>%
ungroup()
# measurement type
core_count <- core_count %>%
mutate (prof_type = 'temperature')
# map the location of profiles for each profile in each year
core_count %>%
group_split(prof_type) %>%
map(
~ map +
geom_tile(data = .x, aes(
x = lon, y = lat, fill = count_profiles
)) +
scale_fill_gradient(low = "blue", high = "red",
trans = "log10") +
labs(
x = 'lon',
y = 'lat',
fill = 'number of\nprofiles',
title = 'Core temperature by year and location'
) +
theme(
legend.position = "bottom",
axis.text = element_blank(),
axis.ticks = element_blank()
) +
facet_wrap(~year, ncol = 3)
)
[[1]]
# sum across years
core_count <- core_count %>%
group_by(prof_type, lat, lon) %>%
summarise(count_profiles = sum(count_profiles)) %>%
ungroup()
# map the location of profiles for each profile in each year
core_count %>%
group_split(prof_type) %>%
map(
~ map +
geom_tile(data = .x, aes(
x = lon, y = lat, fill = count_profiles
)) +
scale_fill_gradient(low = "blue", high = "red",
trans = "log10") +
labs(
x = 'lon',
y = 'lat',
fill = 'number of\nprofiles',
title = 'Core temperature by location'
) +
theme(
legend.position = "bottom",
axis.text = element_blank(),
axis.ticks = element_blank()
)
)
[[1]]
# ----------------------------------------------------------------------------------------------
# temperature
# ----------------------------------------------------------------------------------------------
# Number of measurements
bgc_temp_count <- bgc_temp %>%
group_by(year, file_id, lat, lon) %>%
summarise(count_measures = n()) %>%
ungroup()
# Number of profiles
bgc_temp_count <- bgc_temp_count %>%
group_by(year, lat, lon) %>%
summarise(count_profiles = n()) %>%
ungroup()
# measurement type
bgc_temp_count <- bgc_temp_count %>%
mutate (prof_order = 1,
prof_type = 'temperature')
# ----------------------------------------------------------------------------------------------
# ph
# ----------------------------------------------------------------------------------------------
# Number of measurements
bgc_ph_count <- bgc_ph %>%
group_by(year, file_id, lat, lon) %>%
summarise(count_measures = n()) %>%
ungroup()
# Number of profiles
bgc_ph_count <- bgc_ph_count %>%
group_by(year, lat, lon) %>%
summarise(count_profiles = n()) %>%
ungroup()
# measurement type
bgc_ph_count <- bgc_ph_count %>%
mutate (prof_order = 2,
prof_type = 'pH')
# ----------------------------------------------------------------------------------------------
# doxy
# ----------------------------------------------------------------------------------------------
# Number of measurements
bgc_doxy_count <- bgc_doxy %>%
group_by(year, file_id, lat, lon) %>%
summarise(count_measures = n()) %>%
ungroup()
# Number of profiles
bgc_doxy_count <- bgc_doxy_count %>%
group_by(year, lat, lon) %>%
summarise(count_profiles = n()) %>%
ungroup()
# measurement type
bgc_doxy_count <- bgc_doxy_count %>%
mutate (prof_order = 3,
prof_type = 'dissolved oxygen')
# ----------------------------------------------------------------------------------------------
# nitrate
# ----------------------------------------------------------------------------------------------
# Number of measurements
bgc_nitrate_count <- bgc_nitrate %>%
group_by(year, file_id, lat, lon) %>%
summarise(count_measures = n()) %>%
ungroup()
# Number of profiles
bgc_nitrate_count <- bgc_nitrate_count %>%
group_by(year, lat, lon) %>%
summarise(count_profiles = n()) %>%
ungroup()
# measurement type
bgc_nitrate_count <- bgc_nitrate_count %>%
mutate (prof_order = 4,
prof_type = 'nitrate')
# ----------------------------------------------------------------------------------------------
# chla
# ----------------------------------------------------------------------------------------------
# Number of measurements
bgc_chla_count <- bgc_chla %>%
group_by(year, file_id, lat, lon) %>%
summarise(count_measures = n()) %>%
ungroup()
# Number of profiles
bgc_chla_count <- bgc_chla_count %>%
group_by(year, lat, lon) %>%
summarise(count_profiles = n()) %>%
ungroup()
# measurement type
bgc_chla_count <- bgc_chla_count %>%
mutate (prof_order = 5,
prof_type = 'chlorophyll a')
# combine
bgc_count <- rbind(bgc_temp_count, bgc_ph_count)
bgc_count <- rbind(bgc_count, bgc_doxy_count)
bgc_count <- rbind(bgc_count, bgc_nitrate_count)
bgc_count <- rbind(bgc_count, bgc_chla_count)
# map the location of profiles for each profile in each year
bgc_count %>%
group_split(prof_order) %>%
map(
~ map +
geom_tile(data = .x, aes(
x = lon, y = lat, fill = count_profiles
)) +
scale_fill_gradient(low = "blue", high = "red",
trans = "log10") +
labs(
x = 'lon',
y = 'lat',
fill = 'number of\nprofiles',
title = paste0('BGC ', unique(.x$prof_type), ' by year and location')
) +
theme(
legend.position = "bottom",
axis.text = element_blank(),
axis.ticks = element_blank()
) +
facet_wrap(~year, ncol = 3)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
# sum across years
bgc_count <- bgc_count %>%
group_by(prof_order, prof_type, lat, lon) %>%
summarise(count_profiles = sum(count_profiles)) %>%
ungroup()
# map the location of profiles for each profile in each year
bgc_count %>%
group_split(prof_order) %>%
map(
~ map +
geom_tile(data = .x, aes(
x = lon, y = lat, fill = count_profiles
)) +
scale_fill_gradient(low = "blue", high = "red",
trans = "log10") +
labs(
x = 'lon',
y = 'lat',
fill = 'number of\nprofiles',
title = paste0('BGC ', unique(.x$prof_type), ' by year and location')
) +
theme(
legend.position = "bottom",
axis.text = element_blank(),
axis.ticks = element_blank()
)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5
Matrix products: default
BLAS: /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lubridate_1.9.0 timechange_0.1.1 argodata_0.1.0 forcats_0.5.2
[5] stringr_1.5.0 dplyr_1.1.3 purrr_1.0.2 readr_2.1.3
[9] tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.4 tidyverse_1.3.2
loaded via a namespace (and not attached):
[1] httr_1.4.4 sass_0.4.4 bit64_4.0.5
[4] vroom_1.6.0 jsonlite_1.8.3 modelr_0.1.10
[7] bslib_0.4.1 assertthat_0.2.1 highr_0.9
[10] googlesheets4_1.0.1 cellranger_1.1.0 yaml_2.3.6
[13] pillar_1.9.0 backports_1.4.1 glue_1.6.2
[16] digest_0.6.30 promises_1.2.0.1 rvest_1.0.3
[19] colorspace_2.0-3 htmltools_0.5.3 httpuv_1.6.6
[22] pkgconfig_2.0.3 broom_1.0.5 haven_2.5.1
[25] scales_1.2.1 whisker_0.4 later_1.3.0
[28] tzdb_0.3.0 git2r_0.30.1 googledrive_2.0.0
[31] generics_0.1.3 farver_2.1.1 ellipsis_0.3.2
[34] cachem_1.0.6 withr_2.5.0 cli_3.6.1
[37] magrittr_2.0.3 crayon_1.5.2 readxl_1.4.1
[40] evaluate_0.18 fs_1.5.2 fansi_1.0.3
[43] xml2_1.3.3 tools_4.2.2 hms_1.1.2
[46] gargle_1.2.1 lifecycle_1.0.3 munsell_0.5.0
[49] reprex_2.0.2 compiler_4.2.2 jquerylib_0.1.4
[52] RNetCDF_2.6-1 rlang_1.1.1 grid_4.2.2
[55] rstudioapi_0.15.0 labeling_0.4.2 rmarkdown_2.18
[58] gtable_0.3.1 DBI_1.1.3 R6_2.5.1
[61] knitr_1.41 fastmap_1.1.0 bit_4.0.5
[64] utf8_1.2.2 workflowr_1.7.0 rprojroot_2.0.3
[67] stringi_1.7.8 parallel_4.2.2 Rcpp_1.0.10
[70] vctrs_0.6.4 dbplyr_2.2.1 tidyselect_1.2.0
[73] xfun_0.35