Last updated: 2024-05-14

Checks: 7 0

Knit directory: bgc_argo_r_argodata/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 91e6028. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/draft.Rmd
    Untracked:  load_argo_core_output.txt

Unstaged changes:
    Deleted:    analysis/MHWs_categorisation.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/child/cluster_analysis_base.Rmd
    Modified:   analysis/coverage_maps_North_Atlantic.Rmd
    Modified:   analysis/load_broullon_DIC_TA_clim.Rmd
    Modified:   code/Workflowr_project_managment.R
    Modified:   code/start_background_job.R
    Modified:   code/start_background_job_load.R
    Modified:   code/start_background_job_partial.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/extreme_temp_core.Rmd) and HTML (docs/extreme_temp_core.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html af6594f mlarriere 2024-05-13 Build site.
html af44bcd mlarriere 2024-04-26 Build site.
html 780276c mlarriere 2024-04-19 Build site.
html 1a72545 mlarriere 2024-04-12 Build site.
html c076fba mlarriere 2024-04-12 Build site.
html 91f08a6 mlarriere 2024-04-07 Build site.
html db21f55 mlarriere 2024-04-06 Build site.
html c0a5b90 mlarriere 2024-04-01 Build site.
Rmd 42a66ee mlarriere 2024-04-01 extreme_temp and temp_core building test
html f9de50e ds2n19 2024-01-01 Build site.
html 07d4eb8 ds2n19 2023-12-20 Build site.
html fa6cf38 ds2n19 2023-12-14 Build site.
Rmd 64fd104 ds2n19 2023-12-14 revised coverage analysis and SO focused cluster analysis.
html f110b74 ds2n19 2023-12-13 Build site.
Rmd fa9795c ds2n19 2023-12-12 dependencies listed are start of markdown files.
html e60ebd2 ds2n19 2023-12-07 Build site.
html cf5dd20 ds2n19 2023-12-04 Build site.
Rmd 3cb4b17 ds2n19 2023-12-04 Cluster under surface extreme.
Rmd fa1083d ds2n19 2023-12-01 Additional analysis to cluster process.
html cec2a2a ds2n19 2023-11-24 Build site.
Rmd 3dc557d ds2n19 2023-11-24 Switched to new profile details.
Rmd 59f5cc4 ds2n19 2023-11-23 Moved spatiotemporal analysis to use aligned profiles.
html 80c16c2 ds2n19 2023-11-15 Build site.
html 7004f76 ds2n19 2023-10-17 Build site.
Rmd 86e3764 ds2n19 2023-10-17 standard range v climatology, season order resolved and count labels to
html f9c091b ds2n19 2023-10-17 Build site.
Rmd 74dd8f8 ds2n19 2023-10-17 revised order of seasons
html d0535b5 ds2n19 2023-10-17 Build site.
Rmd c218546 ds2n19 2023-10-17 revised order of seasons
html 4b55c43 ds2n19 2023-10-12 Build site.
html c16000b ds2n19 2023-10-12 Build site.
Rmd 723c772 ds2n19 2023-10-12 refresh coverage and analysis after full core load 2013 - 2023
Rmd 1ae81b3 ds2n19 2023-10-11 reworked core load process to work initially by year and then finally create consolidated all years files.
Rmd 44f5720 ds2n19 2023-10-09 manual commit
Rmd ce19a66 ds2n19 2023-10-04 Revised version of OceanSODA product -v2023
html 7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29 Build site.
Rmd 8e81570 pasqualina-vonlanthendinenna 2022-08-29 load and add in core-argo data (1 month)

Task

Compare Argo depth profiles of normal core-temperature and of extreme core-temperature, as identified in the surface OceanSODA data product, in extreme_temp.Rmd

Dependencies

temp_core_va.rds - core preprocessed folder, created by temp_core_align_climatology.

temp_anomaly_va.rds - core preprocessed folder, created by temp_core_align_climatology.

OceanSODA_SST_anomaly_field_01.rds (or _02.rds) - bgc preprocessed folder, extreme_temp.

theme_set(theme_bw())
HNL_colors <- c("H" = "#b2182b",
                "N" = "#636363",
                "L" = "#2166ac")

HNL_colors_map <- c('H' = 'red3',
                    'N' = 'transparent',
                    'L' = 'blue3')

# opt_min_profile_range
# profiles with profile_range >= opt_min_profile_range will be selected 1 = profiles of at least 600m, 2 = profiles of at least 1200m, 3 = profiles of at least 1500m
opt_min_profile_range = 3

# opt_extreme_determination
# 1 - based on the trend of de-seasonal data - we believe this results in more summer extremes where variation tend to be greater.
# 2 - based on the trend of de-seasonal data by month. grouping is by lat, lon and month.
opt_extreme_determination <- 2

Load data

path_argo <- '/nfs/kryo/work/updata/bgc_argo_r_argodata'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")

path_argo_core <- '/nfs/kryo/work/updata/core_argo_r_argodata_2024-03-13'
path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")

path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"

path_updata <- '/nfs/kryo/work/updata'
path_argo_clim_temp <- paste0(path_updata, "/argo_climatology/temperature")

path_argo <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/bgc_argo'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")

path_argo_core <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata'
path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")
nm_biomes <- read_rds(file = paste0(path_argo_preprocessed, "/nm_biomes.rds"))

# WOA 18 basin mask

basinmask <-
  read_csv(
    paste(path_emlr_utilities,
          "basin_mask_WOA18.csv",
          sep = ""),
    col_types = cols("MLR_basins" = col_character())
  )

basinmask <- basinmask %>%
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(-c(MLR_basins, basin))

# load validated and vertically aligned temp profiles, 
full_argo <-
  read_rds(file = paste0(path_argo_core_preprocessed, "/temp_core_va.rds")) %>%
  filter(profile_range >= opt_min_profile_range) %>%
  mutate(date = ymd(format(date, "%Y-%m-15")))

# # load in core-temperature data with profile QC flags of A and B
# full_argo <- read_rds(file = paste0(path_argo_core_preprocessed, "/core_temp_flag_A.rds"))
# 
# full_argo <- full_argo %>% 
#   mutate(year = year(date),
#          month = month(date)) %>% 
#   mutate(date = ymd(format(date, '%Y-%m-15')))

# OceanSODA extremes detected 
if (opt_extreme_determination == 1){
  OceanSODA_temp_SO_extreme_grid <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_01.rds"))
} else if (opt_extreme_determination == 2){
  OceanSODA_temp_SO_extreme_grid <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_02.rds"))
}

# base map for plotting
map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))
# restrict base map to Southern Ocean
map <- map +
  lims(y = c(-85, -30))

Core-Argo Grid Reduction

# Note: While reducing lon x lat grid,
# we keep the original number of observations

full_argo_2x2 <- full_argo %>%
  mutate(
    lat_raw = lat,
    lon_raw = lon,
    lat = cut(lat, seq(-90, 90, 2), seq(-89, 89, 2)),
    lat = as.numeric(as.character(lat)),
    lon = cut(lon, seq(20, 380, 2), seq(21, 379, 2)),
    lon = as.numeric(as.character(lon)))  # re-grid to 2x2

Join OceanSODA anomaly field

# revert OceanSODA to regular 1x1 grid
OceanSODA_temp_SO_extreme_grid <- OceanSODA_temp_SO_extreme_grid %>%
  select(-c(lon, lat)) %>%
  rename(OceanSODA_temp = temperature,
         lon = lon_raw,
         lat = lat_raw) %>% 
  filter(year >=2013)
# 925 056 obs 

# combine the argo profile data to the surface extreme data
profile_temp_extreme <- inner_join(
  full_argo %>% 
    select(c(year, month, date, lon, lat, depth,
           temp,
           file_id)),                 # 567 327 obs 
  OceanSODA_temp_SO_extreme_grid %>% 
    select(c(year, month, date, lon, lat,
           OceanSODA_temp, temp_extreme,
           clim_temp, clim_diff,
           basin_AIP, biome_name)))

# profile_temp_extreme <- profile_temp_extreme %>% 
#   unite('platform_cycle', platform_number:cycle_number, sep = '_', remove = FALSE)

Location of Core-Temperature Profiles

OceanSODA_temp_SO_extreme_grid %>%
  group_split(month) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(
        data = .x,
        aes(x = lon,
            y = lat,
            fill = temp_extreme),
        alpha = 0.5
      ) +
      scale_fill_manual(values = HNL_colors_map) +
      new_scale_fill() +
      geom_tile(
        data = profile_temp_extreme %>%
          distinct(lon, lat, file_id, year, month),
        aes(
          x = lon,
          y = lat,
          fill = 'argo\nprofiles',
          height = 1,
          width = 1
        ),
        alpha = 0.5
      ) +
      scale_fill_manual(values = "springgreen4",
                        name = "") +
      facet_wrap(~ year, ncol = 1) +
      lims(y = c(-85, -30)) +
      labs(title = paste('month:', unique(.x$month))
      )
  )
[[1]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[3]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[4]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[5]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[6]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[7]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[8]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[9]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[10]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[11]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[12]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Plot profiles

Argo profiles plotted according to the surface OceanSODA temperature

L profiles correspond to a low surface temperature event, as recorded in OceanSODA

H profiles correspond to an event of high surface temperature, as recorded in OceanSODA

N profiles correspond to normal surface OceanSODA temperature

Raw

By Mayot biomes

profile_temp_extreme %>%
  group_split(biome_name, basin_AIP, year) %>% 
  head(6) %>%
  map(
    ~ ggplot() +
      geom_path(data = .x %>% filter(temp_extreme == 'N'),
                aes(x = temp, 
                    y = depth,
                    group = file_id,
                    col = temp_extreme),
                linewidth = 0.3) +
      geom_path(data = .x %>% filter(temp_extreme == 'H' | temp_extreme == 'L'),
                aes(x = temp,
                    y = depth,
                    group = file_id,
                    col = temp_extreme),
                linewidth = 0.5)+
      scale_y_reverse() +
      scale_color_manual(values = HNL_colors) +
      facet_wrap(~ month, ncol = 6) +
      labs(
        x = 'Argo temperature (ºC)',
        y = 'depth (m)',
        title = paste(
          unique(.x$basin_AIP),
          "|",
          unique(.x$year),
          "| biome:",
          unique(.x$biome_name)
        ),
        col = 'OceanSODA temp \nanomaly'
      )
  )
[[1]]

Version Author Date
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[3]]

Version Author Date
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[4]]

Version Author Date
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[5]]

Version Author Date
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[6]]

Version Author Date
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Atl, STSS biome, Oct17

# Temperature extreme: 
# Atlantic biome 1, 2018, months 2 and 3 

OceanSODA_temp_SO_extreme_grid_2017 <- OceanSODA_temp_SO_extreme_grid %>% 
  filter(date == '2017-10-15')  

map+
  geom_tile(data = OceanSODA_temp_SO_extreme_grid_2017,
            aes(x = lon,
                y = lat,
                fill = temp_extreme))+
  scale_fill_manual(values = HNL_colors_map)+
  labs(title = 'October 2017',
       fill = 'OceanSODA SST \nextreme')

Version Author Date
cf5dd20 ds2n19 2023-12-04
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
profile_temp_Atl_2017 <- profile_temp_extreme %>% 
  filter(date == '2017-10-15',
         basin_AIP == 'Atlantic',
         biome_name == 'STSS') 

profile_temp_Atl_2017 %>% 
  ggplot(aes(x = temp,
             y = depth,
             group = file_id,
             col = temp_extreme))+
  geom_path(data = profile_temp_Atl_2017 %>% filter(temp_extreme == 'N'),
            aes(x = temp,
                y = depth,
                group = file_id,
                col = temp_extreme),
            linewidth = 0.3)+
  geom_path(data = profile_temp_Atl_2017 %>% filter(temp_extreme == 'H'| temp_extreme == 'L'),
            aes(x = temp,
                y = depth,
                group = file_id,
                col = temp_extreme),
            linewidth = 0.5)+
  scale_y_reverse()+
  scale_color_manual(values = HNL_colors)+
  labs(title = 'Atlantic, STSS biome, October 2017',
       col = 'OceanSODA SST\nextreme',
       x = 'Argo temperature (ºC)')

Version Author Date
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(profile_temp_Atl_2017, OceanSODA_temp_SO_extreme_grid_2017)

Averaged profiles

# cut depth levels at 10, 20, .... etc m
# add seasons 
# Dec, Jan, Feb <- summer 
# Mar, Apr, May <- autumn 
# Jun, Jul, Aug <- winter 
# Sep, Oct, Nov <- spring 

profile_temp_extreme <- profile_temp_extreme %>%
  # mutate(
  #   depth = Hmisc::cut2(
  #     depth,
  #     cuts = c(10, 20, 30, 50, 70, 100, 300, 500, 800, 1000, 1500, 2000, 2500),
  #     levels.mean = TRUE,
  #     digits = 3
  #   ),
  #   depth = as.numeric(as.character(depth))
  # ) %>%
  mutate(
    season = case_when(
      between(month, 3, 5) ~ 'autumn',
      between(month, 6, 8) ~ 'winter',
      between(month, 9, 11) ~ 'spring',
      month == 12 | 1 | 2 ~ 'summer'
    ),
    season_order = case_when(
      between(month, 3, 5) ~ 2,
      between(month, 6, 8) ~ 3,
      between(month, 9, 11) ~ 4,
      month == 12 | 1 | 2 ~ 1
    ),
    .after = date
  )

Overall mean

profile_temp_extreme_mean <- profile_temp_extreme %>%
  group_by(temp_extreme, depth) %>%
  summarise(temp_mean = mean(temp, na.rm = TRUE),
            temp_std = sd(temp, na.rm = TRUE)) %>%
  ungroup()

profile_temp_extreme_mean %>%
  arrange(depth) %>%
  ggplot(aes(y = depth)) +
  geom_ribbon(aes(xmin = temp_mean - temp_std,
                  xmax = temp_mean + temp_std,
                  fill = temp_extreme), 
              alpha = 0.2)+
  geom_path(aes(x = temp_mean,
                col = temp_extreme))+
  scale_color_manual(values = HNL_colors) +
  scale_fill_manual(values = HNL_colors)+
  labs(title = "Overall mean",
       col = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
       fill = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
       y = 'depth (m)',
       x = 'mean Argo temperature (ºC)') +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(profile_temp_extreme_mean)

Number of profiles

profile_temp_count_mean <- profile_temp_extreme %>% 
  distinct(temp_extreme, file_id) %>% 
  count(temp_extreme)

profile_temp_count_mean %>% 
  ggplot(aes(x = temp_extreme, y = n, fill = temp_extreme))+
  geom_col(width = 0.5)+
  scale_y_continuous(trans = 'log10')+
  labs(y = 'log(number of profiles)',
       title = 'Number of profiles')

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
# rm(profile_temp_count_mean)

Surface Core-Argo temperature vs surface OceanSODA temperature (20 m)

# calculate surface-mean argo SST, for each profile 
surface_temp_mean <- profile_temp_extreme %>% 
  filter(depth <= 20) %>% 
  group_by(temp_extreme, file_id) %>% 
  summarise(argo_surf_temp = mean(temp, na.rm = TRUE),
            OceanSODA_surf_temp = mean(OceanSODA_temp, na.rm = TRUE))

surface_temp_mean %>% 
  group_by(temp_extreme) %>%
  group_split() %>% 
  # head(1) %>%
  map(
  ~ggplot(data = .x, aes(x = OceanSODA_surf_temp, 
             y = argo_surf_temp))+
  geom_bin2d(data = .x, aes(x = OceanSODA_surf_temp, 
                 y = argo_surf_temp), linewidth = 0.3, bins = 60) +
  scale_fill_viridis_c()+
  geom_abline(slope = 1, intercept = 0)+
  coord_fixed(ratio = 1,
              xlim = c(-3, 28),
              ylim = c(-3, 28))+
    labs(title = paste('temp extreme:', unique(.x$temp_extreme)),
         x = 'OceanSODA temp',
         y = 'Argo temp')
  )
[[1]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[3]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(surface_temp_mean)

Season x Mayot biome

profile_temp_extreme_biome <- profile_temp_extreme %>% 
  group_by(season_order, biome_name, temp_extreme, depth) %>% 
  summarise(temp_biome = mean(temp, na.rm = TRUE),
            temp_std_biome = sd(temp, na.rm = TRUE)) %>% 
  ungroup()
  
facet_label <- as_labeller(c("1"="summer", 
                             "2"="autumn", 
                             "3"="winter", 
                             "4"="spring", 
                             "ICE" = "ICE", 
                             "SPSS" = "SPSS",
                             "STSS" = "STSS",
                             "Atlantic" = "Atlantic",
                             "Indian" = "Indian",
                             "Pacific" = "Pacific"
                             ))

profile_temp_extreme_biome %>%
  ggplot(aes(
    x = temp_biome,
    y = depth,
    group = temp_extreme,
    col = temp_extreme
  )) +
  geom_ribbon(aes(xmax = temp_biome + temp_std_biome,
                  xmin = temp_biome - temp_std_biome,
                  group = temp_extreme,
                  fill = temp_extreme),
              col = NA, 
              alpha = 0.2)+
  geom_path() +
  scale_color_manual(values = HNL_colors) +
  scale_fill_manual(values = HNL_colors)+
  labs(col = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
       fill = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
       y = 'depth (m)',
       x = 'biome mean Argo temperature (ºC)') +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))) +
  lims(x = c(-3, 18))+
  facet_grid(season_order ~ biome_name, labeller = facet_label)

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(profile_temp_extreme_biome)

Number of profiles per season per Mayot biome

profile_temp_count_biome <- profile_temp_extreme %>% 
  distinct(season_order, biome_name, temp_extreme, file_id) %>%
  group_by(season_order, biome_name, temp_extreme) %>% 
  count(temp_extreme)

profile_temp_count_biome %>% 
  ggplot(aes(x = temp_extreme, y = n, fill = temp_extreme))+
  geom_col(width = 0.5)+
  facet_grid(season_order ~ biome_name, labeller = facet_label)+
  scale_y_continuous(trans = 'log10')+
  labs(y = 'log(number of profiles)',
       title = 'Number of profiles season x Mayot biome')

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
# rm(profile_temp_count_biome)

Surface Core-Argo temp vs surface OceanSODA temp season x Mayot biome (20 m)

surface_temp_biome <- profile_temp_extreme %>% 
  filter(depth <= 20) %>% 
  group_by(season_order, biome_name, temp_extreme, file_id) %>% 
  summarise(argo_surf_temp = mean(temp, na.rm=TRUE),
            OceanSODA_surf_temp = mean(OceanSODA_temp, na.rm = TRUE))

surface_temp_biome %>% 
  group_by(temp_extreme) %>% 
  group_split(temp_extreme) %>% 
  map(
  ~ggplot(data = .x, aes(x = OceanSODA_surf_temp, 
             y = argo_surf_temp))+
  geom_bin2d(data = .x, aes(x = OceanSODA_surf_temp, 
                 y = argo_surf_temp)) +
  scale_fill_viridis_c()+
  geom_abline(slope = 1, intercept = 0)+
  coord_fixed(ratio = 1, 
              xlim = c(-3, 25),
              ylim = c(-3, 25))+
  facet_grid(season_order~biome_name, labeller = facet_label) +
    labs(title = paste( 'Temp extreme:', unique(.x$temp_extreme)),
         x = 'OceanSODA temp',
         y = 'Argo temp')
  )
[[1]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[3]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(surface_temp_biome)

Season x basin

profile_temp_extreme_basin <- profile_temp_extreme %>% 
  group_by(season_order, basin_AIP, temp_extreme, depth) %>% 
  summarise(temp_basin = mean(temp, na.rm = TRUE),
            temp_basin_std = sd(temp, na.rm = TRUE)) %>% 
  ungroup()

profile_temp_extreme_basin %>% 
  ggplot(aes(x = temp_basin, 
             y = depth, 
             group = temp_extreme, 
             col = temp_extreme))+
  geom_ribbon(aes(xmin = temp_basin - temp_basin_std,
                  xmax = temp_basin + temp_basin_std,
                  group = temp_extreme, 
                  fill = temp_extreme),
              col = NA, 
              alpha = 0.2)+
  geom_path()+
  scale_color_manual(values = HNL_colors)+
  scale_fill_manual(values = HNL_colors)+
  labs(col = 'OceanSODA\ntemp anomaly\n(mean ± st dev)',
       fill = 'OceanSODA\ntemp anomaly\n(mean ± st dev)',
       y = 'depth (m)',
       x = 'basin-mean Argo temperature (ªC)')+
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))) +
  facet_grid(season_order~basin_AIP, labeller = facet_label)

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(profile_temp_extreme_basin)

Number of profiles season x basin

profile_temp_count_basin <- profile_temp_extreme %>% 
  distinct(season_order, basin_AIP, temp_extreme, file_id) %>% 
  group_by(season_order, basin_AIP, temp_extreme) %>% 
  count(temp_extreme)

profile_temp_count_basin %>% 
  ggplot(aes(x = temp_extreme, y = n, fill = temp_extreme))+
  geom_col(width = 0.5)+
  facet_grid(season_order~basin_AIP, labeller = facet_label)+
  scale_y_continuous(trans = 'log10')+
  labs(y = 'log(number of profiles)',
       title = 'Number of profiles season x basin')

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
# rm(profile_temp_count_basin)

Surface Argo temperature vs surface OceanSODA temperature (20 m) season x basin

# calculate surface-mean argo pH to compare against OceanSODA surface pH (one value)
surface_temp_basin <- profile_temp_extreme %>% 
  filter(depth <= 20) %>% 
  group_by(season_order, basin_AIP, temp_extreme, file_id) %>% 
  summarise(surf_argo_temp = mean(temp, na.rm=TRUE),
            surf_OceanSODA_temp = mean(OceanSODA_temp, na.rm = TRUE)) 

surface_temp_basin %>% 
  group_by(temp_extreme) %>% 
  group_split(temp_extreme) %>% 
  map(
  ~ggplot(data = .x, aes(x = surf_OceanSODA_temp, 
             y = surf_argo_temp))+
  geom_bin2d(data = .x, aes(x = surf_OceanSODA_temp, 
                 y = surf_argo_temp)) +
    scale_fill_viridis_c()+
  geom_abline(slope = 1, intercept = 0)+
  coord_fixed(ratio = 1, 
              xlim = c(-3, 25),
              ylim = c(-3, 25))+
  facet_grid(season_order~basin_AIP, labeller = facet_label) +
    labs(title = paste('Temp extreme:', unique(.x$temp_extreme)),
         x = 'OceanSODA temp',
         y = 'Argo temp')
  )
[[1]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[3]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(surface_temp_basin)

Season x Mayot biome x Basin

profile_temp_extreme_season <- profile_temp_extreme %>%
  group_by(season_order, season, biome_name, basin_AIP, temp_extreme, depth) %>%
  summarise(temp_mean = mean(temp, na.rm = TRUE),
            temp_std = sd(temp, na.rm = TRUE)) %>%
  ungroup()

profile_temp_extreme_season %>%
  arrange(depth) %>%
  group_split(season_order) %>%
  # head(1) %>%
  map(
    ~ ggplot(
      data = .x,
      aes(x = temp_mean,
          y = depth,
          group = temp_extreme,
          col = temp_extreme)) +
      geom_ribbon(aes(xmax = temp_mean + temp_std,
                      xmin = temp_mean - temp_std,
                      group = temp_extreme,
                      fill = temp_extreme),
                  col = NA,
                  alpha = 0.2)+
      geom_path() +
      scale_color_manual(values = HNL_colors) +
      scale_fill_manual(values = HNL_colors) +
      labs(title = paste("season:", unique(.x$season)),
           col = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
           fill = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
           y = 'depth (m)',
           x = 'mean Argo temperature (ºC)') +
      scale_y_continuous(
        trans = trans_reverser("sqrt"),
        breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))
      ) +
      facet_grid(basin_AIP ~ biome_name)
  )
[[1]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[3]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[4]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

Number of profiles season x Mayot biome x basin

profile_temp_count_season <- profile_temp_extreme %>% 
  distinct(season_order, season, biome_name, basin_AIP,
           temp_extreme, file_id) %>% 
  group_by(season_order, season, biome_name, basin_AIP, temp_extreme) %>% 
  count(temp_extreme)


profile_temp_count_season %>% 
  group_by(season_order) %>% 
  group_split(season_order) %>% 
  map(
    ~ggplot()+
      geom_col(data =.x, 
               aes(x = temp_extreme,
                   y = n,
                   fill = temp_extreme),
               width = 0.5)+
      facet_grid(basin_AIP ~ biome_name)+
      scale_y_continuous(trans = 'log10')+
      labs(y = 'log(number of profiles)',
           title = paste('season:', unique(.x$season)))
  )
[[1]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[3]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[4]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
# rm(profile_temp_count_season)

Surface Core-Argo temperature vs surface OceanSODA temperature (20m) in each season, Mayot biome, basin

# calculate surface-mean argo pH, for each season x biome x basin x ph extreme 
surface_temp_season <- profile_temp_extreme %>% 
  filter(depth <= 20) %>% 
  group_by(season_order,
           season, 
           basin_AIP, 
           biome_name, 
           temp_extreme,  
           file_id) %>%  
  summarise(surf_argo_temp = mean(temp, na.rm=TRUE),
            surf_OceanSODA_temp = mean(OceanSODA_temp, na.rm = TRUE)) 

surface_temp_season %>% 
  group_by(season_order, temp_extreme) %>% 
  group_split(season_order, temp_extreme) %>% 
  map(
  ~ggplot(data = .x, aes(x = surf_OceanSODA_temp, 
             y = surf_argo_temp))+
  geom_bin2d(data = .x, aes(x = surf_OceanSODA_temp, 
                 y = surf_argo_temp)) +
  scale_fill_viridis_c()+
  geom_abline(slope = 1, intercept = 0)+
  coord_fixed(ratio = 1, 
              xlim = c(-3, 25),
              ylim = c(-3, 25))+
  facet_grid(basin_AIP ~ biome_name) +
    labs(title = paste('season:', unique(.x$season), 
                        '| temp extreme:', unique(.x$temp_extreme)),
         x = 'OceanSODA temp',
         y = 'Argo temp')
  )
[[1]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[3]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[4]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[5]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[6]]

Version Author Date
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[7]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[8]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[9]]

Version Author Date
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[10]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[11]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[12]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
rm(surface_temp_season)

Atlantic, SPSS biome, winter

profile_temp_extreme_season %>%
  filter(basin_AIP == 'Atlantic',
         biome_name == 'SPSS',
         season == 'winter') %>% 
  arrange(depth) %>%
  ggplot(aes(x = temp_mean,
             y = depth,
             group = temp_extreme,
             col = temp_extreme)) +
  geom_ribbon(aes(xmax = temp_mean + temp_std,
                  xmin = temp_mean - temp_std,
                  group = temp_extreme,
                  fill = temp_extreme),
              col = NA,
              alpha = 0.2)+
  geom_path() +
  scale_color_manual(values = HNL_colors) +
  scale_fill_manual(values = HNL_colors) +
  labs(title = 'Atlantic basin, SPSS biome, winter',
       col = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
       fill = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
       y = 'depth (m)',
       x = 'mean Argo temperature (ºC)') +
  scale_y_continuous(
  trans = trans_reverser("sqrt"),
  breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))) 

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Atlantic, STSS biome, spring

profile_temp_extreme_season %>%
  filter(basin_AIP == 'Atlantic',
         biome_name == 'STSS',
         season == 'spring') %>% 
  arrange(depth) %>%
  ggplot(aes(x = temp_mean,
             y = depth,
             group = temp_extreme,
             col = temp_extreme)) +
  geom_ribbon(aes(xmax = temp_mean + temp_std,
                  xmin = temp_mean - temp_std,
                  group = temp_extreme,
                  fill = temp_extreme),
              col = NA,
              alpha = 0.2)+
  geom_path() +
  scale_color_manual(values = HNL_colors) +
  scale_fill_manual(values = HNL_colors) +
  labs(title = 'Atlantic basin, STSS biome, spring',
       col = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
       fill = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
       y = 'depth (m)',
       x = 'mean Argo temperature (ºC)') +
  scale_y_continuous(
  trans = trans_reverser("sqrt"),
  breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))) 

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(profile_temp_extreme_season)

Remove climatology

Plot the H/L/N profiles as anomalies relative to the CSIO-MNR Argo temperature climatology

Argo profiles

# profile_temp_extreme_binned <- profile_temp_extreme %>%
#   group_by(lon, lat, year, month, file_id,
#            biome_name, basin_AIP, temp_extreme,
#            depth) %>%
#   summarize(temp_adjusted_binned = mean(temp_adjusted, na.rm = TRUE)) %>%
#   ungroup()

ARGO climatology

# boa_temp_clim <- read_rds(file = paste0(path_argo_preprocessed, '/boa_temp_clim.rds'))
# 
# # compatibility with profile_temp_extreme_jan
# boa_temp_clim_SO <- boa_temp_clim %>% 
#   filter(lat <= -30) %>% 
#   mutate(depth_boa = depth)
# 
# # grid average climatological temp into the argo depth bins 
# boa_temp_clim_SO <- boa_temp_clim_SO %>%
#   mutate(
#     depth = cut(
#       depth_boa,
#       breaks = c(0, 10, 20, 30, 50, 70, 100, 300, 500, 800, 1000, 1500, 2000),
#       include.lowest = TRUE,
#       labels = as.factor(unique(profile_temp_extreme$depth))[1:12]
#     ),
#     depth = as.numeric(as.character(depth))
#   )
# 
# 
# # calculate mean climatological pH per depth bin
# boa_temp_clim_SO_binned <- boa_temp_clim_SO %>% 
#   group_by(lon, lat, depth, month) %>% 
#   summarise(clim_temp_binned = mean(clim_temp, na.rm = TRUE)) %>%
#   ungroup()
# 
# 
# # join climatology and ARGO profiles
# 
# remove_clim <- inner_join(profile_temp_extreme_binned,
#                               boa_temp_clim_SO_binned)

remove_clim <-
  read_rds(file = paste0(path_argo_core_preprocessed, "/temp_anomaly_va.rds")) %>%
  filter(profile_range >= opt_min_profile_range) %>%
  mutate(date = ymd(format(date, "%Y-%m-15")))

remove_clim <- inner_join(
  remove_clim %>%
    select(
      file_id, 
      year, 
      month, 
      date, 
      lon, 
      lat, 
      depth, 
      temp,
      clim_temp,
      anomaly
      ),
  OceanSODA_temp_SO_extreme_grid %>%
    select(
      year,
      month,
      date,
      lon,
      lat,
      OceanSODA_temp,
      temp_extreme,
      biome_name,
      basin_AIP
    )
)

remove_clim <- remove_clim %>%
  mutate(
    season = case_when(
      between(month, 3, 5) ~ 'autumn',
      between(month, 6, 8) ~ 'winter',
      between(month, 9, 11) ~ 'spring',
      month == 12 | 1 | 2 ~ 'summer'
    ),
    season_order = case_when(
      between(month, 3, 5) ~ 2,
      between(month, 6, 8) ~ 3,
      between(month, 9, 11) ~ 4,
      month == 12 | 1 | 2 ~ 1
    ),
    .after = date
  ) 

Profiles

Points are the climatological temperature, lines are the depth-binned Argo profiles colored by H/N/L classification

Absolute

remove_clim %>%
  group_split(biome_name, basin_AIP, year) %>%
  head(6) %>%
  map(
    ~ ggplot() +
      geom_path(
        data = .x %>%
          filter(temp_extreme == 'N'),
        aes(
          x = temp,
          y = depth,
          group = file_id,
          col = temp_extreme
        ),
        size = 0.3
      ) +
      geom_path(
        data = .x %>%
          filter(temp_extreme == 'H' | temp_extreme == 'L'),
        aes(
          x = temp,
          y = depth,
          group = file_id,
          col = temp_extreme
        ),
        size = 0.5
      ) +
      geom_point(
        data = .x,
        aes(x = clim_temp,
            y = depth,
            col = temp_extreme),
        size = 0.5
      ) +
      scale_y_reverse() +
      scale_color_manual(values = HNL_colors) +
      labs(
        x = 'Argo temperature (ºC)',
        y = 'depth (m)',
        title = paste(
          "Biome:",
          unique(.x$biome_name),
          "| basin:",
          unique(.x$basin_AIP),
          " | ",
          unique(.x$year)
        ),
        col = 'OceanSODA temp \nanomaly'
      )
  )
[[1]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[3]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[4]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[5]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[6]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
# calculate the difference between the binned climatological argo and in-situ argo for each depth level and grid cell 

# remove_clim <- remove_clim %>% 
#   mutate(argo_temp_anomaly = temp_adjusted_binned - clim_temp_binned,
#          season = case_when(between(month, 3, 5) ~ 'autumn',
#                             between(month, 6, 8) ~ 'winter',
#                             between(month, 9, 11) ~ 'spring',
#                             month == 12 | 1 | 2 ~ 'summer'),
#          season_order = case_when(between(month, 3, 5) ~ 2,
#                             between(month, 6, 8) ~ 3,
#                             between(month, 9, 11) ~ 4,
#                             month == 12 | 1 | 2 ~ 1))

Anomaly

remove_clim %>% 
  group_split(month) %>% 
  #head(6) %>% 
  map(
    ~ggplot()+
      geom_path(data = .x %>% filter(temp_extreme == 'N'),
                aes(x = anomaly,
                    y = depth,
                    group = file_id,
                    col = temp_extreme),
                size = 0.2)+
      geom_path(data = .x %>% filter(temp_extreme == 'H'| temp_extreme == 'L'),
                 aes(x = anomaly,
                     y = depth,
                     group = file_id,
                     col = temp_extreme),
                 size = 0.3)+
      geom_vline(xintercept = 0)+
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))+
      scale_color_manual(values = HNL_colors)+
      scale_fill_manual(values = HNL_colors)+
      facet_grid(basin_AIP~biome_name)+
      labs(title = paste0('month: ', unique(.x$month)))
  )
[[1]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[3]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12

[[4]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12

[[5]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12

[[6]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12

[[7]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12

[[8]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12

[[9]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12

[[10]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12

[[11]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12

[[12]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
c16000b ds2n19 2023-10-12

Overall mean anomaly

remove_clim_overall_mean <- remove_clim %>% 
  group_by(temp_extreme, depth) %>% 
  summarise(temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
            temp_anomaly_sd = sd(anomaly, na.rm = TRUE))

remove_clim_overall_mean %>% 
  ggplot()+
  geom_path(aes(x = temp_anomaly_mean,
                y = depth,
                group = temp_extreme,
                col = temp_extreme))+
  geom_ribbon(aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
                  xmin = temp_anomaly_mean - temp_anomaly_sd,
                  y = depth,
                  group = temp_extreme,
                  fill = temp_extreme),
              col = NA,
              alpha = 0.2)+
  geom_vline(xintercept = 0)+
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))+
  scale_color_manual(values = HNL_colors)+
  scale_fill_manual(values = HNL_colors)+
  # geom_text_repel(data = profile_temp_count_mean,
  #           aes(x = 1, 
  #               y = 1500, 
  #               label = paste0(n), 
  #               col = temp_extreme),
  #           size = 7,
  #           segment.color = 'transparent')+
  geom_text(data = profile_temp_count_mean[2,],
          aes(x = -4.0, 
              y = 1200, 
              label = paste0(n), 
              col = temp_extreme),
          size = 6)+
  geom_text(data = profile_temp_count_mean[1,],
          aes(x = -4.0, 
              y = 1400, 
              label = paste0(n), 
              col = temp_extreme),
          size = 6)+
  geom_text(data = profile_temp_count_mean[3,],
          aes(x = -4.0, 
              y = 1600, 
              label = paste0(n), 
              col = temp_extreme),
          size = 6)+
  coord_cartesian(xlim = c(-4.5, 4.5))+
  scale_x_continuous(breaks = c(-4, -2, 0, 2, 4))+
  labs(title = 'Overall mean anomaly profiles')

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
7004f76 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(remove_clim_overall_mean, profile_temp_count_mean)

Biome x season mean anomaly

remove_clim_biome_mean <- remove_clim %>% 
  group_by(temp_extreme, depth, season_order, season, biome_name) %>% 
  summarise(temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
            temp_anomaly_sd = sd(anomaly, na.rm = TRUE))

remove_clim_biome_mean %>% 
  ggplot(aes(x = temp_anomaly_mean,
                y = depth,
                group = temp_extreme,
                col = temp_extreme))+
  geom_path()+
  geom_ribbon(aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
                  xmin = temp_anomaly_mean - temp_anomaly_sd,
                  group = temp_extreme,
                  fill = temp_extreme),
              col = NA,
              alpha = 0.2)+
  geom_vline(xintercept = 0)+
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))+
  scale_fill_manual(values = HNL_colors)+
  scale_color_manual(values = HNL_colors)+
  labs(title = 'Biome-mean anomaly profiles')+
  # geom_text_repel(data = profile_temp_count_biome,
  #                 aes(x = 3,
  #                     y = 1500,
  #                     label = paste0(n),
  #                     col = temp_extreme),
  #                 size = 4,
  #                 segment.color = 'transparent')+
  geom_text(data = profile_temp_count_biome %>% filter (temp_extreme == 'N'),
                  aes(x = -3.5,
                      y = 800,
                      label = paste0(n),
                      col = temp_extreme),
                  size = 4)+
  geom_text(data = profile_temp_count_biome %>% filter (temp_extreme == 'H'),
                  aes(x = -3.5,
                      y = 1200,
                      label = paste0(n),
                      col = temp_extreme),
                  size = 4)+
  geom_text(data = profile_temp_count_biome %>% filter (temp_extreme == 'L'),
                  aes(x = -3.5,
                      y = 1600,
                      label = paste0(n),
                      col = temp_extreme),
                  size = 4)+
  coord_cartesian(xlim = c(-4.5, 4.5))+
  scale_x_continuous(breaks = c(-4, -2, 0, 2, 4))+
  facet_grid(season_order~biome_name, labeller = facet_label)

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
7004f76 ds2n19 2023-10-17
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(remove_clim_biome_mean, profile_temp_count_biome)

Basin x season mean anomaly

remove_clim_basin_mean <- remove_clim %>% 
  group_by(basin_AIP, temp_extreme, depth, season_order, season) %>% 
  summarise(temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
            temp_anomaly_sd = sd(anomaly, na.rm = TRUE))

remove_clim_basin_mean %>% 
  ggplot(aes(x = temp_anomaly_mean,
             y = depth, 
             group = temp_extreme,
             col = temp_extreme))+
  geom_path()+
  geom_ribbon(aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
                  xmin = temp_anomaly_mean - temp_anomaly_sd,
                  group = temp_extreme,
                  fill = temp_extreme),
              col = NA,
              alpha = 0.2)+
  geom_vline(xintercept = 0)+
  facet_grid(season_order~basin_AIP, labeller = facet_label)+
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))+
  scale_color_manual(values = HNL_colors)+
  scale_fill_manual(values = HNL_colors)+
  # geom_text_repel(data = profile_temp_count_basin,
  #                 aes(x = 2,
  #                     y = 1500,
  #                     label = paste0(n),
  #                     col = temp_extreme),
  #                 size = 4,
  #                 segment.color = 'transparent')+
  geom_text(data = profile_temp_count_basin %>% filter (temp_extreme == 'N'),
                  aes(x = -3.5,
                      y = 800,
                      label = paste0(n),
                      col = temp_extreme),
                  size = 4)+
  geom_text(data = profile_temp_count_basin %>% filter (temp_extreme == 'H'),
                  aes(x = -3.5,
                      y = 1200,
                      label = paste0(n),
                      col = temp_extreme),
                  size = 4)+
  geom_text(data = profile_temp_count_basin %>% filter (temp_extreme == 'L'),
                  aes(x = -3.5,
                      y = 1600,
                      label = paste0(n),
                      col = temp_extreme),
                  size = 4)+
  coord_cartesian(xlim = c(-4.5, 4.5))+
  scale_x_continuous(breaks = c(-4, -2, 0, 2, 4))+
  labs(title = 'Basin-mean anomaly profiles')

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
7004f76 ds2n19 2023-10-17
f9c091b ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
rm(remove_clim_basin_mean, profile_temp_count_basin)

Basin x biome x season mean anomaly

remove_clim_basin_biome_mean <- remove_clim %>% 
  group_by(basin_AIP, biome_name, temp_extreme, season_order, season, depth) %>% 
  summarise(temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
            temp_anomaly_sd = sd(anomaly, na.rm = TRUE))

remove_clim_basin_biome_mean %>% 
  group_by(season_order) %>% 
  group_split(season_order) %>% 
  map(
    ~ggplot(data = .x, 
            aes(x = temp_anomaly_mean,
                y = depth,
                group = temp_extreme,
                col = temp_extreme))+
      geom_path()+
      geom_ribbon(data = .x,
                  aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
                  xmin = temp_anomaly_mean - temp_anomaly_sd,
                  group = temp_extreme,
                  fill = temp_extreme),
              col = NA,
              alpha = 0.2)+
      geom_vline(xintercept = 0)+
      facet_grid(basin_AIP~biome_name)+
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))+
      scale_color_manual(values = HNL_colors)+
      scale_fill_manual(values = HNL_colors)+
      # geom_text_repel(data = profile_temp_count_season,
      #                 aes(x = 1,
      #                     y = 1400,
      #                     label = paste0(n),
      #                     col = temp_extreme,
      #                     group = temp_extreme),
      #                 size = 4,
      #                 segment.color = 'transparent')+
      geom_text(data = profile_temp_count_season %>% filter (temp_extreme == 'N' & season == unique(.x$season)),
                      aes(x = -3.5,
                          y = 800,
                          label = paste0(n),
                          col = temp_extreme),
                      size = 4)+
      geom_text(data = profile_temp_count_season %>% filter (temp_extreme == 'H' & season == unique(.x$season)),
                      aes(x = -3.5,
                          y = 1200,
                          label = paste0(n),
                          col = temp_extreme),
                      size = 4)+
      geom_text(data = profile_temp_count_season %>% filter (temp_extreme == 'L' & season == unique(.x$season)),
                      aes(x = -3.5,
                          y = 1600,
                          label = paste0(n),
                          col = temp_extreme),
                      size = 4)+
      coord_cartesian(xlim = c(-4.5, 4.5))+
      scale_x_continuous(breaks = c(-4, -2, 0, 2, 4))+
      labs(title = paste0('biome-basin mean anomaly profiles ', unique(.x$season)))
    )
[[1]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
7004f76 ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

[[2]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
7004f76 ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[3]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
7004f76 ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12

[[4]]

Version Author Date
c0a5b90 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cf5dd20 ds2n19 2023-12-04
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
7004f76 ds2n19 2023-10-17
d0535b5 ds2n19 2023-10-17
c16000b ds2n19 2023-10-12
rm(remove_clim_basin_biome_mean, profile_temp_count_season)

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggnewscale_0.4.8  ggrepel_0.9.2     oce_1.7-10        gsw_1.1-1        
 [5] ggforce_0.4.1     metR_0.13.0       scico_1.3.1       ggOceanMaps_1.3.4
 [9] ggspatial_1.1.7   broom_1.0.5       lubridate_1.9.0   timechange_0.1.1 
[13] forcats_0.5.2     stringr_1.5.0     dplyr_1.1.3       purrr_1.0.2      
[17] readr_2.1.3       tidyr_1.3.0       tibble_3.2.1      ggplot2_3.4.4    
[21] tidyverse_1.3.2   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] googledrive_2.0.0   colorspace_2.0-3    ellipsis_0.3.2     
 [4] class_7.3-20        rprojroot_2.0.3     fs_1.5.2           
 [7] rstudioapi_0.15.0   proxy_0.4-27        farver_2.1.1       
[10] bit64_4.0.5         fansi_1.0.3         xml2_1.3.3         
[13] codetools_0.2-18    cachem_1.0.6        knitr_1.41         
[16] polyclip_1.10-4     jsonlite_1.8.3      dbplyr_2.2.1       
[19] rgeos_0.5-9         compiler_4.2.2      httr_1.4.4         
[22] backports_1.4.1     assertthat_0.2.1    fastmap_1.1.0      
[25] gargle_1.2.1        cli_3.6.1           later_1.3.0        
[28] tweenr_2.0.2        htmltools_0.5.8.1   tools_4.2.2        
[31] gtable_0.3.1        glue_1.6.2          Rcpp_1.0.10        
[34] cellranger_1.1.0    jquerylib_0.1.4     raster_3.6-11      
[37] vctrs_0.6.4         xfun_0.35           ps_1.7.2           
[40] rvest_1.0.3         lifecycle_1.0.3     googlesheets4_1.0.1
[43] terra_1.7-65        getPass_0.2-2       MASS_7.3-58.1      
[46] scales_1.2.1        vroom_1.6.0         hms_1.1.2          
[49] promises_1.2.0.1    parallel_4.2.2      yaml_2.3.6         
[52] memoise_2.0.1       sass_0.4.4          stringi_1.7.8      
[55] highr_0.9           e1071_1.7-12        checkmate_2.1.0    
[58] rlang_1.1.1         pkgconfig_2.0.3     evaluate_0.18      
[61] lattice_0.20-45     sf_1.0-9            labeling_0.4.2     
[64] bit_4.0.5           processx_3.8.0      tidyselect_1.2.0   
[67] magrittr_2.0.3      R6_2.5.1            generics_0.1.3     
[70] DBI_1.2.2           pillar_1.9.0        haven_2.5.1        
[73] whisker_0.4         withr_2.5.0         units_0.8-0        
[76] sp_1.5-1            modelr_0.1.10       crayon_1.5.2       
[79] KernSmooth_2.23-20  utf8_1.2.2          tzdb_0.3.0         
[82] rmarkdown_2.18      grid_4.2.2          readxl_1.4.1       
[85] data.table_1.14.6   callr_3.7.3         git2r_0.30.1       
[88] reprex_2.0.2        digest_0.6.30       classInt_0.4-8     
[91] httpuv_1.6.6        munsell_0.5.0       viridisLite_0.4.1  
[94] bslib_0.4.1