Last updated: 2023-10-12

Checks: 7 0

Knit directory: bgc_argo_r_argodata/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 723c772. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/

Unstaged changes:
    Modified:   analysis/load_argo_core.Rmd
    Modified:   code/start_background_job_core_load.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/coverage_timeseries.Rmd) and HTML (docs/coverage_timeseries.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 770b125 ds2n19 2023-10-11 Build site.
html 13ae27f ds2n19 2023-10-09 Build site.
Rmd fc05391 ds2n19 2023-10-09 Changed core Argo location folders and run for 2013, 2014 and 2022
html c7759a2 ds2n19 2023-10-04 Build site.
Rmd 6ad3f88 ds2n19 2023-10-04 update with 2023 data
html 90ff007 ds2n19 2023-10-02 Build site.
html 1e972c5 ds2n19 2023-10-02 Build site.
html 7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29 Build site.
Rmd 8e81570 pasqualina-vonlanthendinenna 2022-08-29 load and add in core-argo data (1 month)
html bdd516d pasqualina-vonlanthendinenna 2022-05-23 Build site.
html 4173c20 jens-daniel-mueller 2022-05-12 Build site.
html dfe89d7 jens-daniel-mueller 2022-05-12 Build site.
html 710edd4 jens-daniel-mueller 2022-05-11 Build site.
Rmd 2f20a76 jens-daniel-mueller 2022-05-11 rebuild all after subsetting AB profiles and code cleaning
html 68eff8b jens-daniel-mueller 2022-05-11 Build site.
Rmd cf4d1b6 jens-daniel-mueller 2022-05-11 rerun with flag A and B subset
html 6531981 pasqualina-vonlanthendinenna 2022-05-10 Build site.
Rmd bbafe7c pasqualina-vonlanthendinenna 2022-05-10 updated profile counts timeseries
html f196b7c pasqualina-vonlanthendinenna 2022-05-09 Build site.
Rmd a66f31c pasqualina-vonlanthendinenna 2022-05-09 updated argo index
html 3f012ba pasqualina-vonlanthendinenna 2022-05-06 Build site.
Rmd 90d5e7c pasqualina-vonlanthendinenna 2022-05-06 added timeseries of flag A dataframe
html 6a6e874 pasqualina-vonlanthendinenna 2022-04-29 Build site.
html 2d44f8a pasqualina-vonlanthendinenna 2022-04-29 Build site.
html e61c08e pasqualina-vonlanthendinenna 2022-04-27 Build site.
html 10036ed pasqualina-vonlanthendinenna 2022-04-26 Build site.
html c03dd24 pasqualina-vonlanthendinenna 2022-04-20 Build site.
html 8805f99 pasqualina-vonlanthendinenna 2022-04-11 Build site.
html 905d82f pasqualina-vonlanthendinenna 2022-02-15 Build site.
html b8a6482 pasqualina-vonlanthendinenna 2022-01-03 Build site.
html 7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17 Build site.
Rmd c4cce1a pasqualina-vonlanthendinenna 2021-12-17 updated cache data
html 123e5db pasqualina-vonlanthendinenna 2021-12-07 Build site.
Rmd f8abe59 pasqualina-vonlanthendinenna 2021-12-07 suppressed output messages and updated plots
html 930ea26 pasqualina-vonlanthendinenna 2021-11-26 Build site.
html e09c60b pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 1305d6b pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 5e2b8a5 pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 3df4daf pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 7a01367 pasqualina-vonlanthendinenna 2021-11-12 Build site.
html 284003d pasqualina-vonlanthendinenna 2021-11-11 Build site.
html 6276d6c pasqualina-vonlanthendinenna 2021-11-11 Build site.
html 358d54e pasqualina-vonlanthendinenna 2021-11-05 Build site.
Rmd 395f3ec pasqualina-vonlanthendinenna 2021-11-05 added total profile count
html a103f60 pasqualina-vonlanthendinenna 2021-11-05 Build site.
Rmd 31576f9 pasqualina-vonlanthendinenna 2021-11-05 changed QC flag maps
html fbd5bac pasqualina-vonlanthendinenna 2021-11-04 Build site.
html 68977a1 pasqualina-vonlanthendinenna 2021-10-26 Build site.
Rmd 062b272 pasqualina-vonlanthendinenna 2021-10-26 added ggsave
html b57291a pasqualina-vonlanthendinenna 2021-10-26 Build site.
html bba33bf pasqualina-vonlanthendinenna 2021-10-26 Build site.
Rmd 4bc1859 pasqualina-vonlanthendinenna 2021-10-26 run with full data
html cabaa10 jens-daniel-mueller 2021-10-22 Build site.
Rmd e2a1f9e jens-daniel-mueller 2021-10-22 code revision
html f7ef44f jens-daniel-mueller 2021-10-22 Build site.
Rmd ee2b3f3 jens-daniel-mueller 2021-10-22 code revision
html aa7280d jens-daniel-mueller 2021-10-22 Build site.
Rmd ca7ba6b jens-daniel-mueller 2021-10-22 adding revised code
html d84c904 pasqualina-vonlanthendinenna 2021-10-22 Build site.
html 8ecdb43 pasqualina-vonlanthendinenna 2021-10-22 Build site.
Rmd 2b22099 pasqualina-vonlanthendinenna 2021-10-22 edited text
html c81f21c pasqualina-vonlanthendinenna 2021-10-21 Build site.
html b55928d pasqualina-vonlanthendinenna 2021-10-21 Build site.
Rmd 58c24b6 pasqualina-vonlanthendinenna 2021-10-21 timeseries attempt 2, added description
html 62d8519 pasqualina-vonlanthendinenna 2021-10-20 Build site.
html b8feac2 pasqualina-vonlanthendinenna 2021-10-20 Build site.
Rmd b7b1806 pasqualina-vonlanthendinenna 2021-10-20 adding revised code
html 701fffa pasqualina-vonlanthendinenna 2021-10-20 Build site.
Rmd b88a839 pasqualina-vonlanthendinenna 2021-10-20 adding revised code

Task

Count the number of bgc-argo profiles, and plot their evolution over time.

Load data

BGC-Argo data

Read the files created in loading_data.html:

bgc_metadata <-
  read_rds(file = paste0(path_argo_preprocessed, "/bgc_metadata.rds"))

Core-Argo data

core_metadata <- read_rds(file = paste0(path_argo_core_preprocessed, "/core_metadata.rds"))

Basin data

basinmask <-
  read_csv(paste(path_emlr_utilities,
                 "basin_mask_WOA18.csv",
                 sep = ""),
           col_types = cols("MLR_basins" = col_character()))

basinmask <- basinmask %>% 
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(lon, lat, basin_AIP)

map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))

QC flags

QC flags for values (‘flag’ column) are between 1 and 8, where:

  • 1 is ‘good’ data
  • 2 is ‘probably good’ data,
  • 3 is ‘probably bad’ data,
  • 4 is ‘bad’ data,
  • 5 is ‘value changed’,
  • 8 is ‘estimated value’,
  • 9 is ‘missing value’.
  • (6 and 7 are not used)

Profile QC flags (‘profile_flag’ column) are QC codes attributed to the entire profile, and indicate the number of depth levels (in %) where the value is considered to be good data (QC flags of 1, 2, 5, and 8):

  • ‘A’ means 100% of profile levels contain good data,
  • ‘B’ means 75-<100% of profile levels contain good data,
  • ‘C’ means 50-75% of profile levels contain good data,
  • ‘D’ means 25-50% of profile levels contain good data,
  • ‘E’ means >0-50% of profile levels contain good data,
  • ‘F’ means 0% of profile levels contain good data.

Number of BGC-profiles

Per parameter

# count the number of profiles per parameter 

bgc_profile_counts <- bgc_metadata %>% 
  select(platform_number, cycle_number, date, profile_temp_qc,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_temp_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(year, month, parameter, profile_flag) %>%   # count the number of occurrences of unique flags for each parameter, in each month of each year 
  filter(!is.na(profile_flag),
         profile_flag != "")

# the 'parameter' column contains character strings of either 'doxy_qc', 'ph_in_situ_total_qc', or 'nitrate_qc', with the corresponding profile QC flag in the 'profile_flag' column

# count the total number of profiles for each parameter and each flag:
bgc_profile_counts_total <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>%   # count the number of occurrences of flags for each parameter
  filter(!is.na(profile_flag),
         profile_flag != "")
# bgc_merge <- read_rds(file = paste0(path_argo_preprocessed, "/bgc_merge.rds"))
# 
# bgc_profile_counts_test <- bgc_merge %>% 
#   select(platform_number, cycle_number, date, profile_temp_qc,
#          profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
#   unite('platform_cycle', platform_number:cycle_number, sep = '_', remove = FALSE) %>% 
#   mutate(year = year(date),
#          month = month(date))
# 
# bgc_profile_counts_test_n <- bgc_profile_counts_test %>% 
#   pivot_longer(cols = profile_temp_qc:profile_nitrate_qc,
#                values_to = 'profile_flag',
#                names_to = 'parameter',
#                names_prefix = 'profile_') %>% 
#   distinct(year, month, platform_cycle, parameter, profile_flag) %>% 
#   group_by(year, month, parameter, profile_flag) %>%
#   count(platform_cycle) %>% 
#   group_by(year, month, parameter, profile_flag) %>% 
#   summarise(n = sum(n)) %>% 
#   filter(!is.na(profile_flag),
#          profile_flag != "")
# 
# 
# # total number of profiles 
# print(sum(bgc_profile_counts_test_n$n))
# 
# bgc_profile_counts_test_n %>% 
#   group_by(parameter) %>% 
#   group_split(parameter) %>% 
#   map(
#     ~ ggplot(data = .x,
#             aes(x = month, y = n, col = profile_flag))+
#       geom_line()+
#       geom_point()+
#       facet_wrap(~year, 
#                  ncol = 10)+
#       labs(title = paste0('parameter:', unique(.x$parameter)))
#   )

# gives the same result as using bgc_metadata 

Total number of profiles

Total number of BGC-profiles (all flags A-F)

# count the total number of profiles, regardless of QC flag 
total_data_count <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>%   # count the number of occurrences of flags for each parameter
  filter(!is.na(profile_flag),
         profile_flag != "") %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n))

knitr::kable(total_data_count, caption = 'total number of profiles', format = 'markdown')
total number of profiles
parameter n
doxy_qc 161823
nitrate_qc 54269
ph_in_situ_total_qc 40452

Total number of profiles with usable data (flags A-E)

# count the number of profiles which have QC flags of A, B, C, D, or E (profiles which contain data that can be used)
usable_data_count <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>%   # count the number of occurrences of flags for each parameter
  filter(!is.na(profile_flag),
         profile_flag != "",
         profile_flag != 'F') %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n)) 

knitr::kable(usable_data_count, 
             caption = 'total number of profiles with QC flags A, B, C, D, E', 
             format = 'markdown')
total number of profiles with QC flags A, B, C, D, E
parameter n
doxy_qc 143567
nitrate_qc 47877
ph_in_situ_total_qc 21349

Total number of BGC-profiles with flag A (100% good data)

# count the number of profiles with QC flag A 
A_data_count <- bgc_metadata %>% 
  select(platform_number, cycle_number, date, profile_temp_qc,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_temp_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>%   # count the number of occurrences of flags for each parameter
  filter(!is.na(profile_flag),
         profile_flag != "",
         profile_flag == 'A') %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n)) 

knitr::kable(A_data_count, 
             caption = 'total number of profiles with QC flag A',
             format = 'markdown')
total number of profiles with QC flag A
parameter n
doxy_qc 112828
nitrate_qc 45908
ph_in_situ_total_qc 15843
temp_qc 51664
flag_AB <- read_rds(file = paste0(path_argo_preprocessed, "/bgc_merge_flag_AB.rds"))

flag_AB <- flag_AB %>% 
  unite('platform_cycle', platform_number:cycle_number, sep = '_', remove = FALSE) %>% 
  mutate(year = year(date),
         month = month(date)) 

flag_AB_n <- flag_AB %>% 
  distinct(year, month, platform_cycle) %>% 
  count(year, month)


# total number of profiles 
print(sum(flag_AB_n$n))
[1] 18801
flag_AB_n %>% 
  ggplot(aes(x = month, y = n))+
  geom_point()+
  geom_line()+
  facet_wrap(~year, ncol = 11)+
  labs(title = 'bgc_merge_flag_AB.rds dataframe (temp & pH flag A)')

Version Author Date
c7759a2 ds2n19 2023-10-04
1e972c5 ds2n19 2023-10-02
710edd4 jens-daniel-mueller 2022-05-11
68eff8b jens-daniel-mueller 2022-05-11
6531981 pasqualina-vonlanthendinenna 2022-05-10
f196b7c pasqualina-vonlanthendinenna 2022-05-09
3f012ba pasqualina-vonlanthendinenna 2022-05-06
################################
# using the flag A pH and temperature dataframe which doesn't remove NA values 

# flag_A_test <- bgc_merge_flag_A_test %>%
#   unite('platform_cycle', platform_number:cycle_number, sep = '_', remove = FALSE) %>%
#   mutate(year = year(date),
#          month = month(date))
# 
# flag_A_test_n <- flag_A_test %>%
#   distinct(year, month, platform_cycle) %>%
#   group_by(year, month) %>%
#   count(platform_cycle) %>%
#   group_by(year, month) %>%
#   summarise(n = sum(n))
# 
# 
# # total number of profiles
# print(sum(flag_A_test_n$n))
# 
# flag_A_test_n %>%
#   ggplot(aes(x = month, y = n))+
#   geom_point()+
#   geom_line()+
#   facet_wrap(~year, ncol = 10)+
#   labs(title = 'bgc_merge_flag_AB.rds dataframe (temp & pH flag A)')

Total number of F-flag BGC profiles (unusable data)

# count the number of profiles with QC Flag F (not usable data)
F_data_count <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>%   # count the number of occurrences of flags for each parameter
  filter(!is.na(profile_flag),
         profile_flag != "",
         profile_flag == 'F') %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n)) 

knitr::kable(F_data_count, 
             caption = 'total number of profiles with QC flag F',
             format = 'markdown')
total number of profiles with QC flag F
parameter n
doxy_qc 18256
nitrate_qc 6392
ph_in_situ_total_qc 19103

Plot the evolution of the number of profiles over time

bgc_profile_counts %>% 
  ggplot(aes(x = month, y = n, col = profile_flag)) +
  geom_line() +
  geom_point() +
  facet_grid(parameter ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(1,12,4))+
  labs(x = 'month', y = 'number of profiles', title = 'number of profiles per year')
# draw separate plots for the separate parameters

bgc_profile_counts %>%
  group_split(parameter) %>%   # creates a separate flag count for each parameter 
  map(
    ~ ggplot(data = .x,       # repeats the ggplot for each separate parameter 
             aes(
               x = month, y = n, col = profile_flag
             )) +
      geom_line() +
      geom_point() +
      facet_grid(. ~ year,
                 scales = "free_y") +
      labs(title = paste("Parameter: ", unique(.x$parameter)), 
           x = 'month', y = 'number of profiles', 
           col = 'profile QC flag') +
      scale_x_continuous(breaks = seq(1,12,4))
  )
[[1]]

Version Author Date
1e972c5 ds2n19 2023-10-02
f196b7c pasqualina-vonlanthendinenna 2022-05-09
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
bba33bf pasqualina-vonlanthendinenna 2021-10-26
aa7280d jens-daniel-mueller 2021-10-22
b8feac2 pasqualina-vonlanthendinenna 2021-10-20
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[2]]

Version Author Date
1e972c5 ds2n19 2023-10-02
f196b7c pasqualina-vonlanthendinenna 2022-05-09
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
bba33bf pasqualina-vonlanthendinenna 2021-10-26
aa7280d jens-daniel-mueller 2021-10-22
b8feac2 pasqualina-vonlanthendinenna 2021-10-20
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[3]]

Version Author Date
1e972c5 ds2n19 2023-10-02
f196b7c pasqualina-vonlanthendinenna 2022-05-09
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
bba33bf pasqualina-vonlanthendinenna 2021-10-26
aa7280d jens-daniel-mueller 2021-10-22
b8feac2 pasqualina-vonlanthendinenna 2021-10-20
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[4]]

Version Author Date
1e972c5 ds2n19 2023-10-02
f196b7c pasqualina-vonlanthendinenna 2022-05-09
3f012ba pasqualina-vonlanthendinenna 2022-05-06
ggsave("output/figures/time_series_profiles_per_parameter.png",
width = 7,
height = 4)

All flag A

# count the number of profiles which have a QC flag of A for all three BGC parameters
# the if_all(starts_with()) notation allows to filter over a range of columns simultaneously
# this new approach is identical to your previous solution
# except that it filters also the pres, temp, and sal flags
# (plotted below)

bgc_profile_counts_total_A <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_pres_qc:profile_ph_in_situ_total_qc) %>% 
  filter(if_all(starts_with("profile_"), ~. == 'A')) %>% 
  pivot_longer(cols = starts_with("profile_"),
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  distinct(platform_number, cycle_number, year, month) %>% 
  count(year, month)
bgc_profile_counts_total_A %>% 
  ggplot(aes(x = month, y = n)) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(1,12,4)) +
  labs(x = 'month', y = 'number of profiles',
       title = "Number of profiles",
       subtitle = "All three BGC + core parameters (QC flag A)")

Version Author Date
1e972c5 ds2n19 2023-10-02
710edd4 jens-daniel-mueller 2022-05-11
f196b7c pasqualina-vonlanthendinenna 2022-05-09
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
bba33bf pasqualina-vonlanthendinenna 2021-10-26
cabaa10 jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
b55928d pasqualina-vonlanthendinenna 2021-10-21
b8feac2 pasqualina-vonlanthendinenna 2021-10-20
701fffa pasqualina-vonlanthendinenna 2021-10-20
ggsave("output/figures/time_series_flag_A_profiles.png",
width = 7,
height = 4)

All pH flag A

# count the number of profiles which have a QC flag of A for all three BGC parameters
# the if_all(starts_with()) notation allows to filter over a range of columns simultaneously
# this new approach is identical to your previous solution
# except that it filters also the pres, temp, and sal flags
# (plotted below)

bgc_profile_counts_total_A_pH <- bgc_metadata %>% 
  filter(profile_ph_in_situ_total_qc == "A") %>% 
  select(platform_number, cycle_number, date,
         profile_temp_qc) %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  distinct(platform_number, cycle_number, year, month, profile_temp_qc) %>% 
  count(year, month, profile_temp_qc)
bgc_profile_counts_total_A_pH %>% 
  ggplot(aes(x = month, y = n, col = profile_temp_qc)) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(1,12,4)) +
  labs(x = 'month', y = 'number of profiles',
       title = "Number of profiles",
       subtitle = "All three BGC + core parameters (QC flag A)")

Version Author Date
1e972c5 ds2n19 2023-10-02
710edd4 jens-daniel-mueller 2022-05-11
ggsave("output/figures/time_series_flag_A_profiles_pH.png",
width = 7,
height = 4)

By region

# bgc_metadata <- bgc_metadata %>%
#   mutate(
#     lat = cut(lat, seq(-90, 90, 1), seq(-89.5, 89.5, 1)),
#     lat = as.numeric(as.character(lat)),
#     lon = cut(lon, seq(20, 380, 1), seq(20.5, 379.5, 1)),
#     lon = as.numeric(as.character(lon))
#   )

bgc_grid <- bgc_metadata %>%
  distinct(lat, lon)

bgc_grid <- inner_join(
  basinmask, bgc_grid
)

map +
  geom_raster(data = basinmask,
              aes(lon, lat, fill = basin_AIP)) +
  geom_raster(data = bgc_grid,
              aes(lon, lat)) +
  scale_fill_brewer(palette = "Dark2")

Version Author Date
1e972c5 ds2n19 2023-10-02
f196b7c pasqualina-vonlanthendinenna 2022-05-09
8805f99 pasqualina-vonlanthendinenna 2022-04-11
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
6276d6c pasqualina-vonlanthendinenna 2021-11-11
bba33bf pasqualina-vonlanthendinenna 2021-10-26
aa7280d jens-daniel-mueller 2021-10-22
rm(bgc_grid)
bgc_profile_counts_total_A_region <-
  inner_join(bgc_metadata,
             basinmask) %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc,
         basin_AIP) %>% 
  filter(if_all(starts_with("profile_"), ~. == 'A')) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  distinct(platform_number, cycle_number, year, month, basin_AIP) %>% 
  count(year, month, basin_AIP)
bgc_profile_counts_total_A_region %>% 
  ggplot(aes(x = month, y = n, col = basin_AIP)) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(1,12,2)) +
  labs(x = 'month', y = 'number of profiles',
       title = "Number of profiles",
       subtitle = "All three BGC + core parameters (QC flag A)")

Version Author Date
1e972c5 ds2n19 2023-10-02
f196b7c pasqualina-vonlanthendinenna 2022-05-09
7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17
7a01367 pasqualina-vonlanthendinenna 2021-11-12
bba33bf pasqualina-vonlanthendinenna 2021-10-26
cabaa10 jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
ggsave("output/figures/time_series_profiles_per_region.png",
       width = 7,
       height = 4)

Remove BGC data

rm(list = ls(pattern = 'bgc_'))
rm(list = ls(pattern = '_count'))

Number of Core-Profiles

Core- temperature and salinity

core_profile_counts <- core_metadata %>% 
  select(platform_number, cycle_number, date, 
         profile_temp_qc, profile_psal_qc) %>% 
  pivot_longer(cols = profile_temp_qc:profile_psal_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(year, month, parameter, profile_flag) %>%   # count the number of occurrences of unique flags for each parameter, in each month of each year 
  filter(!is.na(profile_flag),
         profile_flag != "")


core_profile_counts_total <- core_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_temp_qc, profile_psal_qc) %>% 
  pivot_longer(cols = profile_temp_qc:profile_psal_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>% 
  filter(!is.na(profile_flag),
         profile_flag != "")

Total number of profiles

Total number of profiles, regardless of QC flags

# count the total number of core profiles, regardless of QC flag 

total_data_count_core <- core_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_temp_qc, profile_psal_qc) %>% 
  pivot_longer(cols = profile_temp_qc:profile_psal_qc,
               names_to = 'parameter',
               values_to = 'profile_flag',
               names_prefix = 'profile_') %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>% 
  filter(!is.na(profile_flag),
         profile_flag != "") %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n))

knitr::kable(total_data_count_core, caption = 'total number of profiles', format = 'markdown')
total number of profiles
parameter n
psal_qc 1394616
temp_qc 1396244

Number of core profiles with usable data (flags A, B, C, D, and E)

# count the number of core tempa and sal profiles which have QC flags of A, B, C, D, or E (profiles which contain data that can be used)

usable_data_count_core <- core_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_temp_qc, profile_psal_qc) %>% 
  pivot_longer(cols = profile_temp_qc:profile_psal_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>% 
  filter(!is.na(profile_flag),
         profile_flag !="",
         profile_flag != "F") %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n))

knitr::kable(usable_data_count_core, 
             caption = 'total number of core profiles with QC flags A, B, C, D, E', 
             format = 'markdown')
total number of core profiles with QC flags A, B, C, D, E
parameter n
psal_qc 1270474
temp_qc 1372634

Total number of core-profiles with flag A (best data)

# count the number of core profiles with QC flag A 

A_data_count_core <- core_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_temp_qc, profile_psal_qc) %>% 
  pivot_longer(cols = profile_temp_qc:profile_psal_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>% 
  filter(!is.na(profile_flag),
         profile_flag != "",
         profile_flag == 'A') %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n))


knitr::kable(A_data_count_core, 
             caption = 'total number of core profiles with QC flag A',
             format = 'markdown')
total number of core profiles with QC flag A
parameter n
psal_qc 950751
temp_qc 1095349

Total number of F-flag core profiles (0% good data)

# count the number of core profiles with QC Flag F (not usable data)

F_data_count_core <- core_metadata %>% 
  select(platform_number, cycle_number, date, 
         profile_temp_qc, profile_psal_qc) %>% 
  pivot_longer(cols = profile_temp_qc:profile_psal_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>% 
  filter(!is.na(profile_flag),
         profile_flag !="",
         profile_flag == 'F') %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n))

knitr::kable(F_data_count_core, 
             caption = 'total number of core profiles with QC flag F',
             format = 'markdown')
total number of core profiles with QC flag F
parameter n
psal_qc 124142
temp_qc 23610

Plot the evolution of the total number of core profiles over time

# draw separate plots for the separate parameters

core_profile_counts %>%
  group_split(parameter) %>%   # creates a separate flag count for each parameter 
  map(
    ~ ggplot(data = .x,       # repeats the ggplot for each separate parameter 
             aes(
               x = month, y = n, col = profile_flag
             )) +
      geom_line() +
      geom_point() +
      facet_grid(. ~ year,
                 scales = "free_y") +
      labs(title = paste("Parameter: ", unique(.x$parameter)), 
           x = 'month', y = 'number of profiles', 
           col = 'profile QC flag') +
      scale_x_continuous(breaks = seq(1,12,4))
  )
[[1]]

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
1e972c5 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
1e972c5 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
ggsave("output/figures/time_series_core_profiles_per_parameter.png",
width = 7,
height = 4)

All flag A

# count the number of profiles which have a QC flag of A for all three BGC parameters
# the if_all(starts_with()) notation allows to filter over a range of columns simultaneously

core_profile_counts_total_A <- core_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_temp_qc, profile_psal_qc) %>% 
  filter(if_all(starts_with("profile_"), ~. == 'A')) %>% 
  pivot_longer(cols = starts_with("profile_"),
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  distinct(platform_number, cycle_number, year, month) %>% 
  count(year, month)

core_profile_counts_total_A %>% 
  ggplot(aes(x = month, y = n)) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(1,12,4)) +
  labs(x = 'month', y = 'number of profiles',
       title = "Number of profiles",
       subtitle = "Core temp + sal profiles (QC flag A)")

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
1e972c5 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
ggsave("output/figures/time_series_flag_A_core_profiles.png",
width = 7,
height = 4)

All Core-temp flag A

core_profile_counts_total_A_temp <- core_metadata %>% 
  filter(profile_temp_qc == 'A') %>% 
  select(platform_number, cycle_number, date,
         profile_temp_qc) %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  distinct(platform_number, cycle_number, year, month, profile_temp_qc) %>% 
  count(year, month, profile_temp_qc)

# timeseries plot 

core_profile_counts_total_A_temp %>% 
  ggplot(aes(x = month, y = n, col = profile_temp_qc)) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(1,12,4)) +
  labs(x = 'month', y = 'number of profiles',
       title = "Number of profiles",
       subtitle = "Core-temp (QC flag A)")

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
1e972c5 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
ggsave("output/figures/time_series_flag_A_core_profiles_temp.png",
width = 7,
height = 4)

By Region

Number of A-Flag Core profiles by region

core_profile_counts_total_A_region <- 
  inner_join(core_metadata, basinmask) %>% 
  select(platform_number, cycle_number, date,
         profile_temp_qc, profile_psal_qc, basin_AIP) %>% 
  filter(if_all(starts_with("profile_"), ~. == 'A')) %>% 
  pivot_longer(cols = profile_temp_qc:profile_psal_qc,
               names_to = 'parameter',
               values_to = 'profile_flag',
               names_prefix = 'profile_') %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  distinct(platform_number, cycle_number, year, month, basin_AIP) %>% 
  count(year, month, basin_AIP)


core_profile_counts_total_A_region %>% 
  ggplot(aes(x = month, y = n, col = basin_AIP)) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(1,12,2)) +
  labs(x = 'month', y = 'number of profiles',
       title = "Number of profiles",
       subtitle = "Core temp + sal (QC flag A)")

Version Author Date
770b125 ds2n19 2023-10-11
13ae27f ds2n19 2023-10-09
1e972c5 ds2n19 2023-10-02
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
ggsave("output/figures/time_series_core_profiles_per_region.png",
       width = 7,
       height = 4)
rm(list = ls(pattern = 'core_'))
rm(list = ls(pattern = '_core'))

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.4

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.9.0  timechange_0.1.1 argodata_0.1.0   forcats_0.5.2   
 [5] stringr_1.4.1    dplyr_1.0.10     purrr_0.3.5      readr_2.1.3     
 [9] tidyr_1.2.1      tibble_3.1.8     ggplot2_3.4.0    tidyverse_1.3.2 

loaded via a namespace (and not attached):
 [1] httr_1.4.4          sass_0.4.4          bit64_4.0.5        
 [4] vroom_1.6.0         jsonlite_1.8.3      modelr_0.1.10      
 [7] bslib_0.4.1         assertthat_0.2.1    highr_0.9          
[10] googlesheets4_1.0.1 cellranger_1.1.0    yaml_2.3.6         
[13] pillar_1.8.1        backports_1.4.1     glue_1.6.2         
[16] digest_0.6.30       RColorBrewer_1.1-3  promises_1.2.0.1   
[19] rvest_1.0.3         colorspace_2.0-3    htmltools_0.5.3    
[22] httpuv_1.6.6        pkgconfig_2.0.3     broom_1.0.1        
[25] haven_2.5.1         scales_1.2.1        whisker_0.4        
[28] later_1.3.0         tzdb_0.3.0          git2r_0.30.1       
[31] googledrive_2.0.0   generics_0.1.3      farver_2.1.1       
[34] ellipsis_0.3.2      cachem_1.0.6        withr_2.5.0        
[37] cli_3.4.1           magrittr_2.0.3      crayon_1.5.2       
[40] readxl_1.4.1        evaluate_0.18       fs_1.5.2           
[43] fansi_1.0.3         xml2_1.3.3          textshaping_0.3.6  
[46] tools_4.2.2         hms_1.1.2           gargle_1.2.1       
[49] lifecycle_1.0.3     munsell_0.5.0       reprex_2.0.2       
[52] compiler_4.2.2      jquerylib_0.1.4     RNetCDF_2.6-1      
[55] systemfonts_1.0.4   rlang_1.1.1         grid_4.2.2         
[58] rstudioapi_0.14     labeling_0.4.2      rmarkdown_2.18     
[61] gtable_0.3.1        DBI_1.1.3           R6_2.5.1           
[64] knitr_1.41          fastmap_1.1.0       bit_4.0.5          
[67] utf8_1.2.2          workflowr_1.7.0     rprojroot_2.0.3    
[70] ragg_1.2.4          stringi_1.7.8       parallel_4.2.2     
[73] Rcpp_1.0.10         vctrs_0.5.1         dbplyr_2.2.1       
[76] tidyselect_1.2.0    xfun_0.35