Last updated: 2022-02-02

Checks: 7 0

Knit directory: bgc_argo_r_argodata/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bb15149. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/

Untracked files:
    Untracked:  code/OceanSODA_argo_extremes.R
    Untracked:  code/creating_dataframe.R
    Untracked:  code/creating_map.R
    Untracked:  code/merging_oceanSODA_Argo.R
    Untracked:  code/pH_data_timeseries.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/extreme_pH.Rmd) and HTML (docs/extreme_pH.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bb15149 pasqualina-vonlanthendinenna 2022-02-02 changed map figure aspect
html 31e4d42 pasqualina-vonlanthendinenna 2022-02-02 Build site.
Rmd 09ab7e9 pasqualina-vonlanthendinenna 2022-02-02 changed map figure aspect
html 7376be6 pasqualina-vonlanthendinenna 2022-02-02 Build site.
Rmd ce1bbab pasqualina-vonlanthendinenna 2022-02-02 updated bar charts and argo vs oceansoda ph
html de183c6 pasqualina-vonlanthendinenna 2022-02-01 Build site.
Rmd db007b5 pasqualina-vonlanthendinenna 2022-02-01 updated figure aspect
html 44a2ec3 pasqualina-vonlanthendinenna 2022-02-01 Build site.
Rmd f62e851 pasqualina-vonlanthendinenna 2022-02-01 added flat maps, bar charts and OceanSODA vs argo pH
html 44fcfb6 pasqualina-vonlanthendinenna 2022-02-01 Build site.
Rmd b45a03e pasqualina-vonlanthendinenna 2022-02-01 added sigma maps and log transform depth
html 28c8d17 jens-daniel-mueller 2022-01-29 Build site.
Rmd c0c12d0 jens-daniel-mueller 2022-01-28 code cleaning: basinmask and regression
html cfd734c jens-daniel-mueller 2022-01-28 Build site.
Rmd 5024768 jens-daniel-mueller 2022-01-28 code review: basinmask and regression
html 5635ef2 pasqualina-vonlanthendinenna 2022-01-27 Build site.
Rmd 23dc282 pasqualina-vonlanthendinenna 2022-01-27 failed attempt at updating basinmask and regression
html c44ff0f pasqualina-vonlanthendinenna 2022-01-25 Build site.
Rmd 3851824 pasqualina-vonlanthendinenna 2022-01-25 added basin-mean profiles
html 962cdb9 pasqualina-vonlanthendinenna 2022-01-25 Build site.
Rmd 825a50a pasqualina-vonlanthendinenna 2022-01-25 added seasonal and biome profiles
html 3ae43e4 pasqualina-vonlanthendinenna 2022-01-24 Build site.
Rmd 3f8e824 pasqualina-vonlanthendinenna 2022-01-24 updated 24/01
html 6b22341 pasqualina-vonlanthendinenna 2022-01-21 Build site.
Rmd e72d7ca pasqualina-vonlanthendinenna 2022-01-21 updated linear regression to monthly
html 587755e pasqualina-vonlanthendinenna 2022-01-21 Build site.
Rmd 7a9209b pasqualina-vonlanthendinenna 2022-01-21 updated threshold calculation 2
html c96ad5e pasqualina-vonlanthendinenna 2022-01-21 Build site.
Rmd 58b3b3b pasqualina-vonlanthendinenna 2022-01-21 updated threshold calculation
html ed3fef2 jens-daniel-mueller 2022-01-07 Build site.
Rmd 3d2f8fc jens-daniel-mueller 2022-01-07 code review
html 486c9c8 jens-daniel-mueller 2022-01-07 Build site.
Rmd e9ad067 jens-daniel-mueller 2022-01-07 code review
html 343689f pasqualina-vonlanthendinenna 2022-01-06 Build site.
Rmd f53cc2d pasqualina-vonlanthendinenna 2022-01-06 updated profile page
html b8a6482 pasqualina-vonlanthendinenna 2022-01-03 Build site.
Rmd 054f8a6 pasqualina-vonlanthendinenna 2022-01-03 added Argo profiles

Task

Compare depth profiles of normal pH and of extreme pH, as identified in the surface OceanSODA pH data product

theme_set(theme_bw())
HNL_colors <- c("H" = "#b2182b",
                "N" = "#636363",
                "L" = "#2166ac")

Load data

path_argo <- '/nfs/kryo/work/updata/bgc_argo_r_argodata'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"
# RECCAP2-ocean region mask

region_masks_all_2x2 <- read_rds(file = paste0(path_argo_preprocessed,
                                               "/region_masks_all_2x2.rds"))

region_masks_all_2x2 <- region_masks_all_2x2 %>%
  rename(biome = value) %>% 
  mutate(coast = as.character(coast))

# WOA 18 basin mask

basinmask <-
  read_csv(
    paste(path_emlr_utilities,
          "basin_mask_WOA18.csv",
          sep = ""),
    col_types = cols("MLR_basins" = col_character())
  )

basinmask <- basinmask %>%
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(-c(MLR_basins, basin))

# OceanSODA
OceanSODA <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA.rds"))

OceanSODA <- OceanSODA %>%
  mutate(year = year(date),
         month = month(date))

# full argo data
full_argo <- read_rds(file = paste0(path_argo_preprocessed, "/bgc_merge_pH_qc_1.rds"))

# change the date format for compatibility with OceanSODA pH data
full_argo <- full_argo %>%
  mutate(year = year(date),
         month = month(date)) %>%
  mutate(date = ymd(format(date, "%Y-%m-15")))

map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))

Regions

Biomes

region_masks_all_2x2 <- region_masks_all_2x2 %>%
  filter(region == 'southern',
         biome != 0) %>% 
  select(-region)

Remove coastal data

basemap(limits = -32) +
  geom_spatial_tile(
    data = region_masks_all_2x2,
    aes(x = lon,
        y = lat,
        fill = coast),
    col = 'transparent'
  ) +
  scale_fill_brewer(palette = "Dark2")
map + 
  geom_tile(data = region_masks_all_2x2, 
            aes(x = lon, 
                y = lat, 
                fill = coast))+
  lims(y = c(-85, -30))+
  scale_fill_brewer(palette = 'Dark2')

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01
region_masks_all_2x2 <- region_masks_all_2x2 %>% 
  filter(coast == "0")

Grid reduction

basemap(limits = -32) +
  geom_spatial_tile(
    data = region_masks_all_2x2,
    aes(x = lon,
        y = lat,
        fill = biome),
    col = 'transparent'
  ) +
  scale_fill_brewer(palette = "Dark2")
map +
  geom_tile(data = region_masks_all_2x2, 
            aes(x = lon, 
                y = lat, 
                fill = biome))+
  lims(y = c(-85, -30))+
  scale_fill_brewer(palette = 'Dark2')

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01
region_masks_all_2x2 <- region_masks_all_2x2 %>%
  count(lon, lat, biome) %>%
  group_by(lon, lat) %>%
  slice_max(n, with_ties = FALSE) %>%
  ungroup()
basemap(limits = -32) +
  geom_spatial_tile(
    data = region_masks_all_2x2,
    aes(x = lon,
        y = lat,
        fill = biome),
    col = 'transparent'
  ) +
  scale_fill_brewer(palette = "Dark2")
map+
  geom_tile(data = region_masks_all_2x2,
            aes(x = lon,
                y = lat, 
                fill = biome))+
  lims(y = c(-85, -30))+
  scale_fill_brewer(palette = 'Dark2')

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

Basins

basinmask <- basinmask %>%
  filter(lat < -30)

Grid reduction

basemap(limits = -32) +
  geom_spatial_tile(
    data = basinmask,
    aes(x = lon,
        y = lat,
        fill = basin_AIP),
    col = 'transparent'
  ) +
  scale_fill_brewer(palette = "Dark2")
map +
  geom_tile(data = basinmask, 
            aes(x = lon, 
                y = lat, 
                fill = basin_AIP))+
  lims(y = c(-85, -30))+
  scale_fill_brewer(palette = 'Dark2')

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01
basinmask_2x2 <- basinmask %>%
  mutate(
    lat = cut(lat, seq(-90, 90, 2), seq(-89, 89, 2)), 
    lat = as.numeric(as.character(lat)),
    lon = cut(lon, seq(20, 380, 2), seq(21, 379, 2)), 
    lon = as.numeric(as.character(lon))
   ) # regrid into 2x2º grid

# assign basins from each pixel to to each 2 Lon x Lat pixel, based on the majority of basins in each 2x2 grid  

basinmask_2x2 <- basinmask_2x2 %>%
  count(lon, lat, basin_AIP) %>%
  group_by(lon, lat) %>%
  slice_max(n, with_ties = FALSE) %>%
  ungroup() %>% 
  select(-n)

rm(basinmask)
basemap(limits = -32) +
  geom_spatial_tile(
    data = basinmask_2x2 %>% filter(lat < -30),
    aes(x = lon,
        y = lat,
        fill = basin_AIP),
    col = 'transparent'
  ) +
  scale_fill_brewer(palette = "Dark2")
map+
  geom_tile(data = basinmask_2x2 %>% filter(lat < -30),
            aes(x = lon,
                y = lat, 
                fill = basin_AIP))+
  lims(y = c(-85, -30))+
  scale_fill_brewer(palette = 'Dark2')

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

OceanSODA

Grid reduction

# Note: While reducing lon x lat grid,
# we keep the original number of observations

OceanSODA_2x2 <- OceanSODA %>% 
  mutate(
    lat_raw = lat,
    lon_raw = lon,
    lat = cut(lat, seq(-90, 90, 2), seq(-89, 89, 2)), 
    lat = as.numeric(as.character(lat)),
    lon = cut(lon, seq(20, 380, 2), seq(21, 379, 2)), 
    lon = as.numeric(as.character(lon))) # regrid into 2x2º grid 

Apply region masks

# keep only Southern Ocean data
OceanSODA_2x2_SO <- inner_join(OceanSODA_2x2, region_masks_all_2x2)

# add in basin separations
OceanSODA_2x2_SO <- inner_join(OceanSODA_2x2_SO, basinmask_2x2)
# expected number of rows from -30 to -70º latitude, 360º longitude, for 12 months, 8 years:
# 40 lat x 360 lon x 12 months x 8 years = 1 382 400 rows 

OceanSODA_2x2_SO <- OceanSODA_2x2_SO %>% 
  filter(!is.na(ph_total))

OceanSODA pH anomalies

Grid level

Climatological thresholds

Fit lm models

# fit a linear regression of OceanSODA pH against time (temporal trend)
# in each lat/lon/month grid

OceanSODA_regression <- OceanSODA_2x2_SO %>% 
  # filter(basin_AIP == "Indian",
  #        biome == "2",
  #        lon < 40) %>%
  nest(data = -c(lon, lat, month)) %>%
  mutate(fit = map(.x = data,
                   .f = ~ lm(ph_total ~ year, data = .x)),
         tidied = map(.x = fit, .f = tidy),
         glanced = map(.x = fit, .f = glance),
         augmented = map(.x = fit, .f = augment))


OceanSODA_regression_tidied <- OceanSODA_regression %>%
  select(-c(data, fit, augmented, glanced)) %>%
  unnest(tidied)

OceanSODA_regression_tidied <- OceanSODA_regression_tidied %>% 
  select(lat:estimate) %>% 
  pivot_wider(names_from = term,
              values_from = estimate) %>% 
  rename(intercept = `(Intercept)`,
         slope = year)

OceanSODA_regression_augmented <- OceanSODA_regression %>%
  select(-c(fit, tidied, glanced, data)) %>%
  unnest(augmented) %>% 
  select(lat:year, .resid)

OceanSODA_regression_augmented <- bind_cols(
  OceanSODA_regression_augmented,
  OceanSODA_2x2_SO %>% select(
    lon_raw, lat_raw, basin_AIP, biome)
)

OceanSODA_regression_glanced <- OceanSODA_regression %>%
  select(-c(data, fit, tidied, augmented)) %>%
  unnest(glanced)

Slope maps

basemap(limits = -32) +
  geom_spatial_tile(data = OceanSODA_regression_tidied,
                    aes(x = lon,
                        y = lat,
                        fill = slope),
                    col = 'transparent') +
  scale_fill_scico(palette = "vik", midpoint = 0) +
  facet_wrap( ~ month, ncol = 2)
map+
  geom_tile(data = OceanSODA_regression_tidied,
            aes(x = lon,
                y = lat, 
                fill = slope))+
  scale_fill_scico(palette = 'vik', midpoint = 0)+
  lims(y = c(-85, -30))+
  facet_wrap(~month, ncol = 2)

Version Author Date
31e4d42 pasqualina-vonlanthendinenna 2022-02-02
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

Residual st. dev. maps

basemap(limits = -32)+
  geom_spatial_tile(data = OceanSODA_regression_glanced,
                    aes(x = lon, 
                        y = lat, 
                        fill = sigma),
                    col = 'transparent')+
  scale_fill_viridis_c()+
  facet_wrap(~month, ncol = 2)+
  labs(fill = '1 residual \nst. dev.')
map+
  geom_tile(data = OceanSODA_regression_glanced,
            aes(x = lon,
                y = lat, 
                fill = sigma))+
  scale_fill_viridis_c()+
  lims(y = c(-85, -30))+
  facet_wrap(~month, ncol = 2)+
  labs(fill = '1 residual \nst. dev.')

Version Author Date
31e4d42 pasqualina-vonlanthendinenna 2022-02-02
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

Anomaly identification

Calculate OceanSODA pH anomalies: L for abnormally low, H for abnormally high, N for normal pH

# when the in-situ OceanSODA pH is lower than the 5th percentile (predicted - 2*residual.st.dev), assign 'L' for low extreme
# when the in-situ OceanSODA pH exceeds the 95th percentile (predicted + 2*residual.st.dev), assign 'H' for high extreme
# when the in-situ OceanSODA pH is within 95% of the range, then assign 'N' for normal pH

# combine observations and regression statistics

OceanSODA_2x2_SO_extreme_grid <-
  full_join(
    OceanSODA_regression_augmented,
    OceanSODA_regression_glanced %>%
      select(lat:month, sigma)
  )

# identify observations in anomaly classes

OceanSODA_2x2_SO_extreme_grid <- OceanSODA_2x2_SO_extreme_grid %>%
  mutate(
    ph_extreme = case_when(
      .resid < -sigma*2 ~ 'L',
      .resid > sigma*2 ~ 'H',
      TRUE ~ 'N'
    )
  ) 

OceanSODA_2x2_SO_extreme_grid <- OceanSODA_2x2_SO_extreme_grid %>%
  mutate(ph_extreme = fct_relevel(ph_extreme, "H", "N", "L"))


# combine with regression coefficients

OceanSODA_2x2_SO_extreme_grid <-
  full_join(OceanSODA_2x2_SO_extreme_grid,
            OceanSODA_regression_tidied)
OceanSODA_2x2_SO_extreme_grid %>%
  group_split(lon, lat, month) %>%
  head(6) %>%
  map(~ ggplot(data = .x) +
        geom_point(aes(x = year,
                       y = ph_total,
                       col = ph_extreme)) +
        geom_abline(data = .x, aes(slope = slope,
                    intercept = intercept)) +
        geom_abline(data = .x, aes(slope = slope,
                    intercept = intercept + 2*sigma),
                    linetype = 2) +
        geom_abline(data = .x, aes(slope = slope,
                    intercept = intercept - 2*sigma),
                    linetype = 2) +
        labs(title = paste(fititle = paste(
          "lon:", unique(.x$lon),
          "| lat:", unique(.x$lat),
          "| month:", unique(.x$month)
          ))) +
        scale_color_manual(values = HNL_colors))
[[1]]

Version Author Date
cfd734c jens-daniel-mueller 2022-01-28
962cdb9 pasqualina-vonlanthendinenna 2022-01-25
6b22341 pasqualina-vonlanthendinenna 2022-01-21
c96ad5e pasqualina-vonlanthendinenna 2022-01-21
486c9c8 jens-daniel-mueller 2022-01-07

[[2]]

Version Author Date
cfd734c jens-daniel-mueller 2022-01-28
962cdb9 pasqualina-vonlanthendinenna 2022-01-25
6b22341 pasqualina-vonlanthendinenna 2022-01-21
c96ad5e pasqualina-vonlanthendinenna 2022-01-21
486c9c8 jens-daniel-mueller 2022-01-07

[[3]]

Version Author Date
cfd734c jens-daniel-mueller 2022-01-28
962cdb9 pasqualina-vonlanthendinenna 2022-01-25
6b22341 pasqualina-vonlanthendinenna 2022-01-21
c96ad5e pasqualina-vonlanthendinenna 2022-01-21
486c9c8 jens-daniel-mueller 2022-01-07

[[4]]

Version Author Date
cfd734c jens-daniel-mueller 2022-01-28
962cdb9 pasqualina-vonlanthendinenna 2022-01-25
6b22341 pasqualina-vonlanthendinenna 2022-01-21
c96ad5e pasqualina-vonlanthendinenna 2022-01-21
486c9c8 jens-daniel-mueller 2022-01-07

[[5]]

Version Author Date
cfd734c jens-daniel-mueller 2022-01-28
962cdb9 pasqualina-vonlanthendinenna 2022-01-25
6b22341 pasqualina-vonlanthendinenna 2022-01-21
c96ad5e pasqualina-vonlanthendinenna 2022-01-21
486c9c8 jens-daniel-mueller 2022-01-07

[[6]]

Version Author Date
cfd734c jens-daniel-mueller 2022-01-28
962cdb9 pasqualina-vonlanthendinenna 2022-01-25
6b22341 pasqualina-vonlanthendinenna 2022-01-21
c96ad5e pasqualina-vonlanthendinenna 2022-01-21
486c9c8 jens-daniel-mueller 2022-01-07

Anomaly maps

Location of OceanSODA pH extremes

OceanSODA_2x2_SO_extreme_grid %>% 
  group_split(year) %>% 
  # head(2) %>%
  map(
    ~ basemap(limits = -32, data = .x)+
      geom_spatial_tile(data = .x,
                        aes(x = lon,
                            y = lat,
                            fill = ph_extreme),
                        linejoin = 'mitre',
                        col = 'transparent',
                        detail = 60
                        ) +
      scale_fill_manual(values = HNL_colors) +
      facet_wrap(~month, ncol = 2)+
      labs(title = paste("Year:", unique(.x$year)),
           fill = 'pH')
  )
OceanSODA_2x2_SO_extreme_grid %>% 
  group_split(year) %>% 
  map(
    ~map +
      geom_tile(data = .x,
                aes(x = lon,
                    y = lat, 
                    fill = ph_extreme))+
      scale_fill_manual(values = HNL_colors)+
      facet_wrap(~month, ncol = 2)+
      lims(y = c(-85, -30))+
      labs(title = paste('Year:', unique(.x$year)),
           fill = 'pH')
  )
[[1]]

Version Author Date
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[2]]

Version Author Date
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[3]]

Version Author Date
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[4]]

Version Author Date
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[5]]

Version Author Date
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[6]]

Version Author Date
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[7]]

Version Author Date
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[8]]

Version Author Date
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

Anomaly time series

# calculate a regional mean pH for each biome, basin, and ph extreme (H/L/N) and plot a timeseries 

OceanSODA_2x2_SO_extreme_grid %>% 
  group_by(year, biome, basin_AIP, ph_extreme) %>% 
  summarise(ph_regional = mean(ph_total, na.rm = TRUE)) %>% 
  ungroup() %>% 
  ggplot(aes(x = year, y = ph_regional, col = ph_extreme))+
  geom_point(size = 0.3)+
  geom_line()+
  scale_color_manual(values = HNL_colors) +
  facet_grid(basin_AIP~biome)+
  theme(legend.position = 'bottom')

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29
cfd734c jens-daniel-mueller 2022-01-28
962cdb9 pasqualina-vonlanthendinenna 2022-01-25
6b22341 pasqualina-vonlanthendinenna 2022-01-21
587755e pasqualina-vonlanthendinenna 2022-01-21
c96ad5e pasqualina-vonlanthendinenna 2022-01-21
486c9c8 jens-daniel-mueller 2022-01-07

Anomaly histogram

OceanSODA_2x2_SO_extreme_grid %>%
  ggplot(aes(ph_total, col = ph_extreme)) +
  geom_density() +
  scale_color_manual(values = HNL_colors) +
  facet_grid(basin_AIP ~ biome) +
  coord_cartesian(xlim = c(8, 8.2)) +
  labs(x = 'value',
       y = 'density',
       col = 'pH anomaly') +
  theme(legend.position = 'bottom')

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29
cfd734c jens-daniel-mueller 2022-01-28
962cdb9 pasqualina-vonlanthendinenna 2022-01-25
6b22341 pasqualina-vonlanthendinenna 2022-01-21
587755e pasqualina-vonlanthendinenna 2022-01-21
c96ad5e pasqualina-vonlanthendinenna 2022-01-21
486c9c8 jens-daniel-mueller 2022-01-07

Argo

Grid reduction

# Note: While reducing lon x lat grid,
# we keep the original number of observations

full_argo_2x2 <- full_argo %>%
  mutate(
    lat_raw = lat,
    lon_raw = lon,
    lat = cut(lat, seq(-90, 90, 2), seq(-89, 89, 2)),
    lat = as.numeric(as.character(lat)),
    lon = cut(lon, seq(20, 380, 2), seq(21, 379, 2)),
    lon = as.numeric(as.character(lon)))  # re-grid to 2x2

Apply region masks

# keep only Southern Ocean argo data
full_argo_2x2_SO <- inner_join(full_argo_2x2, region_masks_all_2x2)

# add in basin separations
full_argo_2x2_SO <- inner_join(full_argo_2x2_SO, basinmask_2x2)

Join OceanSODA

# rename OceanSODA columns
OceanSODA_2x2_SO_extreme_grid <- OceanSODA_2x2_SO_extreme_grid %>%
  select(-c(lon, lat)) %>% 
  rename(OceanSODA_ph = ph_total,
         lon = lon_raw,
         lat = lat_raw)

# combine the argo profile data to the surface extreme data
profile_extreme <- inner_join(
  full_argo %>% 
    select(year, month, date, lon, lat, depth,
           ph_in_situ_total_adjusted,
           platform_number,
           cycle_number),
  OceanSODA_2x2_SO_extreme_grid %>% 
    select(year, month, lon, lat,
           OceanSODA_ph, ph_extreme,
           biome, basin_AIP))

Plot profiles

Argo profiles plotted according to the surface OceanSODA pH

L profiles correspond to a surface acidification event (low pH), as recorded in OceanSODA

H profiles correspond to an event of high surface pH, as recorded in OceanSODA

N profiles correspond to normal surface OceanSODA pH

Raw

profile_extreme %>%
  group_split(biome, basin_AIP, year) %>% 
  #head(1) %>%
  map(
    ~ ggplot(
      data = .x,
      aes(
        x = ph_in_situ_total_adjusted,
        y = depth,
        group = ph_extreme,
        col = ph_extreme
      )
    ) +
      geom_point(pch = 19, size = 0.3) +
      scale_y_reverse() +
      scale_color_manual(values = HNL_colors) +
      facet_wrap(~ month, ncol = 6) +
      labs(
        x = 'Argo pH (total scale)',
        y = 'depth (m)',
        title = paste(
          unique(.x$basin_AIP),
          "|",
          unique(.x$year),
          "| biome:",
          unique(.x$biome)
        ),
        col = 'OceanSODA pH \nanomaly'
      )
  )
[[1]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[2]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[3]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[4]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[5]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[6]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[7]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[8]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[9]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[10]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[11]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[12]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[13]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[14]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[15]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[16]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[17]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[18]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[19]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[20]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[21]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[22]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[23]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[24]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[25]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[26]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[27]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[28]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[29]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[30]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[31]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[32]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[33]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[34]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[35]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[36]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[37]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[38]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[39]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[40]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[41]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[42]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[43]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[44]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[45]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[46]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[47]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[48]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[49]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[50]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[51]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[52]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[53]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[54]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[55]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

[[56]]

Version Author Date
28c8d17 jens-daniel-mueller 2022-01-29

Averaged profiles

# calculate mean profiles in each basin and biome, for each month between 2014 and 2021 
# cut depth levels at 10, 20, .... etc m
# add seasons 
# Dec, Jan, Feb <- summer 
# Mar, Apr, May <- autumn 
# Jun, Jul, Aug <- winter 
# Sep, Oct, Nov <- spring 

profile_extreme <- profile_extreme %>%
  mutate(
    depth = Hmisc::cut2(
      depth,
      cuts = c(10, 20, 30, 50, 70, 100, 300, 500, 800, 1000, 1500, 2000, 2500),
      m = 5,
      levels.mean = TRUE
    ),
    depth = as.numeric(as.character(depth))
  ) %>%
  mutate(
    season = case_when(
      between(month, 3, 5) ~ 'autumn',
      between(month, 6, 8) ~ 'winter',
      between(month, 9, 11) ~ 'spring',
      month == 12 | 1 | 2 ~ 'summer'
    ),
    .after = date
  ) 

Overall mean

profile_extreme_mean <- profile_extreme %>%
  group_by(ph_extreme, depth) %>%
  summarise(ph_mean = mean(ph_in_situ_total_adjusted, na.rm = TRUE)) %>%
  ungroup()

profile_extreme_mean %>%
  arrange(depth) %>%
  ggplot(aes(
    x = ph_mean,
    y = depth,
    group = ph_extreme,
    col = ph_extreme
  )) +
  geom_path() +
  scale_color_manual(values = HNL_colors) +
  labs(title = "Overall mean",
       col = 'OceanSODA\npH\nanomaly',
       y = 'log(depth)') +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))

Version Author Date
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01
44fcfb6 pasqualina-vonlanthendinenna 2022-02-01
28c8d17 jens-daniel-mueller 2022-01-29

Number of profiles

profile_count_mean <- profile_extreme %>% 
  select(ph_extreme, platform_number, cycle_number) %>% 
  distinct() %>%       # keep only unique combinations of ph_extreme, float number, and cycle number 
  group_by(ph_extreme) %>% 
  count()

profile_count_mean %>% 
  ggplot(aes(x = ph_extreme, y = n, fill = ph_extreme))+
  geom_col(width = 0.5)+
  labs(y = 'number of profiles',
       title = 'Number of profiles')

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

Surface Argo pH vs surface OceanSODA pH (30 m)

profile_extreme %>% 
  filter(depth < 30) %>% 
  group_split(ph_extreme) %>% 
  map(
  ~ggplot(data = .x, aes(x = OceanSODA_ph, 
             y = ph_in_situ_total_adjusted))+
  geom_bin2d(data = .x, aes(x = OceanSODA_ph, 
                 y = ph_in_situ_total_adjusted)) +
  geom_abline(slope = 1, intercept = 0)+
  coord_fixed(ratio = 1, 
              xlim = c(7.95, 8.2),
              ylim = c(7.95, 8.2))+
  facet_grid(basin_AIP ~ biome) +
    labs(title = paste('pH extreme:', unique(.x$ph_extreme)),
         x = 'OceanSODA pH',
         y = 'Argo pH')
  )
[[1]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[2]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[3]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

Season x biome

profile_extreme_biome <- profile_extreme %>% 
  group_by(season, biome, ph_extreme, depth) %>% 
  summarise(ph_biome = mean(ph_in_situ_total_adjusted, na.rm = TRUE)) %>% 
  ungroup()
  

profile_extreme_biome %>%
  ggplot(aes(
    x = ph_biome,
    y = depth,
    group = ph_extreme,
    col = ph_extreme
  )) +
  geom_path() +
  scale_color_manual(values = HNL_colors) +
  labs(col = 'OceanSODA\npH\nanomaly',
       y = 'log(depth)') +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))) +
  facet_grid(season ~ biome)

Version Author Date
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01
44fcfb6 pasqualina-vonlanthendinenna 2022-02-01
28c8d17 jens-daniel-mueller 2022-01-29

Number of profiles season x biome

profile_count_biome <- profile_extreme %>% 
  select(season, biome, ph_extreme, platform_number, cycle_number) %>% 
  distinct() %>% 
  group_by(season, biome, ph_extreme) %>% 
  count()

profile_count_biome %>% 
  ggplot(aes(x = ph_extreme, y = n, fill = ph_extreme))+
  geom_col(width = 0.5)+
  facet_grid(season ~ biome)+
  labs(y = 'number of profiles',
       title = 'Number of profiles season x biome')

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

Surface Argo vs surface OceanSODA pH (30 m) season x biome

profile_extreme %>% 
  filter(depth < 30) %>% 
  group_split(ph_extreme) %>% 
  map(
  ~ggplot(data = .x, aes(x = OceanSODA_ph, 
             y = ph_in_situ_total_adjusted))+
  geom_bin2d(data = .x, aes(x = OceanSODA_ph, 
                 y = ph_in_situ_total_adjusted)) +
  geom_abline(slope = 1, intercept = 0)+
  coord_fixed(ratio = 1, 
              xlim = c(7.95, 8.2),
              ylim = c(7.95, 8.2))+
  facet_grid(season~biome) +
    labs(title = paste( 'pH extreme:', unique(.x$ph_extreme)),
         x = 'OceanSODA pH',
         y = 'Argo pH')
  )
[[1]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[2]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[3]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

Season x basin

profile_extreme_basin <- profile_extreme %>% 
  group_by(season, basin_AIP, ph_extreme, depth) %>% 
  summarise(ph_basin = mean(ph_in_situ_total_adjusted, na.rm = TRUE)) %>% 
  ungroup()

profile_extreme_basin %>% 
  ggplot(aes(x = ph_basin, 
             y = depth, 
             group = ph_extreme, 
             col = ph_extreme))+
  geom_path()+
  scale_color_manual(values = HNL_colors)+
  labs(col = 'OceanSODA\npH\nanomaly',
       y = 'log(depth)')+
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))) +
  facet_grid(season~basin_AIP)

Version Author Date
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01
44fcfb6 pasqualina-vonlanthendinenna 2022-02-01
28c8d17 jens-daniel-mueller 2022-01-29
cfd734c jens-daniel-mueller 2022-01-28
c44ff0f pasqualina-vonlanthendinenna 2022-01-25

Number of profiles season x basin

profile_count_basin <- profile_extreme %>% 
  select(season, basin_AIP, ph_extreme, platform_number, cycle_number) %>% 
  distinct() %>% 
  group_by(season, basin_AIP, ph_extreme) %>% 
  count()

profile_count_basin %>% 
  ggplot(aes(x = ph_extreme, y = n, fill = ph_extreme))+
  geom_col(width = 0.5)+
  facet_grid(season~basin_AIP)+
  labs(y = 'number of profiles',
       title = 'Number of profiles season x basin')

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

Surface Argo vs surface OceanSODA pH (30 m) season x basin

profile_extreme %>% 
  filter(depth < 30) %>% 
  group_split(ph_extreme) %>% 
  map(
  ~ggplot(data = .x, aes(x = OceanSODA_ph, 
             y = ph_in_situ_total_adjusted))+
  geom_bin2d(data = .x, aes(x = OceanSODA_ph, 
                 y = ph_in_situ_total_adjusted)) +
  geom_abline(slope = 1, intercept = 0)+
  coord_fixed(ratio = 1, 
              xlim = c(7.95, 8.2),
              ylim = c(7.95, 8.2))+
  facet_grid(season~basin_AIP) +
    labs(title = paste('pH extreme:', unique(.x$ph_extreme)),
         x = 'OceanSODA pH',
         y = 'Argo pH')
  )
[[1]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[2]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[3]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

Season x biome x basin

profile_extreme_season <- profile_extreme %>%
  group_by(season, biome, basin_AIP, ph_extreme, depth) %>%
  summarise(ph_mean = mean(ph_in_situ_total_adjusted, na.rm = TRUE)) %>%
  ungroup()

profile_extreme_season %>%
  arrange(depth) %>%
  group_split(season) %>%
  # head(1) %>%
  map(
    ~ ggplot(
      data = .x,
      aes(
        x = ph_mean,
        y = depth,
        group = ph_extreme,
        col = ph_extreme
      )
    ) +
      geom_path() +
      scale_color_manual(values = HNL_colors) +
      labs(title = paste("season:", unique(.x$season)),
           col = 'OceanSODA\npH\nanomaly',
           y = 'log(depth)') +
      scale_y_continuous(
        trans = trans_reverser("sqrt"),
        breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))
      ) +
      facet_grid(basin_AIP ~ biome)
  )
[[1]]

Version Author Date
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01
44fcfb6 pasqualina-vonlanthendinenna 2022-02-01
28c8d17 jens-daniel-mueller 2022-01-29

[[2]]

Version Author Date
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01
44fcfb6 pasqualina-vonlanthendinenna 2022-02-01
28c8d17 jens-daniel-mueller 2022-01-29

[[3]]

Version Author Date
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01
44fcfb6 pasqualina-vonlanthendinenna 2022-02-01
28c8d17 jens-daniel-mueller 2022-01-29

[[4]]

Version Author Date
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01
44fcfb6 pasqualina-vonlanthendinenna 2022-02-01
28c8d17 jens-daniel-mueller 2022-01-29

Number of profiles per season x biome x basin x pH extreme

profile_count_season <- profile_extreme %>% 
  select(season, 
         biome, 
         basin_AIP, 
         ph_extreme, 
         platform_number, 
         cycle_number) %>% 
  distinct() %>% 
  group_by(season, biome, basin_AIP, ph_extreme) %>% 
  count()

profile_count_season %>% 
  group_by(season) %>% 
  group_split(season) %>% 
  map(
    ~ggplot()+
      geom_col(data =.x, 
               aes(x = ph_extreme,
                   y = n,
                   fill = ph_extreme),
               width = 0.5)+
      facet_grid(basin_AIP ~ biome)+
      labs(y = 'number of profiles',
           title = paste('season:', unique(.x$season)))
  )
[[1]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[2]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[3]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[4]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

Surface OceanSODA pH vs surface Argo pH (30 m)

profile_extreme %>% 
  filter(depth < 30) %>% 
  group_split(season, ph_extreme) %>% 
  map(
  ~ggplot(data = .x, aes(x = OceanSODA_ph, 
             y = ph_in_situ_total_adjusted))+
  geom_bin2d(data = .x, aes(x = OceanSODA_ph, 
                 y = ph_in_situ_total_adjusted)) +
  geom_abline(slope = 1, intercept = 0)+
  coord_fixed(ratio = 1, 
              xlim = c(7.95, 8.2),
              ylim = c(7.95, 8.2))+
  facet_grid(basin_AIP ~ biome) +
    labs(title = paste('season:', unique(.x$season), 
                        '| pH extreme:', unique(.x$ph_extreme)),
         x = 'OceanSODA pH',
         y = 'Argo pH')
  )
[[1]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[2]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[3]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[4]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02
de183c6 pasqualina-vonlanthendinenna 2022-02-01
44a2ec3 pasqualina-vonlanthendinenna 2022-02-01

[[5]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[6]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[7]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[8]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[9]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[10]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[11]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

[[12]]

Version Author Date
7376be6 pasqualina-vonlanthendinenna 2022-02-02

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggforce_0.3.3     metR_0.11.0       scico_1.3.0       ggOceanMaps_1.2.6
 [5] ggspatial_1.1.5   broom_0.7.11      lubridate_1.8.0   forcats_0.5.1    
 [9] stringr_1.4.0     dplyr_1.0.7       purrr_0.3.4       readr_2.1.1      
[13] tidyr_1.1.4       tibble_3.1.6      ggplot2_3.3.5     tidyverse_1.3.1  
[17] workflowr_1.7.0  

loaded via a namespace (and not attached):
  [1] colorspace_2.0-2    ellipsis_0.3.2      class_7.3-20       
  [4] rgdal_1.5-28        rprojroot_2.0.2     htmlTable_2.4.0    
  [7] base64enc_0.1-3     fs_1.5.2            rstudioapi_0.13    
 [10] proxy_0.4-26        farver_2.1.0        bit64_4.0.5        
 [13] fansi_1.0.2         xml2_1.3.3          codetools_0.2-18   
 [16] splines_4.1.2       knitr_1.37          polyclip_1.10-0    
 [19] Formula_1.2-4       jsonlite_1.7.3      cluster_2.1.2      
 [22] dbplyr_2.1.1        png_0.1-7           rgeos_0.5-9        
 [25] compiler_4.1.2      httr_1.4.2          backports_1.4.1    
 [28] assertthat_0.2.1    Matrix_1.4-0        fastmap_1.1.0      
 [31] cli_3.1.1           later_1.3.0         tweenr_1.0.2       
 [34] htmltools_0.5.2     tools_4.1.2         gtable_0.3.0       
 [37] glue_1.6.0          Rcpp_1.0.8          cellranger_1.1.0   
 [40] jquerylib_0.1.4     raster_3.5-11       vctrs_0.3.8        
 [43] xfun_0.29           ps_1.6.0            rvest_1.0.2        
 [46] lifecycle_1.0.1     terra_1.5-12        getPass_0.2-2      
 [49] MASS_7.3-55         scales_1.1.1        vroom_1.5.7        
 [52] hms_1.1.1           promises_1.2.0.1    parallel_4.1.2     
 [55] RColorBrewer_1.1-2  yaml_2.2.1          gridExtra_2.3      
 [58] sass_0.4.0          rpart_4.1-15        latticeExtra_0.6-29
 [61] stringi_1.7.6       highr_0.9           e1071_1.7-9        
 [64] checkmate_2.0.0     rlang_0.4.12        pkgconfig_2.0.3    
 [67] evaluate_0.14       lattice_0.20-45     sf_1.0-5           
 [70] htmlwidgets_1.5.4   labeling_0.4.2      bit_4.0.4          
 [73] processx_3.5.2      tidyselect_1.1.1    magrittr_2.0.1     
 [76] R6_2.5.1            generics_0.1.1      Hmisc_4.6-0        
 [79] DBI_1.1.2           foreign_0.8-82      pillar_1.6.4       
 [82] haven_2.4.3         whisker_0.4         withr_2.4.3        
 [85] units_0.7-2         nnet_7.3-17         survival_3.2-13    
 [88] sp_1.4-6            modelr_0.1.8        crayon_1.4.2       
 [91] KernSmooth_2.23-20  utf8_1.2.2          tzdb_0.2.0         
 [94] rmarkdown_2.11      jpeg_0.1-9          grid_4.1.2         
 [97] readxl_1.3.1        data.table_1.14.2   callr_3.7.0        
[100] git2r_0.29.0        reprex_2.0.1        digest_0.6.29      
[103] classInt_0.4-3      httpuv_1.6.5        munsell_0.5.0      
[106] viridisLite_0.4.0   bslib_0.3.1