Last updated: 2023-10-18

Checks: 7 0

Knit directory: bgc_argo_r_argodata/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7af09d6. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/

Unstaged changes:
    Modified:   code/start_background_job.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/coverage_maps.Rmd) and HTML (docs/coverage_maps.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html c16000b ds2n19 2023-10-12 Build site.
html 770b125 ds2n19 2023-10-11 Build site.
html 13ae27f ds2n19 2023-10-09 Build site.
Rmd fc05391 ds2n19 2023-10-09 Changed core Argo location folders and run for 2013, 2014 and 2022
html 1e972c5 ds2n19 2023-10-02 Build site.
html 6377b31 ds2n19 2023-10-02 Build site.
html 7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29 Build site.
Rmd 8e81570 pasqualina-vonlanthendinenna 2022-08-29 load and add in core-argo data (1 month)
html bdd516d pasqualina-vonlanthendinenna 2022-05-23 Build site.
html 4173c20 jens-daniel-mueller 2022-05-12 Build site.
html dfe89d7 jens-daniel-mueller 2022-05-12 Build site.
html 710edd4 jens-daniel-mueller 2022-05-11 Build site.
html 68eff8b jens-daniel-mueller 2022-05-11 Build site.
html 6a6e874 pasqualina-vonlanthendinenna 2022-04-29 Build site.
html 2d44f8a pasqualina-vonlanthendinenna 2022-04-29 Build site.
html e61c08e pasqualina-vonlanthendinenna 2022-04-27 Build site.
html 10036ed pasqualina-vonlanthendinenna 2022-04-26 Build site.
html c03dd24 pasqualina-vonlanthendinenna 2022-04-20 Build site.
html 8805f99 pasqualina-vonlanthendinenna 2022-04-11 Build site.
html 905d82f pasqualina-vonlanthendinenna 2022-02-15 Build site.
html b8a6482 pasqualina-vonlanthendinenna 2022-01-03 Build site.
html 7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17 Build site.
Rmd c4cce1a pasqualina-vonlanthendinenna 2021-12-17 updated cache data
html 123e5db pasqualina-vonlanthendinenna 2021-12-07 Build site.
Rmd f8abe59 pasqualina-vonlanthendinenna 2021-12-07 suppressed output messages and updated plots
html 930ea26 pasqualina-vonlanthendinenna 2021-11-26 Build site.
html e09c60b pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 1305d6b pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 5e2b8a5 pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 3df4daf pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 7a01367 pasqualina-vonlanthendinenna 2021-11-12 Build site.
html 284003d pasqualina-vonlanthendinenna 2021-11-11 Build site.
html 6276d6c pasqualina-vonlanthendinenna 2021-11-11 Build site.
html a103f60 pasqualina-vonlanthendinenna 2021-11-05 Build site.
Rmd 31576f9 pasqualina-vonlanthendinenna 2021-11-05 changed QC flag maps
html fbd5bac pasqualina-vonlanthendinenna 2021-11-04 Build site.
html 68977a1 pasqualina-vonlanthendinenna 2021-10-26 Build site.
Rmd 062b272 pasqualina-vonlanthendinenna 2021-10-26 added ggsave
html b57291a pasqualina-vonlanthendinenna 2021-10-26 Build site.
html bba33bf pasqualina-vonlanthendinenna 2021-10-26 Build site.
Rmd 4bc1859 pasqualina-vonlanthendinenna 2021-10-26 run with full data
html f7ef44f jens-daniel-mueller 2021-10-22 Build site.
Rmd ee2b3f3 jens-daniel-mueller 2021-10-22 code revision
html aa7280d jens-daniel-mueller 2021-10-22 Build site.
Rmd ca7ba6b jens-daniel-mueller 2021-10-22 adding revised code
html d84c904 pasqualina-vonlanthendinenna 2021-10-22 Build site.
html 8ecdb43 pasqualina-vonlanthendinenna 2021-10-22 Build site.
html c81f21c pasqualina-vonlanthendinenna 2021-10-21 Build site.
html 62d8519 pasqualina-vonlanthendinenna 2021-10-20 Build site.
html b8feac2 pasqualina-vonlanthendinenna 2021-10-20 Build site.
html 701fffa pasqualina-vonlanthendinenna 2021-10-20 Build site.
Rmd b88a839 pasqualina-vonlanthendinenna 2021-10-20 adding revised code

Task

Map the location of oxygen, pH, and nitrate observations recorded by BGC-Argo floats

Load data

Read the metadata file created in loading_data.html:

bgc_metadata <-
  read_rds(file = paste0(path_argo_preprocessed, "/bgc_metadata.rds"))

core_metadata <- 
  read_rds(file = paste0(path_argo_core_preprocessed, "/core_metadata.rds"))
basinmask <-
  read_csv(paste(path_emlr_utilities,
                 "basin_mask_WOA18.csv",
                 sep = ""),
           col_types = cols("MLR_basins" = col_character()))

basinmask <- basinmask %>% 
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(lon, lat, basin_AIP)

map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))

Spatial BGC-data coverage

Count profiles (BGC-Argo)

bgc_metadata <- inner_join(
  bgc_metadata,
  basinmask
)

##################################################################

bgc_profile_counts_year <- bgc_metadata %>% 
  select(platform_number, cycle_number, date, lon, lat,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date)) %>% 
  filter(!is.na(profile_flag),
         profile_flag != "") %>% 
  count(lat, lon, year, parameter) # count the number of profiles per year in each lon/lat grid for each parameter 


###################################################################
# count the number of profiles which have flags A, B, C, D, or E (count the number of profiles which have usable data)

bgc_profile_counts_usable <- bgc_metadata %>% 
  select(platform_number, cycle_number, date, lon, lat,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date)) %>% 
  filter(!is.na(profile_flag),
         profile_flag != "",
         profile_flag != 'F') %>% 
  count(lat, lon, parameter, profile_flag)  # count the number of profiles for flags A, B, C, D, and E (usable data) for each lon/lat grid 


##################################################################
# count the number of profiles which have QC flag A (100% of levels contain good data)

bgc_profile_counts_A <- bgc_metadata %>% 
  select(platform_number, cycle_number, date, lon, lat,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date)) %>% 
  filter(profile_flag == 'A') %>% 
  count(lat, lon, parameter)


#####################################################################
# count the number of profiles which have a QC flag of F (0% of levels contain good data)

bgc_profile_counts_F <- bgc_metadata %>% 
  select(platform_number, cycle_number, date, lon, lat,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date)) %>% 
  filter(profile_flag == 'F') %>% 
  count(lat, lon, parameter)

By Year

Map of profile locations for each parameter, per year

map +
  geom_tile(data = bgc_profile_counts_year,
              aes(lon, lat, fill = n)) +
  scale_fill_gradient(low = "blue", high = "red",
                      trans = "log10") +
  facet_grid(year ~ parameter)


# bgc_profile_counts_year %>%
#   ggplot() +
#   geom_sf(data = ne_countries(returnclass = "sf"),
#           fill = "gray90",
#           color = NA) +
#   geom_sf(data = ne_coastline(returnclass = "sf")) +
#   geom_tile(aes(x = lon, y = lat, fill = n)) +
#   scale_fill_gradient(low="blue", high="red",
#                       trans = "log10") +
#   theme_bw() +
#   facet_grid(year ~ parameter)
# map the location of profiles for each parameter in each year 
bgc_profile_counts_year %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\nprofiles',
        title = paste('Parameter:', unique(.x$parameter))
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~year, ncol = 3)
  )
[[1]]

Version Author Date
6377b31 ds2n19 2023-10-02
bdd516d pasqualina-vonlanthendinenna 2022-05-23
710edd4 jens-daniel-mueller 2022-05-11
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
123e5db pasqualina-vonlanthendinenna 2021-12-07
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05
bba33bf pasqualina-vonlanthendinenna 2021-10-26
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[2]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
123e5db pasqualina-vonlanthendinenna 2021-12-07
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05
bba33bf pasqualina-vonlanthendinenna 2021-10-26
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[3]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
123e5db pasqualina-vonlanthendinenna 2021-12-07
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05
bba33bf pasqualina-vonlanthendinenna 2021-10-26
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20
ggsave("output/figures/maps_per_year.png",
       width = 7,
       height = 4)

# bgc_profile_counts_year %>%
#   group_split(parameter) %>% 
#   map( 
#   ~ ggplot() +
#   geom_sf(data = ne_countries(returnclass = "sf"),
#           fill = "gray90",
#           color = NA) +
#   geom_sf(data = ne_coastline(returnclass = "sf")) +
#   geom_tile(data = .x, aes(x = lon, y = lat, fill = n)) +
#   scale_fill_gradient(low="blue", high="red",
#                       trans = "log10") +
#   theme_bw() +
#   labs(x = 'lon', y = 'lat', fill = 'number of profiles', 
#        title = paste('Parameter:', unique(.x$parameter)))+
#   facet_grid(. ~ year)
#   )

By QC Flag

Map the profile locations for each profile QC flag of each parameter

# bgc_profile_counts_flag %>%
#   ggplot() +
#   geom_sf(data = ne_countries(returnclass = "sf"),
#           fill = "gray90",
#           color = NA) +
#   geom_sf(data = ne_coastline(returnclass = "sf")) +
#   geom_tile(aes(x = lon, y = lat, fill = n)) +
#   scale_fill_gradient(low="blue", high="red",
#                       trans = "log10") +
#   theme_bw() +
#   facet_grid(profile_flag ~ parameter)

Flags A, B, C, D, and E

# map the location of profiles which contain usable data (profile QC flags A, B, C, D, and E)
# create a separate plot for each parameter  

bgc_profile_counts_usable %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\nprofiles',
        title = paste(unique(.x$parameter), 'Profile Flags A, B, C, D, E')
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~ parameter)
)
[[1]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05

[[2]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05

[[3]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05
ggsave("output/figures/maps_usable_data.png",
       width = 7,
       height = 4)

Flag A

# map the location of profiles with QC flag A for each parameter 
# only the highest-quality data, with 100% of levels with good data 

bgc_profile_counts_A %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\nprofiles',
        title = paste(unique(.x$parameter), 'Profile Flag A')
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~ parameter)
)
[[1]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05

[[2]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05

[[3]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05
ggsave("output/figures/maps_A_flag.png",
       width = 7,
       height = 4)

Flag F

# map the location of profiles with QC flag F (not usable data)
bgc_profile_counts_F %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\nprofiles',
        title = paste(unique(.x$parameter), 'Profile Flag F')
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~ parameter)
)
[[1]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05

[[2]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05

[[3]]

Version Author Date
6377b31 ds2n19 2023-10-02
68eff8b jens-daniel-mueller 2022-05-11
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
6276d6c pasqualina-vonlanthendinenna 2021-11-11
a103f60 pasqualina-vonlanthendinenna 2021-11-05
ggsave("output/figures/maps_flag_F.png",
       width = 7,
       height = 4)
# create a separate plot for each QC flag (instead of multiple panels in one plot) 

# bgc_profile_counts_flag %>%
#   group_split(profile_flag) %>%
#   map(
#     ~ map +
#       geom_tile(data = .x, aes(
#         x = lon, y = lat, fill = n
#       )) +
#       scale_fill_gradient(low = "blue", high = "red",
#                           trans = "log10") +
#       labs(
#         x = 'lon',
#         y = 'lat',
#         fill = 'number of\nprofiles',
#         title = paste('Profile QC flag', unique(.x$profile_flag))
#       ) +
#       theme(
#         legend.position = "bottom",
#         axis.text = element_blank(),
#         axis.ticks = element_blank()
#       ) +
#       facet_grid(parameter ~ .)
#   )

ggsave("output/figures/maps_per_flag.png",
       width = 7,
       height = 4)
ph_profile_counts_year <- bgc_metadata %>%      # count the number of A-flag pH profiles 
  select(platform_number, cycle_number, date, lon, lat,
        profile_ph_in_situ_total_qc) %>% 
  pivot_longer(profile_ph_in_situ_total_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date)) %>% 
  filter(profile_flag == "A") %>% 
  count(lat, lon, year, parameter)

# map the location of pH profiles with QC flag A each year
ph_profile_counts_year %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\nprofiles',
        title = paste('Parameter:', unique(.x$parameter), 'flag A')
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~year, ncol = 3)
  )

ggsave("output/figures/map_pH_flag_A_per_year.png",
       width = 7,
       height = 4)

Remove BGC data

rm(list = ls(pattern = 'bgc_'))

Spatial Core-data coverage

Count profiles (Core-Argo)

core_metadata <- inner_join(core_metadata, basinmask)

#################################################
# count the number of core profiles in each lat/lon grid for each year and each parameter (temp and sal)

core_profile_counts_year <- core_metadata %>% 
  select(platform_number, cycle_number, date, lon, lat,
         profile_temp_qc, profile_psal_qc) %>% 
  pivot_longer(profile_temp_qc:profile_psal_qc,
               names_to = 'parameter',
               values_to = 'profile_flag',
               names_prefix = 'profile_') %>% 
  mutate(year = year(date)) %>% 
  filter(!is.na(profile_flag),
         profile_flag != "") %>% 
  count(lat, lon, year, parameter)


#############################################################
# count the number of profiles with usable data (flags A-E) for each lat/lon grid, per parameter 

core_profile_counts_usable <- core_metadata %>% 
  select(platform_number, cycle_number, date, lon, lat,
         profile_temp_qc, profile_psal_qc) %>% 
  pivot_longer(profile_temp_qc:profile_psal_qc,
               names_to = 'parameter',
               values_to = 'profile_flag',
               names_prefix = 'profile_') %>% 
  mutate(year = year(date)) %>% 
  filter(!is.na(profile_flag),
         profile_flag != "",
         profile_flag != 'F') %>% 
  count(lat, lon, parameter, profile_flag)


##############################################################
# count the number of core-profiles with QC flag A for each lat/lon grid, per parameter 

core_profile_counts_A <- core_metadata %>% 
  select(platform_number, cycle_number, date, lon, lat,
         profile_temp_qc, profile_psal_qc) %>% 
  pivot_longer(profile_temp_qc:profile_psal_qc,
               names_to = 'parameter',
               values_to = 'profile_flag',
               names_prefix = 'profile_') %>% 
  mutate(year = year(date)) %>% 
  filter(profile_flag == 'A') %>% 
  count(lat, lon, parameter)


##############################################################
# count the number of core-profiles with QC flag A for each lat/lon grid, per parameter 

core_profile_counts_F <- core_metadata %>% 
  select(platform_number, cycle_number, date, lon, lat,
         profile_temp_qc, profile_psal_qc) %>% 
  pivot_longer(profile_temp_qc:profile_psal_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date)) %>% 
  filter(profile_flag == 'F') %>% 
  count(lat, lon, parameter)

By Year

# map the location of profiles for each parameter in each year 
core_profile_counts_year %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\n core profiles',
        title = paste('Parameter:', unique(.x$parameter))
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~year, ncol = 3)
  )
[[1]]

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
6377b31 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
6377b31 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
ggsave("output/figures/core_maps_per_year.png",
       width = 7,
       height = 4)

By QC Flag

Flags A-E

# map the location of profiles which contain usable data (profile QC flags A, B, C, D, and E)
# create a separate plot for each parameter  

core_profile_counts_usable %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\ncore profiles',
        title = paste(unique(.x$parameter), 'Profile Flags A, B, C, D, E')
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~ parameter)
)
[[1]]

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
6377b31 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
6377b31 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
ggsave("output/figures/maps_usable_core_data.png",
       width = 7,
       height = 4)

Flag A

# map the location of profiles with QC flag A for each parameter 
# only the highest-quality data, with 100% of levels with good data 

core_profile_counts_A %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\ncore profiles',
        title = paste(unique(.x$parameter), 'Profile Flag A')
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~ parameter)
)
[[1]]

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
6377b31 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
6377b31 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
ggsave("output/figures/maps_A_flag_core.png",
       width = 7,
       height = 4)

Flag F

core_profile_counts_F %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\ncore profiles',
        title = paste(unique(.x$parameter), 'Profile Flag F')
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~ parameter)
)
[[1]]

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
6377b31 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
6377b31 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
ggsave("output/figures/maps_flag_F_core.png",
       width = 7,
       height = 4)
rm(list = ls(pattern = 'core_'))

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.4

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.9.0  timechange_0.1.1 argodata_0.1.0   forcats_0.5.2   
 [5] stringr_1.4.1    dplyr_1.0.10     purrr_0.3.5      readr_2.1.3     
 [9] tidyr_1.2.1      tibble_3.1.8     ggplot2_3.4.0    tidyverse_1.3.2 

loaded via a namespace (and not attached):
 [1] httr_1.4.4          sass_0.4.4          bit64_4.0.5        
 [4] vroom_1.6.0         jsonlite_1.8.3      modelr_0.1.10      
 [7] bslib_0.4.1         assertthat_0.2.1    highr_0.9          
[10] googlesheets4_1.0.1 cellranger_1.1.0    yaml_2.3.6         
[13] pillar_1.8.1        backports_1.4.1     glue_1.6.2         
[16] digest_0.6.30       promises_1.2.0.1    rvest_1.0.3        
[19] colorspace_2.0-3    htmltools_0.5.3     httpuv_1.6.6       
[22] pkgconfig_2.0.3     broom_1.0.1         haven_2.5.1        
[25] scales_1.2.1        whisker_0.4         later_1.3.0        
[28] tzdb_0.3.0          git2r_0.30.1        googledrive_2.0.0  
[31] generics_0.1.3      farver_2.1.1        ellipsis_0.3.2     
[34] cachem_1.0.6        withr_2.5.0         cli_3.4.1          
[37] magrittr_2.0.3      crayon_1.5.2        readxl_1.4.1       
[40] evaluate_0.18       fs_1.5.2            fansi_1.0.3        
[43] xml2_1.3.3          textshaping_0.3.6   tools_4.2.2        
[46] hms_1.1.2           gargle_1.2.1        lifecycle_1.0.3    
[49] munsell_0.5.0       reprex_2.0.2        compiler_4.2.2     
[52] jquerylib_0.1.4     RNetCDF_2.6-1       systemfonts_1.0.4  
[55] rlang_1.1.1         grid_4.2.2          rstudioapi_0.14    
[58] labeling_0.4.2      rmarkdown_2.18      gtable_0.3.1       
[61] DBI_1.1.3           R6_2.5.1            knitr_1.41         
[64] fastmap_1.1.0       bit_4.0.5           utf8_1.2.2         
[67] workflowr_1.7.0     rprojroot_2.0.3     ragg_1.2.4         
[70] stringi_1.7.8       parallel_4.2.2      Rcpp_1.0.10        
[73] vctrs_0.5.1         dbplyr_2.2.1        tidyselect_1.2.0   
[76] xfun_0.35