Last updated: 2021-03-03
Checks: 7 0
Knit directory: emlr_mod_v_XXX/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 8dc15b5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: data/auxillary/params_local.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eMLR_model_fitting.Rmd
) and HTML (docs/eMLR_model_fitting.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 89c3e58 | Donghe-Zhu | 2021-03-03 | Build site. |
html | c407a50 | Donghe-Zhu | 2021-03-03 | Build site. |
html | c911669 | Donghe-Zhu | 2021-03-03 | Build site. |
Rmd | e1f9d21 | Donghe-Zhu | 2021-03-03 | local rebuild |
html | b71c719 | Donghe-Zhu | 2021-03-01 | Build site. |
html | 13666ca | Donghe-Zhu | 2021-03-01 | Build site. |
Rmd | c3195f4 | Donghe-Zhu | 2021-03-01 | local rebuild |
html | c6e60fe | Donghe-Zhu | 2021-03-01 | Build site. |
Rmd | 8ef147d | Donghe-Zhu | 2021-03-01 | local rebuild |
html | 7a388f7 | Donghe-Zhu | 2021-03-01 | Build site. |
html | 799e913 | Donghe-Zhu | 2021-03-01 | Build site. |
Rmd | aa780a7 | Donghe-Zhu | 2021-03-01 | local rebuild |
html | 66ff99f | Donghe-Zhu | 2021-03-01 | Build site. |
html | ac9bb7a | Donghe-Zhu | 2021-02-28 | Build site. |
html | efdc047 | Donghe-Zhu | 2021-02-28 | Build site. |
html | e9a7418 | Donghe-Zhu | 2021-02-28 | Build site. |
Rmd | eac1b0e | Donghe-Zhu | 2021-02-28 | local rebuild |
html | e152917 | Donghe-Zhu | 2021-02-28 | Build site. |
html | feb991c | Donghe-Zhu | 2021-02-27 | Build site. |
Rmd | 4563314 | Donghe-Zhu | 2021-02-27 | local rebuild |
html | 287123c | Donghe-Zhu | 2021-02-27 | Build site. |
Rmd | 764a9c2 | Donghe-Zhu | 2021-02-27 | local rebuild |
html | 54d5b5b | Donghe-Zhu | 2021-02-27 | Build site. |
Rmd | 2e836bf | Donghe-Zhu | 2021-02-27 | local rebuild |
html | 330f064 | Donghe-Zhu | 2021-02-27 | Build site. |
Rmd | f360282 | Donghe-Zhu | 2021-02-27 | local rebuild |
html | adbc9bc | Donghe-Zhu | 2021-02-27 | Build site. |
Rmd | a8a8f9c | Donghe-Zhu | 2021-02-27 | local rebuild |
html | 5937141 | Donghe-Zhu | 2021-02-27 | Build site. |
Rmd | 5f0bfca | Donghe-Zhu | 2021-02-27 | local rebuild |
html | 4414bbf | Donghe-Zhu | 2021-02-27 | Build site. |
html | a265efb | Donghe-Zhu | 2021-02-27 | Build site. |
html | 19edd1e | Donghe-Zhu | 2021-02-27 | Build site. |
Rmd | 1ae5bb4 | Donghe-Zhu | 2021-02-27 | local rebuild |
html | f20483f | Donghe-Zhu | 2021-02-26 | Build site. |
html | 6a2c7b3 | Donghe-Zhu | 2021-02-25 | Build site. |
html | 02b976d | Donghe-Zhu | 2021-02-24 | Build site. |
html | 354c224 | Donghe-Zhu | 2021-02-24 | Build site. |
Rmd | d910d39 | Donghe-Zhu | 2021-02-24 | local rebuild |
html | 1a0a88a | Donghe-Zhu | 2021-02-24 | Build site. |
Rmd | 663e891 | Donghe-Zhu | 2021-02-24 | local rebuild |
html | 57f701e | Donghe-Zhu | 2021-02-24 | Build site. |
html | 06f3149 | Donghe-Zhu | 2021-02-16 | Build site. |
html | 401eab3 | Donghe-Zhu | 2021-02-15 | Build site. |
html | e3bba84 | Donghe-Zhu | 2021-02-15 | Build site. |
html | 5dce4b1 | Donghe-Zhu | 2021-02-15 | Build site. |
Rmd | 35b0f2e | Donghe-Zhu | 2021-02-15 | local rebuild |
html | 4469a0c | Donghe-Zhu | 2021-02-13 | Build site. |
Rmd | 8186d57 | Donghe-Zhu | 2021-02-10 | apply nr_obs |
html | 5ae6a69 | Donghe-Zhu | 2021-02-10 | Build site. |
Rmd | eeb6557 | Donghe-Zhu | 2021-02-10 | local rebuild |
html | 05385dc | Donghe-Zhu | 2021-02-10 | Build site. |
html | f791ae4 | Donghe-Zhu | 2021-02-09 | Build site. |
html | f71ae34 | Donghe-Zhu | 2021-02-09 | Build site. |
html | c011832 | Donghe-Zhu | 2021-02-09 | Build site. |
html | a145fa7 | Donghe-Zhu | 2021-02-09 | Build site. |
Rmd | 37a41c8 | Donghe-Zhu | 2021-02-09 | local rebuild |
html | c344e42 | Donghe-Zhu | 2021-02-08 | Build site. |
Rmd | 8f5fa79 | Donghe-Zhu | 2021-02-08 | local rebuild |
html | 2f095d7 | Donghe-Zhu | 2021-02-07 | Build site. |
html | 2305044 | Donghe-Zhu | 2021-02-07 | Build site. |
Rmd | c3638c1 | Donghe-Zhu | 2021-02-07 | local rebuild |
html | 1fad5f1 | Donghe-Zhu | 2021-02-07 | Build site. |
html | ca03c39 | Donghe-Zhu | 2021-02-07 | Build site. |
html | e2ffc14 | Donghe-Zhu | 2021-02-05 | Build site. |
html | cd7c52c | Donghe-Zhu | 2021-02-04 | Build site. |
Rmd | bcf91a8 | jens-daniel-mueller | 2021-02-04 | separate MLR tables, added plot residuals vs location |
html | bcf84f4 | Donghe-Zhu | 2021-02-02 | Build site. |
html | a518739 | Donghe-Zhu | 2021-02-01 | Build site. |
html | 61666de | Donghe-Zhu | 2021-01-31 | Build site. |
html | 865b582 | Donghe-Zhu | 2021-01-31 | Build site. |
html | 3e68089 | Donghe-Zhu | 2021-01-31 | Build site. |
html | ecf335c | Donghe-Zhu | 2021-01-31 | Build site. |
html | a618965 | Donghe-Zhu | 2021-01-31 | Build site. |
html | 59e006e | Donghe-Zhu | 2021-01-31 | Build site. |
html | a1c8f87 | Donghe-Zhu | 2021-01-31 | Build site. |
html | ae5c18f | Donghe-Zhu | 2021-01-31 | Build site. |
html | b50fe52 | Donghe-Zhu | 2021-01-31 | Build site. |
Rmd | ac99ae5 | jens-daniel-mueller | 2021-01-29 | code review |
html | ac99ae5 | jens-daniel-mueller | 2021-01-29 | code review |
html | b5bdcaf | Donghe-Zhu | 2021-01-29 | Build site. |
Rmd | b234505 | Donghe-Zhu | 2021-01-29 | MLR approach across all depth |
html | 442010d | Donghe-Zhu | 2021-01-29 | Build site. |
Rmd | e67e7dd | Donghe-Zhu | 2021-01-29 | surface equilibrium approach across all latitudes irrespective of gamma |
html | 372adf5 | Donghe-Zhu | 2021-01-29 | Build site. |
html | af8788e | Donghe-Zhu | 2021-01-29 | Build site. |
html | 21c91c9 | Donghe-Zhu | 2021-01-29 | Build site. |
html | eded038 | Donghe-Zhu | 2021-01-29 | Build site. |
html | 541d4dd | Donghe-Zhu | 2021-01-29 | Build site. |
html | 6a75576 | Donghe-Zhu | 2021-01-28 | Build site. |
html | 16fba40 | Donghe-Zhu | 2021-01-28 | Build site. |
Rmd | aecf0c6 | Donghe-Zhu | 2021-01-28 | diagnostic ploting |
Rmd | a02684e | Donghe-Zhu | 2021-01-28 | error |
Rmd | 4584be9 | Donghe-Zhu | 2021-01-28 | latest |
html | 12bc567 | Donghe-Zhu | 2021-01-27 | Build site. |
html | ceed31b | Donghe-Zhu | 2021-01-27 | Build site. |
html | 342402d | Donghe-Zhu | 2021-01-27 | Build site. |
html | 5bad5c2 | Donghe-Zhu | 2021-01-27 | Build site. |
Rmd | c2c9529 | Donghe-Zhu | 2021-01-27 | random subsetting based on lat |
html | 61efb56 | Donghe-Zhu | 2021-01-25 | Build site. |
html | 48f638e | Donghe-Zhu | 2021-01-25 | Build site. |
html | c1cec47 | Donghe-Zhu | 2021-01-25 | Build site. |
html | 05ffb0c | Donghe-Zhu | 2021-01-25 | Build site. |
html | 8b97165 | Donghe-Zhu | 2021-01-25 | Build site. |
html | c569946 | Donghe-Zhu | 2021-01-24 | Build site. |
html | a2f0d56 | Donghe-Zhu | 2021-01-23 | Build site. |
html | 28509fc | Donghe-Zhu | 2021-01-23 | Build site. |
html | 4c28e4a | Donghe-Zhu | 2021-01-22 | Build site. |
html | 24cc264 | jens-daniel-mueller | 2021-01-22 | cleaned /docs before creating copies |
html | 88eb28f | Donghe-Zhu | 2021-01-21 | Build site. |
html | 2679490 | Donghe-Zhu | 2021-01-21 | Build site. |
html | 7891955 | Donghe-Zhu | 2021-01-21 | Build site. |
html | d4cf1cb | Donghe-Zhu | 2021-01-21 | Build site. |
Rmd | 167eeec | Donghe-Zhu | 2021-01-21 | surface DIC calculation with atmospheric equilibrium option |
html | 1f3e5b6 | jens-daniel-mueller | 2021-01-20 | Build site. |
html | 0e7bdf1 | jens-daniel-mueller | 2021-01-15 | cleaning template repository |
html | 73cbef3 | jens-daniel-mueller | 2021-01-15 | Build site. |
html | 4571843 | jens-daniel-mueller | 2021-01-14 | revision and html deleted for template copying |
html | 23151cd | jens-daniel-mueller | 2021-01-14 | Build site. |
html | b3564aa | jens-daniel-mueller | 2021-01-14 | Build site. |
html | 8d032c3 | jens-daniel-mueller | 2021-01-14 | Build site. |
html | 022871c | Donghe-Zhu | 2021-01-13 | Build site. |
Rmd | d44f36f | Donghe-Zhu | 2021-01-13 | reorder analysis final |
html | 17dee1d | jens-daniel-mueller | 2021-01-13 | Build site. |
Rmd | 9e04fd7 | jens-daniel-mueller | 2021-01-13 | local rebuild after revision |
html | a076226 | Donghe-Zhu | 2021-01-11 | Build site. |
Rmd | 52eff18 | Donghe-Zhu | 2021-01-09 | Implemet model_run and subsetting |
html | 7cdea0c | jens-daniel-mueller | 2021-01-06 | Build site. |
Rmd | b5934dd | jens-daniel-mueller | 2021-01-06 | local rebuild after revision |
html | fa85b93 | jens-daniel-mueller | 2021-01-06 | Build site. |
html | e5cb81a | Donghe-Zhu | 2021-01-05 | Build site. |
Rmd | 608cc45 | Donghe-Zhu | 2021-01-05 | modification of analysis |
html | a499f10 | Donghe-Zhu | 2021-01-05 | Build site. |
Rmd | 715bdb4 | Donghe-Zhu | 2021-01-02 | model modification |
html | fb8a752 | Donghe-Zhu | 2020-12-23 | Build site. |
Rmd | 82e3c9c | Donghe-Zhu | 2020-12-23 | first build after creating model template |
html | 8fae0b2 | Donghe-Zhu | 2020-12-21 | Build site. |
Rmd | 00a1322 | Donghe-Zhu | 2020-12-21 | first build after creating model template |
Rmd | d73ae35 | Donghe-Zhu | 2020-12-21 | first version with lm error |
html | c8b76b3 | jens-daniel-mueller | 2020-12-19 | Build site. |
Rmd | b5fedce | jens-daniel-mueller | 2020-12-19 | first build after creating model template |
Rmd | 8e8abf5 | Jens Müller | 2020-12-18 | Initial commit |
Required are:
GLODAP <-
read_csv(paste(path_version_data,
"GLODAPv2.2020_MLR_fitting_ready.csv",
sep = ""))
Find all possible combinations of following considered predictor variables:
# the following code is a workaround to find all predictor combinations
# using the olsrr package and fit all models for one era, slab, and basin
i_basin <- unique(GLODAP$basin)[1]
i_era <- unique(GLODAP$era)[1]
# subset one basin and era for fitting
GLODAP_basin_era <- GLODAP %>%
filter(basin == i_basin, era == i_era)
i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
print(i_gamma_slab)
# subset one gamma slab
GLODAP_basin_era_slab <- GLODAP_basin_era %>%
filter(gamma_slab == i_gamma_slab)
# fit the full linear model, i.e. all predictor combinations
lm_full <- lm(paste(
params_local$MLR_target,
paste(params_local$MLR_predictors, collapse = " + "),
sep = " ~ "
),
data = GLODAP_basin_era_slab)
# fit linear models for all possible predictor combinations
# unfortunately, this functions does not provide model coefficients (yet)
lm_all <- ols_step_all_possible(lm_full)
# convert to tibble
lm_all <- as_tibble(lm_all)
# extract relevant columns and format model formula
lm_all <- lm_all %>%
select(n, predictors) %>%
mutate(lm_coeff = str_replace_all(predictors, " ", " + "),
lm_coeff = paste(params_local$MLR_target, "~", lm_coeff))
# remove certain predictor combinations
# lm_rm_ph <- lm_all %>%
# filter(str_detect(lm_coeff, "phosphate_star")) %>%
# mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
# filter(
# str_detect(lm_coeff_filter, "oxygen") &
# str_detect(lm_coeff_filter, "phosphate")
# )
# lm_rm_si <- lm_all %>%
# filter(str_detect(lm_coeff, "silicate_star")) %>%
# mutate(lm_coeff_filter = str_remove(lm_coeff, "silicate_star")) %>%
# filter(str_detect(lm_coeff_filter, "silicate"))
# lm_rm_o2 <- lm_all %>%
# filter(str_detect(lm_coeff, "phosphate_star")) %>%
# mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
# filter(
# str_detect(lm_coeff_filter, "phosphate") &
# str_detect(lm_coeff_filter, "oxygen")
# )
# lm_rm <- bind_rows(lm_rm_ph, lm_rm_o2) %>%
# select(-lm_coeff_filter) %>%
# unique()
# remove temp sal predictor combination
lm_all <- lm_all %>%
# filter(!(
# str_detect(lm_coeff, "temp") &
# str_detect(lm_coeff, "phosphate_star")
# )) %>%
mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
filter(!(str_detect(lm_coeff_filter, "nitrate") &
str_detect(lm_coeff_filter, "phosphate")
)) %>%
filter(!(
str_detect(lm_coeff_filter, "temp") &
str_detect(lm_coeff_filter, "sal")
)) %>%
filter(!(
str_detect(lm_coeff_filter, "oxygen") &
str_detect(lm_coeff_filter, "aou")
)) %>%
select(-lm_coeff_filter)
# lm_rm <- lm_rm_ph %>%
# select(-lm_coeff_filter) %>%
# unique()
#
# lm_all <- anti_join(lm_all, lm_rm)
# remove helper objects
rm(
i_gamma_slab,
i_era,
i_basin,
GLODAP_basin_era,
GLODAP_basin_era_slab,
lm_full,
lm_rm_ph,
lm_rm_si,
lm_rm_o2,
lm_rm
)
Select combinations with a total number of predictors in the range:
lm_all <- lm_all %>%
filter(n >= params_local$MLR_predictors_min,
n <= params_local$MLR_predictors_max)
This results in a total number of MLR models of:
Individual linear regression models were fitted for the chosen target variable:
as a function of each predictor combination. Fitting was performed separately within each basin, era, and slab. Model diagnostics, such as the root mean squared error (RMSE), were calculated for each fitted model.
# loop across all basins, era, gamma slabs, and MLRs
# fit all MLR models
for (i_basin in unique(GLODAP$basin)) {
for (i_era in unique(GLODAP$era)) {
#i_basin <- unique(GLODAP$basin)[1]
#i_era <- unique(GLODAP$era)[1]
print(i_basin)
print(i_era)
GLODAP_basin_era <- GLODAP %>%
filter(basin == i_basin, era == i_era)
for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
#i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
print(i_gamma_slab)
GLODAP_basin_era_slab <- GLODAP_basin_era %>%
filter(gamma_slab == i_gamma_slab)
# number of observations used for each fitting model
i_nr_obs = nrow(GLODAP_basin_era_slab)
for (i_predictors in unique(lm_all$predictors)) {
#i_predictors <- unique(lm_all$predictors)[1]
# extract one model definition
i_lm <- lm_all %>%
filter(predictors == i_predictors) %>%
select(lm_coeff) %>%
pull()
# extract number of predictors
i_n_predictors <- lm_all %>%
filter(predictors == i_predictors) %>%
select(n) %>%
pull()
if (i_nr_obs > i_n_predictors) {
# fit model
if (params_local$MLR_type == "rlm") {
i_lm_fit <- MASS::rlm(as.formula(i_lm),
data = GLODAP_basin_era_slab)
}
if (params_local$MLR_type == "lm") {
i_lm_fit <- lm(as.formula(i_lm),
data = GLODAP_basin_era_slab)
}
# find max predictor correlation
i_cor_max <- GLODAP_basin_era_slab %>%
select(!!!syms(str_split(i_predictors, " ",
simplify = TRUE))) %>%
correlate(quiet = TRUE) %>%
select(-term) %>%
abs() %>%
max(na.rm = TRUE)
# calculate root mean squared error
i_rmse <- sqrt(c(crossprod(i_lm_fit$residuals)) /
length(i_lm_fit$residuals))
# calculate maximum residual
i_resid_max <- max(abs(i_lm_fit$residuals))
# calculate Akaike information criterion aic
i_aic <- AIC(i_lm_fit)
# collect model coefficients and diagnostics
coefficients <- tidy(i_lm_fit)
coefficients <- coefficients %>%
mutate(
basin = i_basin,
era = i_era,
gamma_slab = i_gamma_slab,
model = i_lm,
nr_obs = i_nr_obs,
rmse = i_rmse,
aic = i_aic,
resid_max = i_resid_max,
n_predictors = i_n_predictors,
na_predictor = anyNA(coefficients$estimate),
cor_max = i_cor_max
)
if (exists("lm_all_fitted")) {
lm_all_fitted <- bind_rows(lm_all_fitted, coefficients)
}
if (!exists("lm_all_fitted")) {
lm_all_fitted <- coefficients
}
}
}
}
}
}
rm(
i_lm_fit,
coefficients,
i_rmse,
GLODAP_basin_era,
GLODAP_basin_era_slab,
i_lm,
i_basin,
i_era,
i_gamma_slab,
i_nr_obs,
i_predictors,
i_aic,
i_n_predictors,
i_resid_max
)
Coefficients are prepared for the mapping of Cant and the chosen target variable.
# select relevant columns
lm_all_fitted <- lm_all_fitted %>%
select(
basin,
gamma_slab,
era,
model,
nr_obs,
n_predictors,
term,
estimate,
rmse,
aic,
resid_max,
na_predictor,
cor_max
)
# set coefficient to zero if not fitted (=NA)
lm_all_fitted <- lm_all_fitted %>%
mutate(estimate = if_else(is.na(estimate), 0, estimate))
# Prepare model coefficients for mapping of target variable
lm_all_fitted_wide <- lm_all_fitted %>%
pivot_wider(
values_from = estimate,
names_from = term,
names_prefix = "coeff_",
values_fill = 0
)
Within each basin and slab, the following number of best linear regression models was selected:
The criterion used to select the best models was:
The criterion was summed up for two adjacent eras, and the models with lowest summed values were selected.
Please note, that currently the lm()
function produces NAs for some predictors. It is not yet entirely clear when this happens, but presumably it is caused by some form of collinearity between predictors, such that including another predictor does not help to explain the target variable any better. The issues also expresses as exactly identical rmse values of different models. As an interim solution, models with fitted NA predictors were not included.
# remove models with predictors fitted as NA
lm_all_fitted_wide <- lm_all_fitted_wide %>%
filter(na_predictor == FALSE)
# calculate RMSE sum for adjacent eras
lm_all_fitted_wide_eras <- lm_all_fitted_wide %>%
select(basin, gamma_slab, model, era, nr_obs, rmse, aic, resid_max) %>%
arrange(era) %>%
group_by(basin, gamma_slab, model) %>%
mutate(
eras = paste(lag(era), era, sep = " --> "),
rmse_sum = rmse + lag(rmse),
aic_sum = aic + lag(aic)
) %>%
ungroup() %>%
select(-c(era)) %>%
drop_na()
# subset models with lowest summed criterion
# chose which criterion is applied
if (params_local$MLR_criterion == "aic") {
lm_best <- lm_all_fitted_wide_eras %>%
group_by(basin, gamma_slab, eras) %>%
slice_min(order_by = aic_sum,
with_ties = FALSE,
n = params_local$MLR_number) %>%
ungroup() %>%
arrange(basin, gamma_slab, eras, model)
} else {
lm_best <- lm_all_fitted_wide_eras %>%
group_by(basin, gamma_slab, eras) %>%
slice_min(order_by = rmse_sum,
with_ties = FALSE,
n = params_local$MLR_number) %>%
ungroup() %>%
arrange(basin, gamma_slab, eras, model)
}
lm_best %>%
kable() %>%
add_header_above() %>%
kable_styling() %>%
scroll_box(width = "100%", height = "400px")
basin | gamma_slab | model | nr_obs | rmse | aic | resid_max | eras | rmse_sum | aic_sum |
---|---|---|---|---|---|---|---|---|---|
Atlantic | (-Inf,26] | cstar_tref ~ sal + aou + nitrate + phosphate_star | 158 | 1.6001372 | 608.9328 | 6.639741 | 1982-1999 –> 2000-2012 | 3.2898388 | 1429.4249 |
Atlantic | (-Inf,26] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 158 | 1.0492038 | 475.5626 | 4.357844 | 1982-1999 –> 2000-2012 | 2.3855522 | 1198.4564 |
Atlantic | (-Inf,26] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 158 | 1.0480832 | 477.2249 | 4.299021 | 1982-1999 –> 2000-2012 | 2.3837757 | 1201.9145 |
Atlantic | (-Inf,26] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 158 | 1.4654213 | 581.1417 | 7.417048 | 1982-1999 –> 2000-2012 | 3.1276914 | 1394.8248 |
Atlantic | (-Inf,26] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 158 | 1.4545749 | 580.7941 | 7.074044 | 1982-1999 –> 2000-2012 | 3.1160634 | 1396.2815 |
Atlantic | (-Inf,26] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 72 | 1.2725075 | 251.0296 | 3.658367 | 2000-2012 –> 2013-2019 | 2.3217113 | 726.5922 |
Atlantic | (-Inf,26] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 72 | 1.1936365 | 243.8158 | 3.237974 | 2000-2012 –> 2013-2019 | 2.2417197 | 721.0407 |
Atlantic | (-Inf,26] | cstar_tref ~ sal + aou + silicate + phosphate_star | 72 | 1.6918467 | 292.0453 | 4.133504 | 2000-2012 –> 2013-2019 | 3.2851805 | 899.6317 |
Atlantic | (-Inf,26] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 72 | 1.5761474 | 281.8448 | 5.713265 | 2000-2012 –> 2013-2019 | 3.0415687 | 862.9865 |
Atlantic | (-Inf,26] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 72 | 1.5044066 | 277.1365 | 5.003414 | 2000-2012 –> 2013-2019 | 2.9589816 | 857.9306 |
Atlantic | (26,26.5] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 1046 | 3.5518213 | 5633.9468 | 13.477555 | 1982-1999 –> 2000-2012 | 6.9985663 | 13749.8718 |
Atlantic | (26,26.5] | cstar_tref ~ temp + aou + nitrate + phosphate_star | 1046 | 4.1960266 | 5980.6362 | 10.665564 | 1982-1999 –> 2000-2012 | 8.3544396 | 14667.0559 |
Atlantic | (26,26.5] | cstar_tref ~ temp + aou + nitrate + silicate | 1046 | 4.0405761 | 5901.6616 | 14.579174 | 1982-1999 –> 2000-2012 | 8.1249524 | 14533.2897 |
Atlantic | (26,26.5] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 1046 | 4.0338370 | 5900.1695 | 15.685804 | 1982-1999 –> 2000-2012 | 8.1154929 | 14531.7655 |
Atlantic | (26,26.5] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 1046 | 4.2948916 | 6031.3553 | 13.012884 | 1982-1999 –> 2000-2012 | 8.5299909 | 14775.5085 |
Atlantic | (26,26.5] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 567 | 3.6070302 | 3077.8676 | 10.902628 | 2000-2012 –> 2013-2019 | 7.1588515 | 8711.8144 |
Atlantic | (26,26.5] | cstar_tref ~ temp + aou + nitrate + phosphate_star | 567 | 4.1023698 | 3221.7908 | 12.065595 | 2000-2012 –> 2013-2019 | 8.2983964 | 9202.4270 |
Atlantic | (26,26.5] | cstar_tref ~ temp + aou + nitrate + silicate | 567 | 3.8959809 | 3163.2545 | 13.662757 | 2000-2012 –> 2013-2019 | 7.9365570 | 9064.9161 |
Atlantic | (26,26.5] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 567 | 3.8631919 | 3155.6702 | 14.511046 | 2000-2012 –> 2013-2019 | 7.8970289 | 9055.8397 |
Atlantic | (26,26.5] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 567 | 4.2189568 | 3255.5690 | 10.763473 | 2000-2012 –> 2013-2019 | 8.5138484 | 9286.9243 |
Atlantic | (26.5,26.75] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 1397 | 3.3429532 | 7348.4661 | 10.697715 | 1982-1999 –> 2000-2012 | 6.4415667 | 17034.7612 |
Atlantic | (26.5,26.75] | cstar_tref ~ sal + aou + silicate + phosphate | 1397 | 3.3316510 | 7339.0038 | 10.073920 | 1982-1999 –> 2000-2012 | 6.4785991 | 17084.0238 |
Atlantic | (26.5,26.75] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 1397 | 3.2700730 | 7288.8799 | 10.507891 | 1982-1999 –> 2000-2012 | 6.3292231 | 16928.5449 |
Atlantic | (26.5,26.75] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 1397 | 3.3250708 | 7335.4800 | 10.297171 | 1982-1999 –> 2000-2012 | 6.4698137 | 17079.8406 |
Atlantic | (26.5,26.75] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 1397 | 3.2249399 | 7250.0489 | 10.037456 | 1982-1999 –> 2000-2012 | 6.2079736 | 16794.1190 |
Atlantic | (26.5,26.75] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 656 | 3.4323365 | 3491.6598 | 11.340269 | 2000-2012 –> 2013-2019 | 6.7752897 | 10840.1259 |
Atlantic | (26.5,26.75] | cstar_tref ~ sal + aou + silicate + phosphate | 656 | 3.3850399 | 3473.4551 | 10.375376 | 2000-2012 –> 2013-2019 | 6.7166909 | 10812.4589 |
Atlantic | (26.5,26.75] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 656 | 3.3455096 | 3460.0435 | 10.735554 | 2000-2012 –> 2013-2019 | 6.6155826 | 10748.9234 |
Atlantic | (26.5,26.75] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 656 | 3.4093443 | 3484.8416 | 9.603997 | 2000-2012 –> 2013-2019 | 6.7344151 | 10820.3216 |
Atlantic | (26.5,26.75] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 656 | 3.3238240 | 3451.5114 | 11.113656 | 2000-2012 –> 2013-2019 | 6.5487639 | 10701.5603 |
Atlantic | (26.75,27] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 2398 | 2.0935628 | 10360.8368 | 14.739529 | 1982-1999 –> 2000-2012 | 3.7661002 | 22513.8376 |
Atlantic | (26.75,27] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 2398 | 2.0001820 | 10143.9994 | 14.081577 | 1982-1999 –> 2000-2012 | 3.6531709 | 22225.1681 |
Atlantic | (26.75,27] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2398 | 2.1989701 | 10598.4250 | 16.309198 | 1982-1999 –> 2000-2012 | 3.9946362 | 23199.5206 |
Atlantic | (26.75,27] | cstar_tref ~ temp + aou + silicate + phosphate | 2398 | 2.2004206 | 10599.5875 | 15.280820 | 1982-1999 –> 2000-2012 | 3.9880121 | 23170.3800 |
Atlantic | (26.75,27] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 2398 | 2.0860637 | 10345.6268 | 19.975942 | 1982-1999 –> 2000-2012 | 3.5995129 | 21872.9381 |
Atlantic | (26.75,27] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 1263 | 2.6364762 | 6045.0524 | 27.471250 | 2000-2012 –> 2013-2019 | 4.7300390 | 16405.8891 |
Atlantic | (26.75,27] | cstar_tref ~ sal + aou + silicate + phosphate | 1263 | 2.5846959 | 5994.9482 | 24.744636 | 2000-2012 –> 2013-2019 | 4.7623441 | 16544.6427 |
Atlantic | (26.75,27] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 1263 | 2.5330762 | 5945.9902 | 25.891764 | 2000-2012 –> 2013-2019 | 4.5332582 | 16089.9896 |
Atlantic | (26.75,27] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 1263 | 2.6623762 | 6071.7460 | 22.596317 | 2000-2012 –> 2013-2019 | 4.8613463 | 16670.1710 |
Atlantic | (26.75,27] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 1263 | 2.2552518 | 5652.5376 | 22.583567 | 2000-2012 –> 2013-2019 | 4.3413155 | 15998.1644 |
Atlantic | (27,27.25] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 2031 | 2.0909522 | 8773.9389 | 9.715574 | 1982-1999 –> 2000-2012 | 4.3252336 | 20395.7044 |
Atlantic | (27,27.25] | cstar_tref ~ sal + aou + silicate + phosphate | 2031 | 1.9148200 | 8414.4995 | 9.235730 | 1982-1999 –> 2000-2012 | 3.6311952 | 18657.1971 |
Atlantic | (27,27.25] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 2031 | 1.8904789 | 8364.5325 | 9.689213 | 1982-1999 –> 2000-2012 | 3.4604645 | 18143.6984 |
Atlantic | (27,27.25] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2031 | 2.0594140 | 8712.2044 | 13.384239 | 1982-1999 –> 2000-2012 | 3.7359927 | 18834.3973 |
Atlantic | (27,27.25] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 2031 | 2.3112875 | 9180.8912 | 13.899054 | 1982-1999 –> 2000-2012 | 4.3877097 | 20420.0232 |
Atlantic | (27,27.25] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 1142 | 2.2408412 | 5097.7041 | 11.555324 | 2000-2012 –> 2013-2019 | 4.3317934 | 13871.6430 |
Atlantic | (27,27.25] | cstar_tref ~ sal + aou + silicate + phosphate | 1142 | 2.3003827 | 5155.6000 | 13.777336 | 2000-2012 –> 2013-2019 | 4.2152027 | 13570.0995 |
Atlantic | (27,27.25] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 1142 | 2.2946948 | 5151.9457 | 14.080782 | 2000-2012 –> 2013-2019 | 4.1851737 | 13516.4782 |
Atlantic | (27,27.25] | cstar_tref ~ sal + aou + silicate + phosphate_star | 1142 | 2.3424794 | 5197.0192 | 15.033313 | 2000-2012 –> 2013-2019 | 4.4776528 | 14053.9689 |
Atlantic | (27,27.25] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 1142 | 2.5328202 | 5377.4530 | 21.355986 | 2000-2012 –> 2013-2019 | 4.5922342 | 14089.6574 |
Atlantic | (27.25,27.5] | cstar_tref ~ sal + aou + nitrate + silicate | 2025 | 2.5285742 | 9515.7061 | 13.358360 | 1982-1999 –> 2000-2012 | 5.1450783 | 23231.4624 |
Atlantic | (27.25,27.5] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 2025 | 2.4514644 | 9392.2776 | 12.813379 | 1982-1999 –> 2000-2012 | 4.9864330 | 22927.8111 |
Atlantic | (27.25,27.5] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 2025 | 2.6905754 | 9769.2091 | 21.422922 | 1982-1999 –> 2000-2012 | 4.8576234 | 22402.1133 |
Atlantic | (27.25,27.5] | cstar_tref ~ temp + aou + nitrate + silicate | 2025 | 2.4063497 | 9315.0504 | 11.614926 | 1982-1999 –> 2000-2012 | 4.1264292 | 20616.3452 |
Atlantic | (27.25,27.5] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2025 | 2.2547324 | 9053.4778 | 15.509020 | 1982-1999 –> 2000-2012 | 3.9706310 | 20342.7650 |
Atlantic | (27.25,27.5] | cstar_tref ~ aou + nitrate + silicate + phosphate_star | 1109 | 3.0051254 | 5599.7139 | 21.412798 | 2000-2012 –> 2013-2019 | 5.7555576 | 15456.0350 |
Atlantic | (27.25,27.5] | cstar_tref ~ sal + aou + nitrate + silicate | 1109 | 3.0025580 | 5597.8181 | 16.245244 | 2000-2012 –> 2013-2019 | 5.5311321 | 15113.5242 |
Atlantic | (27.25,27.5] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 1109 | 2.7952620 | 5441.1451 | 16.992150 | 2000-2012 –> 2013-2019 | 5.2467264 | 14833.4228 |
Atlantic | (27.25,27.5] | cstar_tref ~ temp + aou + nitrate + silicate | 1109 | 3.1081847 | 5674.5038 | 12.222568 | 2000-2012 –> 2013-2019 | 5.5145344 | 14989.5543 |
Atlantic | (27.25,27.5] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 1109 | 2.7923328 | 5438.8197 | 16.610907 | 2000-2012 –> 2013-2019 | 5.0470652 | 14492.2975 |
Atlantic | (27.5,27.75] | cstar_tref ~ sal + aou + phosphate | 2804 | 2.7836924 | 13708.7557 | 13.816311 | 1982-1999 –> 2000-2012 | 5.2587422 | 31083.3422 |
Atlantic | (27.5,27.75] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 2804 | 2.7656318 | 13674.2524 | 14.269310 | 1982-1999 –> 2000-2012 | 5.0314996 | 30391.3946 |
Atlantic | (27.5,27.75] | cstar_tref ~ sal + aou + silicate + phosphate | 2804 | 2.4538915 | 13003.5694 | 13.901382 | 1982-1999 –> 2000-2012 | 4.8210764 | 30047.3887 |
Atlantic | (27.5,27.75] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 2804 | 2.3944064 | 12867.9502 | 14.685866 | 1982-1999 –> 2000-2012 | 4.4949743 | 29021.3907 |
Atlantic | (27.5,27.75] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2804 | 3.1165165 | 14346.1100 | 16.244315 | 1982-1999 –> 2000-2012 | 5.5026775 | 31451.5564 |
Atlantic | (27.5,27.75] | cstar_tref ~ sal + aou + nitrate + silicate | 1515 | 3.2789491 | 7909.5783 | 16.534959 | 2000-2012 –> 2013-2019 | 6.1058258 | 21706.6649 |
Atlantic | (27.5,27.75] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 1515 | 3.2267256 | 7862.9314 | 14.600864 | 2000-2012 –> 2013-2019 | 6.0506408 | 21656.1398 |
Atlantic | (27.5,27.75] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 1515 | 3.4234258 | 8040.2283 | 14.171915 | 2000-2012 –> 2013-2019 | 6.1890576 | 21714.4806 |
Atlantic | (27.5,27.75] | cstar_tref ~ sal + aou + silicate + phosphate | 1515 | 2.8745087 | 7510.7055 | 15.545879 | 2000-2012 –> 2013-2019 | 5.3284002 | 20514.2749 |
Atlantic | (27.5,27.75] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 1515 | 2.8711798 | 7509.1946 | 15.461950 | 2000-2012 –> 2013-2019 | 5.2655862 | 20377.1448 |
Atlantic | (27.75,27.85] | cstar_tref ~ sal + aou + nitrate + silicate | 1036 | 1.9259602 | 4310.0805 | 13.267819 | 1982-1999 –> 2000-2012 | 3.9306085 | 9904.1154 |
Atlantic | (27.75,27.85] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 1036 | 1.8800580 | 4262.0997 | 14.057027 | 1982-1999 –> 2000-2012 | 3.8317057 | 9787.3967 |
Atlantic | (27.75,27.85] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 1036 | 1.9943230 | 4382.3519 | 12.367472 | 1982-1999 –> 2000-2012 | 3.6776199 | 9515.1410 |
Atlantic | (27.75,27.85] | cstar_tref ~ sal + aou + silicate + phosphate | 1036 | 1.7389083 | 4098.3902 | 12.226980 | 1982-1999 –> 2000-2012 | 3.5475856 | 9420.8408 |
Atlantic | (27.75,27.85] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 1036 | 1.5641536 | 3880.9392 | 12.798383 | 1982-1999 –> 2000-2012 | 3.1611985 | 8876.8661 |
Atlantic | (27.75,27.85] | cstar_tref ~ sal + aou + nitrate + silicate | 513 | 2.0314562 | 2195.0114 | 12.644220 | 2000-2012 –> 2013-2019 | 3.9574164 | 6505.0919 |
Atlantic | (27.75,27.85] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 513 | 2.0209724 | 2191.7028 | 12.956555 | 2000-2012 –> 2013-2019 | 3.9010304 | 6453.8025 |
Atlantic | (27.75,27.85] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 513 | 2.4147179 | 2372.3345 | 11.388027 | 2000-2012 –> 2013-2019 | 4.4090409 | 6754.6864 |
Atlantic | (27.75,27.85] | cstar_tref ~ sal + aou + silicate + phosphate | 513 | 1.8570079 | 2102.8906 | 11.721525 | 2000-2012 –> 2013-2019 | 3.5959162 | 6201.2808 |
Atlantic | (27.75,27.85] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 513 | 1.7475521 | 2042.5606 | 12.039326 | 2000-2012 –> 2013-2019 | 3.3117057 | 5923.4997 |
Atlantic | (27.85,28.05] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 2187 | 5.1373090 | 13378.6167 | 56.726776 | 1982-1999 –> 2000-2012 | 10.0513229 | 31531.0593 |
Atlantic | (27.85,28.05] | cstar_tref ~ temp + aou + nitrate + phosphate_star | 2187 | 5.2002290 | 13429.8626 | 83.390736 | 1982-1999 –> 2000-2012 | 9.6945504 | 31042.5040 |
Atlantic | (27.85,28.05] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2187 | 5.1012670 | 13347.8217 | 83.043249 | 1982-1999 –> 2000-2012 | 9.3370643 | 30605.5827 |
Atlantic | (27.85,28.05] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 2187 | 4.7626737 | 13045.4167 | 37.685758 | 1982-1999 –> 2000-2012 | 9.4821826 | 30952.5718 |
Atlantic | (27.85,28.05] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 2187 | 4.7114026 | 13000.0744 | 30.154884 | 1982-1999 –> 2000-2012 | 9.4308848 | 30909.1955 |
Atlantic | (27.85,28.05] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 1235 | 4.9412599 | 7464.9004 | 28.501181 | 2000-2012 –> 2013-2019 | 10.0785689 | 20843.5171 |
Atlantic | (27.85,28.05] | cstar_tref ~ temp + aou + nitrate + phosphate_star | 1235 | 4.7516549 | 7366.2558 | 29.926479 | 2000-2012 –> 2013-2019 | 9.9518839 | 20796.1184 |
Atlantic | (27.85,28.05] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 1235 | 4.6421932 | 7310.6899 | 32.810580 | 2000-2012 –> 2013-2019 | 9.7434601 | 20658.5116 |
Atlantic | (27.85,28.05] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 1235 | 4.6296824 | 7302.0242 | 29.845290 | 2000-2012 –> 2013-2019 | 9.3923561 | 20347.4409 |
Atlantic | (27.85,28.05] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 1235 | 4.6296718 | 7304.0185 | 29.837993 | 2000-2012 –> 2013-2019 | 9.3410744 | 20304.0929 |
Atlantic | (28.05,28.1] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 804 | 1.1604167 | 2532.8901 | 10.979649 | 1982-1999 –> 2000-2012 | 2.1134849 | 5495.0017 |
Atlantic | (28.05,28.1] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 804 | 1.0598757 | 2387.1610 | 7.838670 | 1982-1999 –> 2000-2012 | 1.9527650 | 5208.9110 |
Atlantic | (28.05,28.1] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 804 | 1.0324411 | 2346.9902 | 6.945256 | 1982-1999 –> 2000-2012 | 1.9247967 | 5169.4535 |
Atlantic | (28.05,28.1] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 804 | 1.1065403 | 2456.4443 | 11.331523 | 1982-1999 –> 2000-2012 | 2.0473492 | 5390.6954 |
Atlantic | (28.05,28.1] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 804 | 1.0436142 | 2364.2985 | 12.188672 | 1982-1999 –> 2000-2012 | 1.8828911 | 5054.7923 |
Atlantic | (28.05,28.1] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 434 | 1.1676572 | 1380.1780 | 6.819178 | 2000-2012 –> 2013-2019 | 2.3011906 | 3877.3774 |
Atlantic | (28.05,28.1] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 434 | 1.1212849 | 1343.0032 | 8.929761 | 2000-2012 –> 2013-2019 | 2.1811606 | 3730.1642 |
Atlantic | (28.05,28.1] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 434 | 1.0586072 | 1295.0748 | 7.429722 | 2000-2012 –> 2013-2019 | 2.0910483 | 3642.0650 |
Atlantic | (28.05,28.1] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 434 | 1.1480057 | 1363.4454 | 12.833810 | 2000-2012 –> 2013-2019 | 2.2545460 | 3819.8898 |
Atlantic | (28.05,28.1] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 434 | 1.1075442 | 1334.3006 | 13.578379 | 2000-2012 –> 2013-2019 | 2.1511584 | 3698.5991 |
Atlantic | (28.1,28.15] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 936 | 0.8652007 | 2397.1990 | 9.973159 | 1982-1999 –> 2000-2012 | 1.5501093 | 5104.0130 |
Atlantic | (28.1,28.15] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 936 | 0.8394339 | 2342.6013 | 6.649159 | 1982-1999 –> 2000-2012 | 1.5477300 | 5138.3794 |
Atlantic | (28.1,28.15] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 936 | 0.7732900 | 2186.9596 | 6.039973 | 1982-1999 –> 2000-2012 | 1.4451653 | 4844.0128 |
Atlantic | (28.1,28.15] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 936 | 0.7598609 | 2156.1646 | 5.927820 | 1982-1999 –> 2000-2012 | 1.3893138 | 4646.2932 |
Atlantic | (28.1,28.15] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 936 | 0.7856962 | 2218.7544 | 10.025704 | 1982-1999 –> 2000-2012 | 1.3744859 | 4535.9182 |
Atlantic | (28.1,28.15] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 497 | 0.9633503 | 1387.3108 | 6.933462 | 2000-2012 –> 2013-2019 | 1.8027842 | 3729.9121 |
Atlantic | (28.1,28.15] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 497 | 0.8714406 | 1285.6430 | 6.181914 | 2000-2012 –> 2013-2019 | 1.6447306 | 3472.6026 |
Atlantic | (28.1,28.15] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 497 | 0.8712585 | 1287.4353 | 6.182326 | 2000-2012 –> 2013-2019 | 1.6311195 | 3443.5998 |
Atlantic | (28.1,28.15] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 497 | 0.9653756 | 1387.3983 | 11.632299 | 2000-2012 –> 2013-2019 | 1.8224628 | 3766.9596 |
Atlantic | (28.1,28.15] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 497 | 0.8791505 | 1296.3985 | 11.933687 | 2000-2012 –> 2013-2019 | 1.6648467 | 3515.1529 |
Atlantic | (28.15,28.2] | cstar_tref ~ sal + aou + nitrate + phosphate_star | 1540 | 0.5939756 | 2777.9061 | 2.353787 | 1982-1999 –> 2000-2012 | 1.1267120 | 6300.3123 |
Atlantic | (28.15,28.2] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 1540 | 0.5471615 | 2527.0561 | 2.040783 | 1982-1999 –> 2000-2012 | 1.0648603 | 5924.1022 |
Atlantic | (28.15,28.2] | cstar_tref ~ temp + aou + nitrate + phosphate_star | 1540 | 0.6019966 | 2819.2202 | 2.184553 | 1982-1999 –> 2000-2012 | 1.1657858 | 6593.6216 |
Atlantic | (28.15,28.2] | cstar_tref ~ temp + aou + nitrate + silicate | 1540 | 0.5718023 | 2660.7281 | 2.192349 | 1982-1999 –> 2000-2012 | 1.1224532 | 6330.2485 |
Atlantic | (28.15,28.2] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 1540 | 0.5576121 | 2585.3284 | 2.314250 | 1982-1999 –> 2000-2012 | 1.1076613 | 6251.9858 |
Atlantic | (28.15,28.2] | cstar_tref ~ sal + aou + nitrate + phosphate_star | 819 | 0.7431790 | 1850.0329 | 4.262643 | 2000-2012 –> 2013-2019 | 1.3371546 | 4627.9389 |
Atlantic | (28.15,28.2] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 819 | 0.7372762 | 1838.9708 | 4.731734 | 2000-2012 –> 2013-2019 | 1.2844377 | 4366.0269 |
Atlantic | (28.15,28.2] | cstar_tref ~ temp + aou + nitrate + phosphate_star | 819 | 0.8686623 | 2105.5896 | 7.748139 | 2000-2012 –> 2013-2019 | 1.4706590 | 4924.8098 |
Atlantic | (28.15,28.2] | cstar_tref ~ temp + aou + nitrate + silicate | 819 | 0.8619250 | 2092.8357 | 8.363302 | 2000-2012 –> 2013-2019 | 1.4337273 | 4753.5638 |
Atlantic | (28.15,28.2] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 819 | 0.8613203 | 2093.6861 | 8.208278 | 2000-2012 –> 2013-2019 | 1.4189324 | 4679.0145 |
Atlantic | (28.2, Inf] | cstar_tref ~ sal + aou + nitrate | 2693 | 0.3593168 | 2139.5581 | 1.966552 | 1982-1999 –> 2000-2012 | 0.6655852 | 3898.5165 |
Atlantic | (28.2, Inf] | cstar_tref ~ sal + aou + nitrate + phosphate_star | 2693 | 0.3540505 | 2062.0339 | 1.937681 | 1982-1999 –> 2000-2012 | 0.6560011 | 3717.6111 |
Atlantic | (28.2, Inf] | cstar_tref ~ sal + aou + nitrate + silicate | 2693 | 0.3588037 | 2133.8610 | 1.963165 | 1982-1999 –> 2000-2012 | 0.6635911 | 3858.8422 |
Atlantic | (28.2, Inf] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 2693 | 0.3463114 | 1944.9979 | 1.900529 | 1982-1999 –> 2000-2012 | 0.6453988 | 3531.8596 |
Atlantic | (28.2, Inf] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2693 | 0.5306498 | 4243.5482 | 3.091584 | 1982-1999 –> 2000-2012 | 0.9896559 | 9009.4595 |
Atlantic | (28.2, Inf] | cstar_tref ~ sal + aou + nitrate | 1557 | 0.4186021 | 1716.7958 | 2.479100 | 2000-2012 –> 2013-2019 | 0.7779188 | 3856.3538 |
Atlantic | (28.2, Inf] | cstar_tref ~ sal + aou + nitrate + phosphate_star | 1557 | 0.3991609 | 1570.7062 | 2.411345 | 2000-2012 –> 2013-2019 | 0.7532114 | 3632.7401 |
Atlantic | (28.2, Inf] | cstar_tref ~ sal + aou + nitrate + silicate | 1557 | 0.4110188 | 1661.8663 | 2.465092 | 2000-2012 –> 2013-2019 | 0.7698225 | 3795.7273 |
Atlantic | (28.2, Inf] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 1557 | 0.3901368 | 1501.4981 | 2.457959 | 2000-2012 –> 2013-2019 | 0.7364483 | 3446.4960 |
Atlantic | (28.2, Inf] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 1557 | 0.7057457 | 3347.3447 | 8.527267 | 2000-2012 –> 2013-2019 | 1.2363955 | 7590.8929 |
Indo-Pacific | (-Inf,26] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 5288 | 6.2360939 | 34376.5179 | 29.968567 | 1982-1999 –> 2000-2012 | 12.7656352 | 81794.3473 |
Indo-Pacific | (-Inf,26] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 5288 | 6.1928478 | 34304.9200 | 29.527354 | 1982-1999 –> 2000-2012 | 12.6716991 | 81612.6324 |
Indo-Pacific | (-Inf,26] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 5288 | 7.1987438 | 35896.7294 | 31.371808 | 1982-1999 –> 2000-2012 | 14.7271008 | 85364.2640 |
Indo-Pacific | (-Inf,26] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 5288 | 7.2933052 | 36034.7494 | 29.166512 | 1982-1999 –> 2000-2012 | 14.8774849 | 85608.5624 |
Indo-Pacific | (-Inf,26] | cstar_tref ~ temp + silicate + phosphate + phosphate_star | 5288 | 7.3907730 | 36173.1511 | 28.492599 | 1982-1999 –> 2000-2012 | 15.1050761 | 85989.6943 |
Indo-Pacific | (-Inf,26] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 2816 | 5.9520247 | 18049.4373 | 24.894024 | 2000-2012 –> 2013-2019 | 12.1881186 | 52425.9552 |
Indo-Pacific | (-Inf,26] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 2816 | 5.8778725 | 17980.8313 | 24.128023 | 2000-2012 –> 2013-2019 | 12.0707203 | 52285.7513 |
Indo-Pacific | (-Inf,26] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2816 | 6.9521542 | 18926.2002 | 25.907885 | 2000-2012 –> 2013-2019 | 14.1508980 | 54822.9297 |
Indo-Pacific | (-Inf,26] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 2816 | 7.0001768 | 18964.9700 | 25.465195 | 2000-2012 –> 2013-2019 | 14.2934820 | 54999.7194 |
Indo-Pacific | (-Inf,26] | cstar_tref ~ temp + silicate + phosphate + phosphate_star | 2816 | 7.1344030 | 19069.9395 | 24.441528 | 2000-2012 –> 2013-2019 | 14.5251760 | 55243.0906 |
Indo-Pacific | (26,26.5] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 5525 | 4.8905258 | 33230.9339 | 41.688307 | 1982-1999 –> 2000-2012 | 9.5377100 | 78823.9388 |
Indo-Pacific | (26,26.5] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 5525 | 4.5360650 | 32401.5327 | 43.772780 | 1982-1999 –> 2000-2012 | 8.7824377 | 76605.3494 |
Indo-Pacific | (26,26.5] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 5525 | 4.7555301 | 32923.6260 | 49.041150 | 1982-1999 –> 2000-2012 | 9.1671720 | 77716.3587 |
Indo-Pacific | (26,26.5] | cstar_tref ~ temp + aou + silicate + phosphate | 5525 | 4.8893893 | 33228.3657 | 40.409229 | 1982-1999 –> 2000-2012 | 9.5091497 | 78730.0815 |
Indo-Pacific | (26,26.5] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 5525 | 4.8803203 | 33209.8508 | 41.154556 | 1982-1999 –> 2000-2012 | 9.4999894 | 78713.2617 |
Indo-Pacific | (26,26.5] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 2918 | 4.8175903 | 17468.7156 | 40.382988 | 2000-2012 –> 2013-2019 | 9.7081161 | 50699.6495 |
Indo-Pacific | (26,26.5] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 2918 | 4.4724496 | 17036.8813 | 46.310491 | 2000-2012 –> 2013-2019 | 9.0085146 | 49438.4140 |
Indo-Pacific | (26,26.5] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2918 | 4.5715543 | 17164.7889 | 45.715284 | 2000-2012 –> 2013-2019 | 9.3270844 | 50088.4149 |
Indo-Pacific | (26,26.5] | cstar_tref ~ temp + aou + silicate + phosphate | 2918 | 4.8142859 | 17464.7112 | 37.043514 | 2000-2012 –> 2013-2019 | 9.7036752 | 50693.0769 |
Indo-Pacific | (26,26.5] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 2918 | 4.8065118 | 17457.2797 | 38.739984 | 2000-2012 –> 2013-2019 | 9.6868321 | 50667.1305 |
Indo-Pacific | (26.5,26.75] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 4544 | 4.0473152 | 25612.8259 | 22.127132 | 1982-1999 –> 2000-2012 | 7.9963826 | 60742.2745 |
Indo-Pacific | (26.5,26.75] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 4544 | 3.9265162 | 25339.4488 | 20.226531 | 1982-1999 –> 2000-2012 | 7.6839109 | 59845.1956 |
Indo-Pacific | (26.5,26.75] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 4544 | 4.0218289 | 25557.4171 | 33.030413 | 1982-1999 –> 2000-2012 | 8.0127086 | 60821.3190 |
Indo-Pacific | (26.5,26.75] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 4544 | 3.9477481 | 25388.4579 | 23.151958 | 1982-1999 –> 2000-2012 | 7.8249401 | 60288.9073 |
Indo-Pacific | (26.5,26.75] | cstar_tref ~ temp + nitrate + silicate + phosphate_star | 4544 | 4.0218809 | 25555.5345 | 32.963712 | 1982-1999 –> 2000-2012 | 8.0834114 | 61038.1226 |
Indo-Pacific | (26.5,26.75] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 2447 | 4.4033896 | 14211.0265 | 24.538450 | 2000-2012 –> 2013-2019 | 8.4507048 | 39823.8524 |
Indo-Pacific | (26.5,26.75] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 2447 | 4.2938981 | 14089.7973 | 24.434470 | 2000-2012 –> 2013-2019 | 8.2204143 | 39429.2462 |
Indo-Pacific | (26.5,26.75] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2447 | 4.3225383 | 14122.3318 | 31.664753 | 2000-2012 –> 2013-2019 | 8.3443672 | 39679.7489 |
Indo-Pacific | (26.5,26.75] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 2447 | 4.2923135 | 14087.9909 | 22.815590 | 2000-2012 –> 2013-2019 | 8.2400615 | 39476.4489 |
Indo-Pacific | (26.5,26.75] | cstar_tref ~ temp + nitrate + silicate + phosphate_star | 2447 | 4.3388127 | 14138.7232 | 34.446250 | 2000-2012 –> 2013-2019 | 8.3606936 | 39694.2577 |
Indo-Pacific | (26.75,27] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 5354 | 4.5232238 | 31366.7748 | 18.928405 | 1982-1999 –> 2000-2012 | 8.5202080 | 73619.8323 |
Indo-Pacific | (26.75,27] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 5354 | 4.3077986 | 30844.2463 | 21.980567 | 1982-1999 –> 2000-2012 | 7.9956057 | 71884.6902 |
Indo-Pacific | (26.75,27] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 5354 | 4.2906105 | 30803.4359 | 21.052395 | 1982-1999 –> 2000-2012 | 7.9645082 | 71788.9629 |
Indo-Pacific | (26.75,27] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 5354 | 4.2057274 | 30587.4712 | 23.104196 | 1982-1999 –> 2000-2012 | 7.8859232 | 71596.7963 |
Indo-Pacific | (26.75,27] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 5354 | 4.1702723 | 30498.8181 | 21.453131 | 1982-1999 –> 2000-2012 | 7.8227361 | 71396.2141 |
Indo-Pacific | (26.75,27] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 2868 | 4.9018613 | 17269.0630 | 18.494849 | 2000-2012 –> 2013-2019 | 9.4250851 | 48635.8378 |
Indo-Pacific | (26.75,27] | cstar_tref ~ sal + aou + phosphate + phosphate_star | 2868 | 4.6612052 | 16980.3073 | 20.095371 | 2000-2012 –> 2013-2019 | 8.9690038 | 47824.5536 |
Indo-Pacific | (26.75,27] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 2868 | 4.6499950 | 16968.4956 | 19.282213 | 2000-2012 –> 2013-2019 | 8.9406055 | 47771.9315 |
Indo-Pacific | (26.75,27] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 2868 | 4.5774010 | 16876.2410 | 16.522089 | 2000-2012 –> 2013-2019 | 8.7831284 | 47463.7121 |
Indo-Pacific | (26.75,27] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 2868 | 4.5537010 | 16848.4650 | 17.066955 | 2000-2012 –> 2013-2019 | 8.7239733 | 47347.2831 |
Indo-Pacific | (27,27.25] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 6466 | 4.3929768 | 37503.1646 | 41.945012 | 1982-1999 –> 2000-2012 | 7.9587117 | 85065.6810 |
Indo-Pacific | (27,27.25] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 6466 | 4.1535561 | 36778.4265 | 49.359080 | 1982-1999 –> 2000-2012 | 7.5202091 | 83325.5519 |
Indo-Pacific | (27,27.25] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 6466 | 4.3599345 | 37403.5276 | 46.003290 | 1982-1999 –> 2000-2012 | 7.9680032 | 85172.6402 |
Indo-Pacific | (27,27.25] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 6466 | 3.9500266 | 36128.6900 | 31.512269 | 1982-1999 –> 2000-2012 | 7.2528573 | 82337.5496 |
Indo-Pacific | (27,27.25] | cstar_tref ~ temp + nitrate + silicate + phosphate_star | 6466 | 4.6663213 | 38281.7913 | 72.764927 | 1982-1999 –> 2000-2012 | 8.1605463 | 85484.2572 |
Indo-Pacific | (27,27.25] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 3470 | 5.1328308 | 21210.8952 | 31.173698 | 2000-2012 –> 2013-2019 | 9.5717663 | 58846.6499 |
Indo-Pacific | (27,27.25] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 3470 | 5.0789520 | 21139.6617 | 33.597697 | 2000-2012 –> 2013-2019 | 9.4719288 | 58642.8263 |
Indo-Pacific | (27,27.25] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 3470 | 4.9716940 | 20991.5322 | 35.708885 | 2000-2012 –> 2013-2019 | 9.1252501 | 57769.9588 |
Indo-Pacific | (27,27.25] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 3470 | 5.1322261 | 21210.0776 | 39.784583 | 2000-2012 –> 2013-2019 | 9.4921606 | 58613.6052 |
Indo-Pacific | (27,27.25] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 3470 | 4.4723380 | 20256.9380 | 25.616236 | 2000-2012 –> 2013-2019 | 8.4223646 | 56385.6280 |
Indo-Pacific | (27.25,27.85] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 14000 | 3.7613620 | 76838.1506 | 30.636305 | 1982-1999 –> 2000-2012 | 6.6733649 | 172024.6484 |
Indo-Pacific | (27.25,27.85] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 14000 | 3.9428297 | 78157.4417 | 30.876914 | 1982-1999 –> 2000-2012 | 6.9440385 | 174498.2770 |
Indo-Pacific | (27.25,27.85] | cstar_tref ~ sal + aou + silicate + phosphate_star | 14000 | 3.9659438 | 78319.1070 | 30.012098 | 1982-1999 –> 2000-2012 | 6.9705714 | 174701.4970 |
Indo-Pacific | (27.25,27.85] | cstar_tref ~ sal + silicate + phosphate + phosphate_star | 14000 | 4.0303500 | 78770.1693 | 29.898381 | 1982-1999 –> 2000-2012 | 7.0350796 | 175153.8577 |
Indo-Pacific | (27.25,27.85] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 14000 | 4.1948495 | 79892.2880 | 30.598750 | 1982-1999 –> 2000-2012 | 7.3700866 | 178389.5064 |
Indo-Pacific | (27.25,27.85] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 7495 | 4.4248548 | 43577.5781 | 32.569101 | 2000-2012 –> 2013-2019 | 8.1862168 | 120415.7287 |
Indo-Pacific | (27.25,27.85] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 7495 | 4.6331927 | 44267.2491 | 30.705243 | 2000-2012 –> 2013-2019 | 8.5760224 | 122424.6909 |
Indo-Pacific | (27.25,27.85] | cstar_tref ~ sal + aou + silicate + phosphate_star | 7495 | 4.7100485 | 44511.8647 | 29.000523 | 2000-2012 –> 2013-2019 | 8.6759923 | 122830.9716 |
Indo-Pacific | (27.25,27.85] | cstar_tref ~ sal + silicate + phosphate + phosphate_star | 7495 | 4.8252832 | 44874.1912 | 33.648260 | 2000-2012 –> 2013-2019 | 8.8556332 | 123644.3605 |
Indo-Pacific | (27.25,27.85] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 7495 | 4.9928138 | 45387.8031 | 29.937877 | 2000-2012 –> 2013-2019 | 9.1876633 | 125280.0912 |
Indo-Pacific | (27.85,27.95] | cstar_tref ~ temp + aou + nitrate + phosphate_star | 2907 | 2.7487099 | 14140.4282 | 28.492785 | 1982-1999 –> 2000-2012 | 4.8701028 | 31563.9400 |
Indo-Pacific | (27.85,27.95] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2907 | 2.7457460 | 14136.1557 | 28.208152 | 1982-1999 –> 2000-2012 | 4.8664196 | 31558.9474 |
Indo-Pacific | (27.85,27.95] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 2907 | 2.7856872 | 14220.1201 | 34.100919 | 1982-1999 –> 2000-2012 | 4.9269749 | 31720.4944 |
Indo-Pacific | (27.85,27.95] | cstar_tref ~ temp + nitrate + phosphate_star | 2907 | 2.7674113 | 14177.8510 | 31.750508 | 1982-1999 –> 2000-2012 | 4.8898936 | 31603.4801 |
Indo-Pacific | (27.85,27.95] | cstar_tref ~ temp + nitrate + silicate + phosphate_star | 2907 | 2.7621671 | 14168.8231 | 31.138313 | 1982-1999 –> 2000-2012 | 4.8840444 | 31594.1657 |
Indo-Pacific | (27.85,27.95] | cstar_tref ~ temp + aou + nitrate | 1542 | 3.3281826 | 8094.2894 | 31.958774 | 2000-2012 –> 2013-2019 | 6.0790784 | 22237.3394 |
Indo-Pacific | (27.85,27.95] | cstar_tref ~ temp + aou + nitrate + phosphate_star | 1542 | 3.3165597 | 8085.5004 | 32.079445 | 2000-2012 –> 2013-2019 | 6.0652696 | 22225.9286 |
Indo-Pacific | (27.85,27.95] | cstar_tref ~ temp + aou + nitrate + silicate | 1542 | 3.3046795 | 8074.4335 | 31.424170 | 2000-2012 –> 2013-2019 | 6.0531124 | 22214.2756 |
Indo-Pacific | (27.85,27.95] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 1542 | 3.2946985 | 8067.1049 | 31.554855 | 2000-2012 –> 2013-2019 | 6.0404446 | 22203.2606 |
Indo-Pacific | (27.85,27.95] | cstar_tref ~ temp + nitrate + silicate + phosphate_star | 1542 | 3.2965108 | 8066.8008 | 32.540164 | 2000-2012 –> 2013-2019 | 6.0586779 | 22235.6239 |
Indo-Pacific | (27.95,28.05] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 2467 | 2.2624239 | 11041.3418 | 8.237248 | 1982-1999 –> 2000-2012 | 4.1845877 | 25738.2975 |
Indo-Pacific | (27.95,28.05] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 2467 | 2.1936153 | 10890.9515 | 8.036190 | 1982-1999 –> 2000-2012 | 4.1649943 | 25769.0539 |
Indo-Pacific | (27.95,28.05] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 2467 | 2.2115502 | 10931.1275 | 8.468880 | 1982-1999 –> 2000-2012 | 4.1022689 | 25513.2034 |
Indo-Pacific | (27.95,28.05] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 2467 | 2.2668883 | 11053.0683 | 8.062293 | 1982-1999 –> 2000-2012 | 4.2018862 | 25799.1794 |
Indo-Pacific | (27.95,28.05] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 2467 | 2.1886299 | 10879.7253 | 7.878228 | 1982-1999 –> 2000-2012 | 4.0642895 | 25405.1370 |
Indo-Pacific | (27.95,28.05] | cstar_tref ~ sal + aou + nitrate + phosphate_star | 1354 | 2.4060015 | 6232.0181 | 8.104133 | 2000-2012 –> 2013-2019 | 4.6173063 | 17160.5981 |
Indo-Pacific | (27.95,28.05] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 1354 | 2.4007452 | 6228.0956 | 8.259744 | 2000-2012 –> 2013-2019 | 4.5943605 | 17119.0470 |
Indo-Pacific | (27.95,28.05] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 1354 | 2.4779038 | 6313.7598 | 8.329809 | 2000-2012 –> 2013-2019 | 4.6894540 | 17244.8873 |
Indo-Pacific | (27.95,28.05] | cstar_tref ~ temp + aou + phosphate + phosphate_star | 1354 | 2.4648617 | 6297.4690 | 8.721893 | 2000-2012 –> 2013-2019 | 4.7165003 | 17315.2334 |
Indo-Pacific | (27.95,28.05] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 1354 | 2.4266912 | 6257.2052 | 8.523746 | 2000-2012 –> 2013-2019 | 4.6153211 | 17136.9304 |
Indo-Pacific | (28.05,28.1] | cstar_tref ~ sal + aou + silicate + phosphate | 1718 | 1.9503440 | 7182.7407 | 8.816710 | 1982-1999 –> 2000-2012 | 3.5709134 | 16908.7065 |
Indo-Pacific | (28.05,28.1] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 1718 | 1.8450332 | 6994.0133 | 9.467590 | 1982-1999 –> 2000-2012 | 3.4414783 | 16645.3685 |
Indo-Pacific | (28.05,28.1] | cstar_tref ~ sal + silicate + phosphate + phosphate_star | 1718 | 1.9539957 | 7189.1680 | 8.935869 | 1982-1999 –> 2000-2012 | 3.5950802 | 16979.3910 |
Indo-Pacific | (28.05,28.1] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 1718 | 1.8612616 | 7024.1034 | 10.244079 | 1982-1999 –> 2000-2012 | 3.4707315 | 16716.9636 |
Indo-Pacific | (28.05,28.1] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 1718 | 1.8032691 | 6915.3424 | 9.697645 | 1982-1999 –> 2000-2012 | 3.4298781 | 16662.3098 |
Indo-Pacific | (28.05,28.1] | cstar_tref ~ aou + silicate + phosphate + phosphate_star | 966 | 2.1066397 | 4192.9110 | 9.987464 | 2000-2012 –> 2013-2019 | 3.9914816 | 11258.2717 |
Indo-Pacific | (28.05,28.1] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 966 | 2.0390556 | 4131.9137 | 9.747515 | 2000-2012 –> 2013-2019 | 3.8840888 | 11125.9270 |
Indo-Pacific | (28.05,28.1] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 966 | 2.0868098 | 4176.6389 | 10.548800 | 2000-2012 –> 2013-2019 | 3.9480714 | 11200.7423 |
Indo-Pacific | (28.05,28.1] | cstar_tref ~ temp + aou + silicate + phosphate | 966 | 2.1188554 | 4204.0818 | 10.037184 | 2000-2012 –> 2013-2019 | 4.0138656 | 11287.9289 |
Indo-Pacific | (28.05,28.1] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 966 | 2.0001288 | 4094.6740 | 9.111786 | 2000-2012 –> 2013-2019 | 3.8033978 | 11010.0164 |
Indo-Pacific | (28.1, Inf] | cstar_tref ~ sal + aou + silicate + phosphate | 14627 | 1.4320006 | 52025.9353 | 13.806990 | 1982-1999 –> 2000-2012 | 2.7088012 | 119684.1812 |
Indo-Pacific | (28.1, Inf] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 14627 | 1.3378772 | 50039.0036 | 16.225048 | 1982-1999 –> 2000-2012 | 2.5090135 | 114186.0580 |
Indo-Pacific | (28.1, Inf] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 14627 | 1.3692488 | 50717.0570 | 13.004762 | 1982-1999 –> 2000-2012 | 2.4951048 | 113260.4541 |
Indo-Pacific | (28.1, Inf] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 14627 | 1.3940533 | 51242.2624 | 17.034744 | 1982-1999 –> 2000-2012 | 2.6340769 | 117713.8450 |
Indo-Pacific | (28.1, Inf] | cstar_tref ~ temp + nitrate + silicate + phosphate_star | 14627 | 1.5669226 | 54659.9964 | 17.476131 | 1982-1999 –> 2000-2012 | 2.8961915 | 123956.0907 |
Indo-Pacific | (28.1, Inf] | cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star | 7804 | 1.6305548 | 29791.8606 | 9.567306 | 2000-2012 –> 2013-2019 | 3.1514890 | 83582.4147 |
Indo-Pacific | (28.1, Inf] | cstar_tref ~ sal + aou + silicate + phosphate | 7804 | 1.5693631 | 29192.8476 | 10.689506 | 2000-2012 –> 2013-2019 | 3.0013637 | 81218.7829 |
Indo-Pacific | (28.1, Inf] | cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star | 7804 | 1.4923380 | 28409.3615 | 12.644005 | 2000-2012 –> 2013-2019 | 2.8302151 | 78448.3652 |
Indo-Pacific | (28.1, Inf] | cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star | 7804 | 1.5858456 | 29357.9189 | 10.996188 | 2000-2012 –> 2013-2019 | 2.9550945 | 80074.9759 |
Indo-Pacific | (28.1, Inf] | cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star | 7804 | 1.5521124 | 29022.3323 | 13.774789 | 2000-2012 –> 2013-2019 | 2.9461657 | 80264.5947 |
lm_best %>%
group_by(basin, gamma_slab, eras) %>%
summarise(rmse_sum_mean = mean(rmse_sum),
ais_sum_mean = mean(aic_sum)) %>%
ungroup() %>%
kable() %>%
add_header_above() %>%
kable_styling() %>%
scroll_box(width = "100%", height = "400px")
basin | gamma_slab | eras | rmse_sum_mean | ais_sum_mean |
---|---|---|---|---|
Atlantic | (-Inf,26] | 1982-1999 –> 2000-2012 | 2.8605843 | 1324.1804 |
Atlantic | (-Inf,26] | 2000-2012 –> 2013-2019 | 2.7698324 | 813.6363 |
Atlantic | (26,26.5] | 1982-1999 –> 2000-2012 | 8.0246884 | 14451.4983 |
Atlantic | (26,26.5] | 2000-2012 –> 2013-2019 | 7.9609365 | 9064.3843 |
Atlantic | (26.5,26.75] | 1982-1999 –> 2000-2012 | 6.3854352 | 16984.2579 |
Atlantic | (26.5,26.75] | 2000-2012 –> 2013-2019 | 6.6781485 | 10784.6780 |
Atlantic | (26.75,27] | 1982-1999 –> 2000-2012 | 3.8002865 | 22596.3689 |
Atlantic | (26.75,27] | 2000-2012 –> 2013-2019 | 4.6456606 | 16341.7714 |
Atlantic | (27,27.25] | 1982-1999 –> 2000-2012 | 3.9081191 | 19290.2041 |
Atlantic | (27,27.25] | 2000-2012 –> 2013-2019 | 4.3604114 | 13820.3694 |
Atlantic | (27.25,27.5] | 1982-1999 –> 2000-2012 | 4.6172390 | 21904.0994 |
Atlantic | (27.25,27.5] | 2000-2012 –> 2013-2019 | 5.4190031 | 14976.9668 |
Atlantic | (27.5,27.75] | 1982-1999 –> 2000-2012 | 5.0217940 | 30399.0145 |
Atlantic | (27.5,27.75] | 2000-2012 –> 2013-2019 | 5.7879021 | 21193.7410 |
Atlantic | (27.75,27.85] | 1982-1999 –> 2000-2012 | 3.6297437 | 9500.8720 |
Atlantic | (27.75,27.85] | 2000-2012 –> 2013-2019 | 3.8350219 | 6367.6723 |
Atlantic | (27.85,28.05] | 1982-1999 –> 2000-2012 | 9.5992010 | 31008.1827 |
Atlantic | (27.85,28.05] | 2000-2012 –> 2013-2019 | 9.7014687 | 20589.9362 |
Atlantic | (28.05,28.1] | 1982-1999 –> 2000-2012 | 1.9842574 | 5263.7708 |
Atlantic | (28.05,28.1] | 2000-2012 –> 2013-2019 | 2.1958208 | 3753.6191 |
Atlantic | (28.1,28.15] | 1982-1999 –> 2000-2012 | 1.4613609 | 4853.7233 |
Atlantic | (28.1,28.15] | 2000-2012 –> 2013-2019 | 1.7131888 | 3585.6454 |
Atlantic | (28.15,28.2] | 1982-1999 –> 2000-2012 | 1.1174945 | 6280.0541 |
Atlantic | (28.15,28.2] | 2000-2012 –> 2013-2019 | 1.3889822 | 4670.2708 |
Atlantic | (28.2, Inf] | 1982-1999 –> 2000-2012 | 0.7240464 | 4803.2578 |
Atlantic | (28.2, Inf] | 2000-2012 –> 2013-2019 | 0.8547593 | 4464.4420 |
Indo-Pacific | (-Inf,26] | 1982-1999 –> 2000-2012 | 14.0293992 | 84073.9001 |
Indo-Pacific | (-Inf,26] | 2000-2012 –> 2013-2019 | 13.4456790 | 53955.4892 |
Indo-Pacific | (26,26.5] | 1982-1999 –> 2000-2012 | 9.2992918 | 78117.7980 |
Indo-Pacific | (26,26.5] | 2000-2012 –> 2013-2019 | 9.4868445 | 50317.3372 |
Indo-Pacific | (26.5,26.75] | 1982-1999 –> 2000-2012 | 7.9202707 | 60547.1638 |
Indo-Pacific | (26.5,26.75] | 2000-2012 –> 2013-2019 | 8.3232483 | 39620.7108 |
Indo-Pacific | (26.75,27] | 1982-1999 –> 2000-2012 | 8.0377962 | 72057.2992 |
Indo-Pacific | (26.75,27] | 2000-2012 –> 2013-2019 | 8.9683592 | 47808.6636 |
Indo-Pacific | (27,27.25] | 1982-1999 –> 2000-2012 | 7.7720655 | 84277.1360 |
Indo-Pacific | (27,27.25] | 2000-2012 –> 2013-2019 | 9.2166941 | 58051.7336 |
Indo-Pacific | (27.25,27.85] | 1982-1999 –> 2000-2012 | 6.9986282 | 174953.5573 |
Indo-Pacific | (27.25,27.85] | 2000-2012 –> 2013-2019 | 8.6963056 | 122919.1686 |
Indo-Pacific | (27.85,27.95] | 1982-1999 –> 2000-2012 | 4.8874870 | 31608.2055 |
Indo-Pacific | (27.85,27.95] | 2000-2012 –> 2013-2019 | 6.0593166 | 22223.2856 |
Indo-Pacific | (27.95,28.05] | 1982-1999 –> 2000-2012 | 4.1436053 | 25644.9742 |
Indo-Pacific | (27.95,28.05] | 2000-2012 –> 2013-2019 | 4.6465884 | 17195.3393 |
Indo-Pacific | (28.05,28.1] | 1982-1999 –> 2000-2012 | 3.5016163 | 16782.5479 |
Indo-Pacific | (28.05,28.1] | 2000-2012 –> 2013-2019 | 3.9281810 | 11176.5773 |
Indo-Pacific | (28.1, Inf] | 1982-1999 –> 2000-2012 | 2.6486376 | 117760.1258 |
Indo-Pacific | (28.1, Inf] | 2000-2012 –> 2013-2019 | 2.9768656 | 80717.8267 |
A data frame to map the target variable is prepared.
# create table with two era belonging to one eras
eras_forward <- lm_all_fitted_wide %>%
arrange(era) %>%
group_by(basin, gamma_slab, model) %>%
mutate(eras = paste(era, lead(era), sep = " --> ")) %>%
ungroup() %>%
select(era, eras) %>%
unique()
eras_backward <- lm_all_fitted_wide %>%
arrange(era) %>%
group_by(basin, gamma_slab, model) %>%
mutate(eras = paste(lag(era), era, sep = " --> ")) %>%
ungroup() %>%
select(era, eras) %>%
unique()
eras_era <- full_join(eras_backward, eras_forward) %>%
filter(str_detect(eras, "NA") == FALSE)
# extend best model selection from eras to era
lm_best_target <- full_join(
lm_best %>% select(basin, gamma_slab, model, eras),
eras_era)
lm_best_target <- left_join(lm_best_target, lm_all_fitted_wide)
rm(eras_era, eras_forward, eras_backward,
lm_all_fitted)
# plot model diagnostics, if activated
if (params_local$plot_all_figures == "y") {
# mutate predictors column
lm_best_plot <- lm_best_target %>%
select(basin, gamma_slab, model, eras, era) %>%
mutate(
predictors = str_remove(model, paste(params_local$MLR_target, "~ ")),
predictors = str_replace_all(predictors, "\\+ ", "")
)
# loop across all basins, era, gamma slabs, and MLRs
# fit all MLR models
for (i_basin in unique(GLODAP$basin)) {
for (i_era in unique(GLODAP$era)) {
#i_basin <- unique(GLODAP$basin)[1]
#i_era <- unique(GLODAP$era)[2]
print(i_basin)
print(i_era)
GLODAP_basin_era <- GLODAP %>%
filter(basin == i_basin, era == i_era)
for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
#i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
print(i_gamma_slab)
GLODAP_basin_era_slab <- GLODAP_basin_era %>%
filter(gamma_slab == i_gamma_slab)
lm_best_basin_era_slab <- lm_best_plot %>%
filter(basin == i_basin, era == i_era, gamma_slab == i_gamma_slab)
for (i_eras in unique(lm_best_basin_era_slab$eras)) {
#i_eras <- unique(lm_best_basin_era_slab$eras)[1]
print(i_eras)
lm_best_basin_era_slab_eras <- lm_best_basin_era_slab %>%
filter(eras == i_eras)
for (i_predictors in unique(lm_best_basin_era_slab_eras$predictors)) {
#i_predictors <- unique(lm_best_basin_era_slab$predictors)[1]
print(i_predictors)
# extract one model definition
i_lm <- lm_all %>%
filter(predictors == i_predictors) %>%
select(lm_coeff) %>%
pull()
# fit model
if (params_local$MLR_type == "rlm") {
i_lm_fit <- MASS::rlm(as.formula(i_lm),
data = GLODAP_basin_era_slab)
}
if (params_local$MLR_type == "lm") {
i_lm_fit <- lm(as.formula(i_lm),
data = GLODAP_basin_era_slab)
}
# plot model diagnostics vs predictors
p_model_predictors <- ggnostic(
i_lm_fit,
columnsY = c(params_local$MLR_target, ".fitted", ".resid"),
title = paste(
"era:",
i_era,
"| eras:",
i_eras,
"| basin:",
i_basin,
"| gamma slab:",
i_gamma_slab,
"| predictors:",
i_predictors
)
)
ggsave(
plot = p_model_predictors,
path = paste(path_version_figures, "eMLR_diagnostics/", sep = ""),
filename = paste(
"MLR_residuals",
i_era,
i_eras,
i_basin,
i_gamma_slab,
i_predictors,
"predictors.png",
sep = "_"
),
width = 14,
height = 8
)
rm(p_model_predictors)
# plot model diagnostics vs location
GLODAP_basin_era_slab <- GLODAP_basin_era_slab %>%
mutate(fitted = i_lm_fit$fitted.values,
residuals = i_lm_fit$residuals)
GLODAP_basin_era_slab_long <- GLODAP_basin_era_slab %>%
pivot_longer(cols = c(params_local$MLR_target , fitted, residuals),
names_to = "estimate",
values_to = "value"
) %>%
pivot_longer(cols = c(lat, lon, depth),
names_to = "coordinate_type",
values_to = "coordinate_value"
)
p_model_coordinate <- GLODAP_basin_era_slab_long %>%
ggplot(aes(coordinate_value, value)) +
geom_bin2d() +
scale_fill_viridis_c() +
labs(
title = paste(
"era:",
i_era,
"| eras:",
i_eras,
"| basin:",
i_basin,
"| gamma slab:",
i_gamma_slab,
"| predictors:",
i_predictors
)
) +
facet_grid(estimate~coordinate_type,
scales = "free")
ggsave(
plot = p_model_coordinate,
path = paste(path_version_figures, "eMLR_diagnostics", sep = ""),
filename = paste(
"Location_MLR_residuals",
i_era,
i_eras,
i_basin,
i_gamma_slab,
i_predictors,
"predictors.png",
sep = "_"
),
width = 14,
height = 8
)
rm(p_model_coordinate)
}
}
}
}
}
rm(
lm_best_plot,
lm_best_basin_era_slab,
i_rmse,
GLODAP_basin_era,
GLODAP_basin_era_slab,
i_lm,
lm_all_fitted,
i_basin,
i_era,
i_gamma_slab,
i_predictors,
lm_all,
i_aic,
i_n_predictors,
i_resid_max
)
}
Individual residual plots of the MLR models for each basin, era, eras and neutral density (gamma) slab are available at:
/nfs/kryo/work/jenmueller/emlr_cant/model/v_XXX/figures/eMLR_diagnostics/
A data frame of coefficient offsets is prepared to facilitate the direct mapping of Cant.
# pivot long format
lm_best_long <- lm_best_target %>%
pivot_longer(cols = starts_with("coeff_"),
names_to = "term",
values_to = "estimate",
names_prefix = "coeff_")
# subtract coefficients of adjacent era
lm_best_long <- lm_best_long %>%
arrange(era) %>%
group_by(basin, gamma_slab, eras, model, term) %>%
mutate(delta_coeff = estimate - lag(estimate)) %>%
ungroup() %>%
arrange(basin, gamma_slab, model, term, eras) %>%
drop_na() %>%
select(-c(era,estimate))
# pivot back to wide format
lm_best_cant <- lm_best_long %>%
pivot_wider(values_from = delta_coeff,
names_from = term,
names_prefix = "delta_coeff_",
values_fill = 0)
lm_best_target %>%
select(
basin,
gamma_slab,
model,
eras,
era,
starts_with("coeff_")
) %>%
write_csv(paste(path_version_data,
"lm_best_target.csv",
sep = ""))
lm_best_cant %>%
select(
basin,
gamma_slab,
model,
eras,
starts_with("delta_coeff_")
) %>%
write_csv(paste(path_version_data,
"lm_best_cant.csv",
sep = ""))
The selection criterion (aic) was plotted against the number of predictors (limited to 3 - 9).
lm_all_fitted_wide %>%
ggplot(aes(as.factor(n_predictors),
!!sym(params_local$MLR_criterion),
col = basin)) +
geom_hline(yintercept = 10) +
geom_boxplot() +
facet_grid(gamma_slab~era) +
scale_color_brewer(palette = "Set1") +
labs(x="Number of predictors")
Version | Author | Date |
---|---|---|
89c3e58 | Donghe-Zhu | 2021-03-03 |
c911669 | Donghe-Zhu | 2021-03-03 |
b71c719 | Donghe-Zhu | 2021-03-01 |
13666ca | Donghe-Zhu | 2021-03-01 |
c6e60fe | Donghe-Zhu | 2021-03-01 |
7a388f7 | Donghe-Zhu | 2021-03-01 |
799e913 | Donghe-Zhu | 2021-03-01 |
66ff99f | Donghe-Zhu | 2021-03-01 |
ac9bb7a | Donghe-Zhu | 2021-02-28 |
efdc047 | Donghe-Zhu | 2021-02-28 |
e9a7418 | Donghe-Zhu | 2021-02-28 |
e152917 | Donghe-Zhu | 2021-02-28 |
287123c | Donghe-Zhu | 2021-02-27 |
54d5b5b | Donghe-Zhu | 2021-02-27 |
330f064 | Donghe-Zhu | 2021-02-27 |
adbc9bc | Donghe-Zhu | 2021-02-27 |
5937141 | Donghe-Zhu | 2021-02-27 |
4414bbf | Donghe-Zhu | 2021-02-27 |
a265efb | Donghe-Zhu | 2021-02-27 |
19edd1e | Donghe-Zhu | 2021-02-27 |
f20483f | Donghe-Zhu | 2021-02-26 |
6a2c7b3 | Donghe-Zhu | 2021-02-25 |
02b976d | Donghe-Zhu | 2021-02-24 |
354c224 | Donghe-Zhu | 2021-02-24 |
1a0a88a | Donghe-Zhu | 2021-02-24 |
57f701e | Donghe-Zhu | 2021-02-24 |
06f3149 | Donghe-Zhu | 2021-02-16 |
401eab3 | Donghe-Zhu | 2021-02-15 |
e3bba84 | Donghe-Zhu | 2021-02-15 |
5dce4b1 | Donghe-Zhu | 2021-02-15 |
4469a0c | Donghe-Zhu | 2021-02-13 |
5ae6a69 | Donghe-Zhu | 2021-02-10 |
05385dc | Donghe-Zhu | 2021-02-10 |
f791ae4 | Donghe-Zhu | 2021-02-09 |
f71ae34 | Donghe-Zhu | 2021-02-09 |
c011832 | Donghe-Zhu | 2021-02-09 |
a145fa7 | Donghe-Zhu | 2021-02-09 |
c344e42 | Donghe-Zhu | 2021-02-08 |
2f095d7 | Donghe-Zhu | 2021-02-07 |
1fad5f1 | Donghe-Zhu | 2021-02-07 |
ca03c39 | Donghe-Zhu | 2021-02-07 |
cd7c52c | Donghe-Zhu | 2021-02-04 |
bcf84f4 | Donghe-Zhu | 2021-02-02 |
a518739 | Donghe-Zhu | 2021-02-01 |
61666de | Donghe-Zhu | 2021-01-31 |
865b582 | Donghe-Zhu | 2021-01-31 |
3e68089 | Donghe-Zhu | 2021-01-31 |
ecf335c | Donghe-Zhu | 2021-01-31 |
a618965 | Donghe-Zhu | 2021-01-31 |
59e006e | Donghe-Zhu | 2021-01-31 |
a1c8f87 | Donghe-Zhu | 2021-01-31 |
ae5c18f | Donghe-Zhu | 2021-01-31 |
b50fe52 | Donghe-Zhu | 2021-01-31 |
ac99ae5 | jens-daniel-mueller | 2021-01-29 |
b5bdcaf | Donghe-Zhu | 2021-01-29 |
442010d | Donghe-Zhu | 2021-01-29 |
372adf5 | Donghe-Zhu | 2021-01-29 |
af8788e | Donghe-Zhu | 2021-01-29 |
21c91c9 | Donghe-Zhu | 2021-01-29 |
eded038 | Donghe-Zhu | 2021-01-29 |
541d4dd | Donghe-Zhu | 2021-01-29 |
6a75576 | Donghe-Zhu | 2021-01-28 |
16fba40 | Donghe-Zhu | 2021-01-28 |
12bc567 | Donghe-Zhu | 2021-01-27 |
ceed31b | Donghe-Zhu | 2021-01-27 |
342402d | Donghe-Zhu | 2021-01-27 |
5bad5c2 | Donghe-Zhu | 2021-01-27 |
61efb56 | Donghe-Zhu | 2021-01-25 |
48f638e | Donghe-Zhu | 2021-01-25 |
c1cec47 | Donghe-Zhu | 2021-01-25 |
05ffb0c | Donghe-Zhu | 2021-01-25 |
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
a2f0d56 | Donghe-Zhu | 2021-01-23 |
28509fc | Donghe-Zhu | 2021-01-23 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
7891955 | Donghe-Zhu | 2021-01-21 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
17dee1d | jens-daniel-mueller | 2021-01-13 |
7cdea0c | jens-daniel-mueller | 2021-01-06 |
fa85b93 | jens-daniel-mueller | 2021-01-06 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
fb8a752 | Donghe-Zhu | 2020-12-23 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
lm_best_target %>%
ggplot(aes("",
!!sym(params_local$MLR_criterion),
col = basin)) +
geom_hline(yintercept = 10) +
geom_boxplot() +
facet_grid(gamma_slab~era) +
scale_color_brewer(palette = "Set1") +
labs(x="Number of predictors pooled")
Version | Author | Date |
---|---|---|
89c3e58 | Donghe-Zhu | 2021-03-03 |
c407a50 | Donghe-Zhu | 2021-03-03 |
c911669 | Donghe-Zhu | 2021-03-03 |
b71c719 | Donghe-Zhu | 2021-03-01 |
13666ca | Donghe-Zhu | 2021-03-01 |
c6e60fe | Donghe-Zhu | 2021-03-01 |
7a388f7 | Donghe-Zhu | 2021-03-01 |
799e913 | Donghe-Zhu | 2021-03-01 |
66ff99f | Donghe-Zhu | 2021-03-01 |
ac9bb7a | Donghe-Zhu | 2021-02-28 |
efdc047 | Donghe-Zhu | 2021-02-28 |
e9a7418 | Donghe-Zhu | 2021-02-28 |
e152917 | Donghe-Zhu | 2021-02-28 |
287123c | Donghe-Zhu | 2021-02-27 |
54d5b5b | Donghe-Zhu | 2021-02-27 |
330f064 | Donghe-Zhu | 2021-02-27 |
adbc9bc | Donghe-Zhu | 2021-02-27 |
5937141 | Donghe-Zhu | 2021-02-27 |
4414bbf | Donghe-Zhu | 2021-02-27 |
a265efb | Donghe-Zhu | 2021-02-27 |
19edd1e | Donghe-Zhu | 2021-02-27 |
f20483f | Donghe-Zhu | 2021-02-26 |
6a2c7b3 | Donghe-Zhu | 2021-02-25 |
354c224 | Donghe-Zhu | 2021-02-24 |
1a0a88a | Donghe-Zhu | 2021-02-24 |
57f701e | Donghe-Zhu | 2021-02-24 |
06f3149 | Donghe-Zhu | 2021-02-16 |
401eab3 | Donghe-Zhu | 2021-02-15 |
e3bba84 | Donghe-Zhu | 2021-02-15 |
5dce4b1 | Donghe-Zhu | 2021-02-15 |
4469a0c | Donghe-Zhu | 2021-02-13 |
5ae6a69 | Donghe-Zhu | 2021-02-10 |
05385dc | Donghe-Zhu | 2021-02-10 |
f791ae4 | Donghe-Zhu | 2021-02-09 |
f71ae34 | Donghe-Zhu | 2021-02-09 |
c011832 | Donghe-Zhu | 2021-02-09 |
a145fa7 | Donghe-Zhu | 2021-02-09 |
c344e42 | Donghe-Zhu | 2021-02-08 |
2f095d7 | Donghe-Zhu | 2021-02-07 |
1fad5f1 | Donghe-Zhu | 2021-02-07 |
ca03c39 | Donghe-Zhu | 2021-02-07 |
e2ffc14 | Donghe-Zhu | 2021-02-05 |
cd7c52c | Donghe-Zhu | 2021-02-04 |
bcf84f4 | Donghe-Zhu | 2021-02-02 |
a518739 | Donghe-Zhu | 2021-02-01 |
61666de | Donghe-Zhu | 2021-01-31 |
865b582 | Donghe-Zhu | 2021-01-31 |
3e68089 | Donghe-Zhu | 2021-01-31 |
ecf335c | Donghe-Zhu | 2021-01-31 |
a618965 | Donghe-Zhu | 2021-01-31 |
59e006e | Donghe-Zhu | 2021-01-31 |
a1c8f87 | Donghe-Zhu | 2021-01-31 |
ae5c18f | Donghe-Zhu | 2021-01-31 |
b50fe52 | Donghe-Zhu | 2021-01-31 |
ac99ae5 | jens-daniel-mueller | 2021-01-29 |
b5bdcaf | Donghe-Zhu | 2021-01-29 |
442010d | Donghe-Zhu | 2021-01-29 |
372adf5 | Donghe-Zhu | 2021-01-29 |
af8788e | Donghe-Zhu | 2021-01-29 |
21c91c9 | Donghe-Zhu | 2021-01-29 |
eded038 | Donghe-Zhu | 2021-01-29 |
541d4dd | Donghe-Zhu | 2021-01-29 |
6a75576 | Donghe-Zhu | 2021-01-28 |
16fba40 | Donghe-Zhu | 2021-01-28 |
12bc567 | Donghe-Zhu | 2021-01-27 |
ceed31b | Donghe-Zhu | 2021-01-27 |
342402d | Donghe-Zhu | 2021-01-27 |
5bad5c2 | Donghe-Zhu | 2021-01-27 |
61efb56 | Donghe-Zhu | 2021-01-25 |
48f638e | Donghe-Zhu | 2021-01-25 |
c1cec47 | Donghe-Zhu | 2021-01-25 |
05ffb0c | Donghe-Zhu | 2021-01-25 |
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
a2f0d56 | Donghe-Zhu | 2021-01-23 |
28509fc | Donghe-Zhu | 2021-01-23 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
7891955 | Donghe-Zhu | 2021-01-21 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
17dee1d | jens-daniel-mueller | 2021-01-13 |
7cdea0c | jens-daniel-mueller | 2021-01-06 |
fa85b93 | jens-daniel-mueller | 2021-01-06 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
fb8a752 | Donghe-Zhu | 2020-12-23 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
RMSE was plotted to compare the agreement for one model applied to two adjacent eras (ie check whether the same predictor combination performs equal in both eras).
# find max rmse to scale axis
max_rmse <-
max(c(lm_all_fitted_wide_eras$rmse,
lm_all_fitted_wide_eras$rmse_sum - lm_all_fitted_wide_eras$rmse))
lm_all_fitted_wide_eras %>%
ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
geom_point() +
scale_color_viridis_d() +
coord_equal(xlim = c(0,max_rmse),
ylim = c(0,max_rmse)) +
facet_grid(eras ~ basin)
Version | Author | Date |
---|---|---|
89c3e58 | Donghe-Zhu | 2021-03-03 |
c911669 | Donghe-Zhu | 2021-03-03 |
13666ca | Donghe-Zhu | 2021-03-01 |
c6e60fe | Donghe-Zhu | 2021-03-01 |
7a388f7 | Donghe-Zhu | 2021-03-01 |
799e913 | Donghe-Zhu | 2021-03-01 |
66ff99f | Donghe-Zhu | 2021-03-01 |
ac9bb7a | Donghe-Zhu | 2021-02-28 |
efdc047 | Donghe-Zhu | 2021-02-28 |
e9a7418 | Donghe-Zhu | 2021-02-28 |
287123c | Donghe-Zhu | 2021-02-27 |
54d5b5b | Donghe-Zhu | 2021-02-27 |
330f064 | Donghe-Zhu | 2021-02-27 |
adbc9bc | Donghe-Zhu | 2021-02-27 |
5937141 | Donghe-Zhu | 2021-02-27 |
4414bbf | Donghe-Zhu | 2021-02-27 |
a265efb | Donghe-Zhu | 2021-02-27 |
19edd1e | Donghe-Zhu | 2021-02-27 |
f20483f | Donghe-Zhu | 2021-02-26 |
6a2c7b3 | Donghe-Zhu | 2021-02-25 |
02b976d | Donghe-Zhu | 2021-02-24 |
354c224 | Donghe-Zhu | 2021-02-24 |
1a0a88a | Donghe-Zhu | 2021-02-24 |
57f701e | Donghe-Zhu | 2021-02-24 |
06f3149 | Donghe-Zhu | 2021-02-16 |
e3bba84 | Donghe-Zhu | 2021-02-15 |
5dce4b1 | Donghe-Zhu | 2021-02-15 |
4469a0c | Donghe-Zhu | 2021-02-13 |
5ae6a69 | Donghe-Zhu | 2021-02-10 |
05385dc | Donghe-Zhu | 2021-02-10 |
f791ae4 | Donghe-Zhu | 2021-02-09 |
f71ae34 | Donghe-Zhu | 2021-02-09 |
c011832 | Donghe-Zhu | 2021-02-09 |
a145fa7 | Donghe-Zhu | 2021-02-09 |
c344e42 | Donghe-Zhu | 2021-02-08 |
2f095d7 | Donghe-Zhu | 2021-02-07 |
1fad5f1 | Donghe-Zhu | 2021-02-07 |
ca03c39 | Donghe-Zhu | 2021-02-07 |
cd7c52c | Donghe-Zhu | 2021-02-04 |
bcf84f4 | Donghe-Zhu | 2021-02-02 |
61666de | Donghe-Zhu | 2021-01-31 |
865b582 | Donghe-Zhu | 2021-01-31 |
3e68089 | Donghe-Zhu | 2021-01-31 |
ecf335c | Donghe-Zhu | 2021-01-31 |
a618965 | Donghe-Zhu | 2021-01-31 |
59e006e | Donghe-Zhu | 2021-01-31 |
a1c8f87 | Donghe-Zhu | 2021-01-31 |
ae5c18f | Donghe-Zhu | 2021-01-31 |
b50fe52 | Donghe-Zhu | 2021-01-31 |
ac99ae5 | jens-daniel-mueller | 2021-01-29 |
b5bdcaf | Donghe-Zhu | 2021-01-29 |
442010d | Donghe-Zhu | 2021-01-29 |
372adf5 | Donghe-Zhu | 2021-01-29 |
af8788e | Donghe-Zhu | 2021-01-29 |
21c91c9 | Donghe-Zhu | 2021-01-29 |
eded038 | Donghe-Zhu | 2021-01-29 |
541d4dd | Donghe-Zhu | 2021-01-29 |
6a75576 | Donghe-Zhu | 2021-01-28 |
16fba40 | Donghe-Zhu | 2021-01-28 |
12bc567 | Donghe-Zhu | 2021-01-27 |
ceed31b | Donghe-Zhu | 2021-01-27 |
342402d | Donghe-Zhu | 2021-01-27 |
5bad5c2 | Donghe-Zhu | 2021-01-27 |
61efb56 | Donghe-Zhu | 2021-01-25 |
48f638e | Donghe-Zhu | 2021-01-25 |
c1cec47 | Donghe-Zhu | 2021-01-25 |
05ffb0c | Donghe-Zhu | 2021-01-25 |
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
a2f0d56 | Donghe-Zhu | 2021-01-23 |
28509fc | Donghe-Zhu | 2021-01-23 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
7891955 | Donghe-Zhu | 2021-01-21 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
17dee1d | jens-daniel-mueller | 2021-01-13 |
7cdea0c | jens-daniel-mueller | 2021-01-06 |
fa85b93 | jens-daniel-mueller | 2021-01-06 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
fb8a752 | Donghe-Zhu | 2020-12-23 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
rm(max_rmse)
# find max rmse to scale axis
max_rmse <-
max(c(lm_best$rmse,
lm_best$rmse_sum - lm_best$rmse))
lm_best %>%
ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
geom_point() +
scale_color_viridis_d() +
coord_equal(xlim = c(0,max_rmse),
ylim = c(0,max_rmse)) +
facet_grid(eras ~ basin)
Version | Author | Date |
---|---|---|
89c3e58 | Donghe-Zhu | 2021-03-03 |
c407a50 | Donghe-Zhu | 2021-03-03 |
c911669 | Donghe-Zhu | 2021-03-03 |
b71c719 | Donghe-Zhu | 2021-03-01 |
13666ca | Donghe-Zhu | 2021-03-01 |
c6e60fe | Donghe-Zhu | 2021-03-01 |
7a388f7 | Donghe-Zhu | 2021-03-01 |
799e913 | Donghe-Zhu | 2021-03-01 |
66ff99f | Donghe-Zhu | 2021-03-01 |
ac9bb7a | Donghe-Zhu | 2021-02-28 |
efdc047 | Donghe-Zhu | 2021-02-28 |
e9a7418 | Donghe-Zhu | 2021-02-28 |
e152917 | Donghe-Zhu | 2021-02-28 |
287123c | Donghe-Zhu | 2021-02-27 |
54d5b5b | Donghe-Zhu | 2021-02-27 |
330f064 | Donghe-Zhu | 2021-02-27 |
adbc9bc | Donghe-Zhu | 2021-02-27 |
5937141 | Donghe-Zhu | 2021-02-27 |
4414bbf | Donghe-Zhu | 2021-02-27 |
a265efb | Donghe-Zhu | 2021-02-27 |
19edd1e | Donghe-Zhu | 2021-02-27 |
f20483f | Donghe-Zhu | 2021-02-26 |
6a2c7b3 | Donghe-Zhu | 2021-02-25 |
354c224 | Donghe-Zhu | 2021-02-24 |
1a0a88a | Donghe-Zhu | 2021-02-24 |
57f701e | Donghe-Zhu | 2021-02-24 |
06f3149 | Donghe-Zhu | 2021-02-16 |
401eab3 | Donghe-Zhu | 2021-02-15 |
e3bba84 | Donghe-Zhu | 2021-02-15 |
5dce4b1 | Donghe-Zhu | 2021-02-15 |
4469a0c | Donghe-Zhu | 2021-02-13 |
5ae6a69 | Donghe-Zhu | 2021-02-10 |
05385dc | Donghe-Zhu | 2021-02-10 |
f791ae4 | Donghe-Zhu | 2021-02-09 |
f71ae34 | Donghe-Zhu | 2021-02-09 |
c011832 | Donghe-Zhu | 2021-02-09 |
a145fa7 | Donghe-Zhu | 2021-02-09 |
c344e42 | Donghe-Zhu | 2021-02-08 |
2f095d7 | Donghe-Zhu | 2021-02-07 |
1fad5f1 | Donghe-Zhu | 2021-02-07 |
ca03c39 | Donghe-Zhu | 2021-02-07 |
e2ffc14 | Donghe-Zhu | 2021-02-05 |
cd7c52c | Donghe-Zhu | 2021-02-04 |
bcf84f4 | Donghe-Zhu | 2021-02-02 |
a518739 | Donghe-Zhu | 2021-02-01 |
61666de | Donghe-Zhu | 2021-01-31 |
865b582 | Donghe-Zhu | 2021-01-31 |
3e68089 | Donghe-Zhu | 2021-01-31 |
ecf335c | Donghe-Zhu | 2021-01-31 |
a618965 | Donghe-Zhu | 2021-01-31 |
59e006e | Donghe-Zhu | 2021-01-31 |
a1c8f87 | Donghe-Zhu | 2021-01-31 |
ae5c18f | Donghe-Zhu | 2021-01-31 |
b50fe52 | Donghe-Zhu | 2021-01-31 |
ac99ae5 | jens-daniel-mueller | 2021-01-29 |
b5bdcaf | Donghe-Zhu | 2021-01-29 |
442010d | Donghe-Zhu | 2021-01-29 |
372adf5 | Donghe-Zhu | 2021-01-29 |
af8788e | Donghe-Zhu | 2021-01-29 |
21c91c9 | Donghe-Zhu | 2021-01-29 |
eded038 | Donghe-Zhu | 2021-01-29 |
541d4dd | Donghe-Zhu | 2021-01-29 |
6a75576 | Donghe-Zhu | 2021-01-28 |
16fba40 | Donghe-Zhu | 2021-01-28 |
12bc567 | Donghe-Zhu | 2021-01-27 |
ceed31b | Donghe-Zhu | 2021-01-27 |
342402d | Donghe-Zhu | 2021-01-27 |
5bad5c2 | Donghe-Zhu | 2021-01-27 |
61efb56 | Donghe-Zhu | 2021-01-25 |
48f638e | Donghe-Zhu | 2021-01-25 |
c1cec47 | Donghe-Zhu | 2021-01-25 |
05ffb0c | Donghe-Zhu | 2021-01-25 |
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
a2f0d56 | Donghe-Zhu | 2021-01-23 |
28509fc | Donghe-Zhu | 2021-01-23 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
7891955 | Donghe-Zhu | 2021-01-21 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
17dee1d | jens-daniel-mueller | 2021-01-13 |
7cdea0c | jens-daniel-mueller | 2021-01-06 |
fa85b93 | jens-daniel-mueller | 2021-01-06 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
fb8a752 | Donghe-Zhu | 2020-12-23 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
rm(max_rmse)
The number of models where a particular predictor was included were counted for each basin, density slab and compared eras
# calculate cases of predictor used
lm_all_stats <- lm_best_long %>%
filter(term != "(Intercept)",
delta_coeff != 0) %>%
group_by(basin, eras, gamma_slab) %>%
count(term) %>%
ungroup() %>%
pivot_wider(values_from = n,
names_from = term,
values_fill = 0)
# print table
lm_all_stats %>%
gt(rowname_col = "gamma_slab",
groupname_col = c("basin", "eras")) %>%
summary_rows(
groups = TRUE,
fns = list(total = "sum")
)
aou | nitrate | phosphate | phosphate_star | sal | silicate | temp | |
---|---|---|---|---|---|---|---|
Atlantic - 1982-1999 --> 2000-2012 | |||||||
(-Inf,26] | 5 | 1 | 4 | 5 | 3 | 2 | 2 |
(26,26.5] | 5 | 3 | 2 | 4 | 1 | 4 | 4 |
(26.5,26.75] | 5 | 1 | 4 | 4 | 2 | 5 | 2 |
(26.75,27] | 5 | 1 | 4 | 4 | 1 | 5 | 3 |
(27,27.25] | 5 | 2 | 3 | 4 | 3 | 5 | 2 |
(27.25,27.5] | 5 | 4 | 1 | 3 | 3 | 5 | 2 |
(27.5,27.75] | 5 | 1 | 4 | 3 | 4 | 3 | 1 |
(27.75,27.85] | 5 | 2 | 3 | 3 | 5 | 4 | 0 |
(27.85,28.05] | 5 | 2 | 3 | 5 | 1 | 3 | 4 |
(28.05,28.1] | 5 | 0 | 5 | 5 | 2 | 3 | 2 |
(28.1,28.15] | 5 | 1 | 4 | 5 | 3 | 4 | 1 |
(28.15,28.2] | 5 | 5 | 0 | 4 | 2 | 3 | 3 |
(28.2, Inf] | 5 | 5 | 0 | 3 | 4 | 3 | 1 |
total | 65.00 | 28.00 | 37.00 | 52.00 | 34.00 | 49.00 | 27.00 |
Atlantic - 2000-2012 --> 2013-2019 | |||||||
(-Inf,26] | 5 | 0 | 4 | 5 | 3 | 3 | 2 |
(26,26.5] | 5 | 3 | 2 | 4 | 1 | 4 | 4 |
(26.5,26.75] | 5 | 1 | 4 | 4 | 2 | 5 | 2 |
(26.75,27] | 5 | 1 | 4 | 4 | 2 | 5 | 2 |
(27,27.25] | 5 | 2 | 2 | 4 | 4 | 5 | 1 |
(27.25,27.5] | 5 | 5 | 0 | 3 | 2 | 5 | 2 |
(27.5,27.75] | 5 | 2 | 3 | 3 | 5 | 4 | 0 |
(27.75,27.85] | 5 | 2 | 3 | 3 | 5 | 4 | 0 |
(27.85,28.05] | 5 | 2 | 3 | 5 | 1 | 3 | 4 |
(28.05,28.1] | 5 | 1 | 4 | 5 | 3 | 3 | 2 |
(28.1,28.15] | 5 | 1 | 4 | 5 | 3 | 3 | 2 |
(28.15,28.2] | 5 | 5 | 0 | 4 | 2 | 3 | 3 |
(28.2, Inf] | 5 | 5 | 0 | 3 | 4 | 3 | 1 |
total | 65.00 | 30.00 | 33.00 | 52.00 | 37.00 | 50.00 | 25.00 |
Indo-Pacific - 1982-1999 --> 2000-2012 | |||||||
(-Inf,26] | 4 | 1 | 4 | 5 | 2 | 4 | 3 |
(26,26.5] | 5 | 1 | 4 | 4 | 1 | 5 | 3 |
(26.5,26.75] | 4 | 2 | 3 | 5 | 1 | 5 | 3 |
(26.75,27] | 5 | 0 | 5 | 5 | 2 | 3 | 2 |
(27,27.25] | 4 | 2 | 3 | 5 | 1 | 4 | 4 |
(27.25,27.85] | 4 | 1 | 3 | 5 | 4 | 5 | 1 |
(27.85,27.95] | 3 | 4 | 1 | 5 | 0 | 3 | 5 |
(27.95,28.05] | 5 | 2 | 3 | 5 | 2 | 5 | 2 |
(28.05,28.1] | 4 | 1 | 4 | 4 | 3 | 5 | 2 |
(28.1, Inf] | 4 | 2 | 3 | 4 | 2 | 5 | 3 |
total | 42.00 | 16.00 | 33.00 | 47.00 | 18.00 | 44.00 | 28.00 |
Indo-Pacific - 2000-2012 --> 2013-2019 | |||||||
(-Inf,26] | 4 | 1 | 4 | 5 | 2 | 4 | 3 |
(26,26.5] | 5 | 1 | 4 | 4 | 1 | 5 | 3 |
(26.5,26.75] | 4 | 2 | 3 | 5 | 1 | 5 | 3 |
(26.75,27] | 5 | 0 | 5 | 5 | 2 | 3 | 2 |
(27,27.25] | 5 | 1 | 4 | 5 | 1 | 4 | 3 |
(27.25,27.85] | 4 | 1 | 3 | 5 | 4 | 5 | 1 |
(27.85,27.95] | 4 | 5 | 0 | 3 | 0 | 3 | 5 |
(27.95,28.05] | 5 | 2 | 3 | 5 | 3 | 3 | 2 |
(28.05,28.1] | 5 | 1 | 4 | 4 | 1 | 5 | 3 |
(28.1, Inf] | 5 | 2 | 3 | 4 | 3 | 5 | 2 |
total | 46.00 | 16.00 | 33.00 | 45.00 | 18.00 | 42.00 | 27.00 |
AIC is an alternative criterion to RMSE to judge model quality, but not (yet) taken into account.
lm_all_fitted_wide_eras %>%
ggplot(aes(rmse, aic, col = gamma_slab)) +
geom_point() +
scale_color_viridis_d() +
facet_grid(eras~basin)
Version | Author | Date |
---|---|---|
89c3e58 | Donghe-Zhu | 2021-03-03 |
c911669 | Donghe-Zhu | 2021-03-03 |
13666ca | Donghe-Zhu | 2021-03-01 |
c6e60fe | Donghe-Zhu | 2021-03-01 |
7a388f7 | Donghe-Zhu | 2021-03-01 |
799e913 | Donghe-Zhu | 2021-03-01 |
66ff99f | Donghe-Zhu | 2021-03-01 |
ac9bb7a | Donghe-Zhu | 2021-02-28 |
efdc047 | Donghe-Zhu | 2021-02-28 |
e9a7418 | Donghe-Zhu | 2021-02-28 |
287123c | Donghe-Zhu | 2021-02-27 |
54d5b5b | Donghe-Zhu | 2021-02-27 |
330f064 | Donghe-Zhu | 2021-02-27 |
adbc9bc | Donghe-Zhu | 2021-02-27 |
5937141 | Donghe-Zhu | 2021-02-27 |
4414bbf | Donghe-Zhu | 2021-02-27 |
a265efb | Donghe-Zhu | 2021-02-27 |
19edd1e | Donghe-Zhu | 2021-02-27 |
f20483f | Donghe-Zhu | 2021-02-26 |
6a2c7b3 | Donghe-Zhu | 2021-02-25 |
02b976d | Donghe-Zhu | 2021-02-24 |
354c224 | Donghe-Zhu | 2021-02-24 |
1a0a88a | Donghe-Zhu | 2021-02-24 |
57f701e | Donghe-Zhu | 2021-02-24 |
06f3149 | Donghe-Zhu | 2021-02-16 |
e3bba84 | Donghe-Zhu | 2021-02-15 |
5dce4b1 | Donghe-Zhu | 2021-02-15 |
4469a0c | Donghe-Zhu | 2021-02-13 |
5ae6a69 | Donghe-Zhu | 2021-02-10 |
05385dc | Donghe-Zhu | 2021-02-10 |
f791ae4 | Donghe-Zhu | 2021-02-09 |
f71ae34 | Donghe-Zhu | 2021-02-09 |
c011832 | Donghe-Zhu | 2021-02-09 |
a145fa7 | Donghe-Zhu | 2021-02-09 |
c344e42 | Donghe-Zhu | 2021-02-08 |
2f095d7 | Donghe-Zhu | 2021-02-07 |
1fad5f1 | Donghe-Zhu | 2021-02-07 |
ca03c39 | Donghe-Zhu | 2021-02-07 |
cd7c52c | Donghe-Zhu | 2021-02-04 |
bcf84f4 | Donghe-Zhu | 2021-02-02 |
61666de | Donghe-Zhu | 2021-01-31 |
865b582 | Donghe-Zhu | 2021-01-31 |
3e68089 | Donghe-Zhu | 2021-01-31 |
ecf335c | Donghe-Zhu | 2021-01-31 |
a618965 | Donghe-Zhu | 2021-01-31 |
59e006e | Donghe-Zhu | 2021-01-31 |
a1c8f87 | Donghe-Zhu | 2021-01-31 |
ae5c18f | Donghe-Zhu | 2021-01-31 |
b50fe52 | Donghe-Zhu | 2021-01-31 |
ac99ae5 | jens-daniel-mueller | 2021-01-29 |
b5bdcaf | Donghe-Zhu | 2021-01-29 |
442010d | Donghe-Zhu | 2021-01-29 |
372adf5 | Donghe-Zhu | 2021-01-29 |
af8788e | Donghe-Zhu | 2021-01-29 |
21c91c9 | Donghe-Zhu | 2021-01-29 |
eded038 | Donghe-Zhu | 2021-01-29 |
541d4dd | Donghe-Zhu | 2021-01-29 |
6a75576 | Donghe-Zhu | 2021-01-28 |
16fba40 | Donghe-Zhu | 2021-01-28 |
12bc567 | Donghe-Zhu | 2021-01-27 |
ceed31b | Donghe-Zhu | 2021-01-27 |
342402d | Donghe-Zhu | 2021-01-27 |
5bad5c2 | Donghe-Zhu | 2021-01-27 |
61efb56 | Donghe-Zhu | 2021-01-25 |
48f638e | Donghe-Zhu | 2021-01-25 |
c1cec47 | Donghe-Zhu | 2021-01-25 |
05ffb0c | Donghe-Zhu | 2021-01-25 |
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
a2f0d56 | Donghe-Zhu | 2021-01-23 |
28509fc | Donghe-Zhu | 2021-01-23 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
7891955 | Donghe-Zhu | 2021-01-21 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
17dee1d | jens-daniel-mueller | 2021-01-13 |
7cdea0c | jens-daniel-mueller | 2021-01-06 |
fa85b93 | jens-daniel-mueller | 2021-01-06 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
fb8a752 | Donghe-Zhu | 2020-12-23 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
lm_best %>%
ggplot(aes(rmse, aic, col = gamma_slab)) +
geom_point() +
scale_color_viridis_d() +
facet_grid(eras~basin)
Version | Author | Date |
---|---|---|
89c3e58 | Donghe-Zhu | 2021-03-03 |
c407a50 | Donghe-Zhu | 2021-03-03 |
c911669 | Donghe-Zhu | 2021-03-03 |
b71c719 | Donghe-Zhu | 2021-03-01 |
13666ca | Donghe-Zhu | 2021-03-01 |
c6e60fe | Donghe-Zhu | 2021-03-01 |
7a388f7 | Donghe-Zhu | 2021-03-01 |
799e913 | Donghe-Zhu | 2021-03-01 |
66ff99f | Donghe-Zhu | 2021-03-01 |
ac9bb7a | Donghe-Zhu | 2021-02-28 |
efdc047 | Donghe-Zhu | 2021-02-28 |
e9a7418 | Donghe-Zhu | 2021-02-28 |
e152917 | Donghe-Zhu | 2021-02-28 |
287123c | Donghe-Zhu | 2021-02-27 |
54d5b5b | Donghe-Zhu | 2021-02-27 |
330f064 | Donghe-Zhu | 2021-02-27 |
adbc9bc | Donghe-Zhu | 2021-02-27 |
5937141 | Donghe-Zhu | 2021-02-27 |
4414bbf | Donghe-Zhu | 2021-02-27 |
a265efb | Donghe-Zhu | 2021-02-27 |
19edd1e | Donghe-Zhu | 2021-02-27 |
f20483f | Donghe-Zhu | 2021-02-26 |
6a2c7b3 | Donghe-Zhu | 2021-02-25 |
354c224 | Donghe-Zhu | 2021-02-24 |
1a0a88a | Donghe-Zhu | 2021-02-24 |
57f701e | Donghe-Zhu | 2021-02-24 |
06f3149 | Donghe-Zhu | 2021-02-16 |
401eab3 | Donghe-Zhu | 2021-02-15 |
e3bba84 | Donghe-Zhu | 2021-02-15 |
5dce4b1 | Donghe-Zhu | 2021-02-15 |
4469a0c | Donghe-Zhu | 2021-02-13 |
5ae6a69 | Donghe-Zhu | 2021-02-10 |
05385dc | Donghe-Zhu | 2021-02-10 |
f791ae4 | Donghe-Zhu | 2021-02-09 |
f71ae34 | Donghe-Zhu | 2021-02-09 |
c011832 | Donghe-Zhu | 2021-02-09 |
a145fa7 | Donghe-Zhu | 2021-02-09 |
c344e42 | Donghe-Zhu | 2021-02-08 |
2f095d7 | Donghe-Zhu | 2021-02-07 |
1fad5f1 | Donghe-Zhu | 2021-02-07 |
ca03c39 | Donghe-Zhu | 2021-02-07 |
e2ffc14 | Donghe-Zhu | 2021-02-05 |
cd7c52c | Donghe-Zhu | 2021-02-04 |
bcf84f4 | Donghe-Zhu | 2021-02-02 |
a518739 | Donghe-Zhu | 2021-02-01 |
61666de | Donghe-Zhu | 2021-01-31 |
865b582 | Donghe-Zhu | 2021-01-31 |
3e68089 | Donghe-Zhu | 2021-01-31 |
ecf335c | Donghe-Zhu | 2021-01-31 |
a618965 | Donghe-Zhu | 2021-01-31 |
59e006e | Donghe-Zhu | 2021-01-31 |
a1c8f87 | Donghe-Zhu | 2021-01-31 |
ae5c18f | Donghe-Zhu | 2021-01-31 |
b50fe52 | Donghe-Zhu | 2021-01-31 |
ac99ae5 | jens-daniel-mueller | 2021-01-29 |
b5bdcaf | Donghe-Zhu | 2021-01-29 |
442010d | Donghe-Zhu | 2021-01-29 |
372adf5 | Donghe-Zhu | 2021-01-29 |
af8788e | Donghe-Zhu | 2021-01-29 |
21c91c9 | Donghe-Zhu | 2021-01-29 |
eded038 | Donghe-Zhu | 2021-01-29 |
541d4dd | Donghe-Zhu | 2021-01-29 |
6a75576 | Donghe-Zhu | 2021-01-28 |
16fba40 | Donghe-Zhu | 2021-01-28 |
12bc567 | Donghe-Zhu | 2021-01-27 |
ceed31b | Donghe-Zhu | 2021-01-27 |
342402d | Donghe-Zhu | 2021-01-27 |
5bad5c2 | Donghe-Zhu | 2021-01-27 |
61efb56 | Donghe-Zhu | 2021-01-25 |
48f638e | Donghe-Zhu | 2021-01-25 |
c1cec47 | Donghe-Zhu | 2021-01-25 |
05ffb0c | Donghe-Zhu | 2021-01-25 |
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
a2f0d56 | Donghe-Zhu | 2021-01-23 |
28509fc | Donghe-Zhu | 2021-01-23 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
7891955 | Donghe-Zhu | 2021-01-21 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
17dee1d | jens-daniel-mueller | 2021-01-13 |
7cdea0c | jens-daniel-mueller | 2021-01-06 |
fa85b93 | jens-daniel-mueller | 2021-01-06 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
fb8a752 | Donghe-Zhu | 2020-12-23 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gt_0.2.2 corrr_0.4.3 broom_0.7.5 kableExtra_1.3.1
[5] knitr_1.30 olsrr_0.5.3 GGally_2.0.0 lubridate_1.7.9
[9] metR_0.9.0 scico_1.2.0 patchwork_1.1.1 collapse_1.5.0
[13] forcats_0.5.0 stringr_1.4.0 dplyr_1.0.2 purrr_0.3.4
[17] readr_1.4.0 tidyr_1.1.2 tibble_3.0.4 ggplot2_3.3.3
[21] tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] fs_1.5.0 webshot_0.5.2 RColorBrewer_1.1-2
[4] httr_1.4.2 rprojroot_2.0.2 tools_4.0.3
[7] backports_1.1.10 R6_2.5.0 nortest_1.0-4
[10] DBI_1.1.0 colorspace_2.0-0 withr_2.3.0
[13] gridExtra_2.3 tidyselect_1.1.0 curl_4.3
[16] compiler_4.0.3 git2r_0.27.1 cli_2.2.0
[19] rvest_0.3.6 xml2_1.3.2 sass_0.2.0
[22] labeling_0.4.2 scales_1.1.1 checkmate_2.0.0
[25] goftest_1.2-2 digest_0.6.27 foreign_0.8-80
[28] rmarkdown_2.5 rio_0.5.16 pkgconfig_2.0.3
[31] htmltools_0.5.0 highr_0.8 dbplyr_1.4.4
[34] rlang_0.4.10 readxl_1.3.1 rstudioapi_0.13
[37] farver_2.0.3 generics_0.1.0 jsonlite_1.7.2
[40] zip_2.1.1 car_3.0-10 magrittr_2.0.1
[43] Matrix_1.2-18 Rcpp_1.0.5 munsell_0.5.0
[46] fansi_0.4.1 abind_1.4-5 lifecycle_0.2.0
[49] stringi_1.5.3 whisker_0.4 yaml_2.2.1
[52] carData_3.0-4 plyr_1.8.6 grid_4.0.3
[55] blob_1.2.1 parallel_4.0.3 promises_1.1.1
[58] crayon_1.3.4 lattice_0.20-41 haven_2.3.1
[61] hms_0.5.3 pillar_1.4.7 reprex_0.3.0
[64] glue_1.4.2 evaluate_0.14 RcppArmadillo_0.10.1.2.2
[67] data.table_1.13.6 modelr_0.1.8 vctrs_0.3.6
[70] httpuv_1.5.4 cellranger_1.1.0 gtable_0.3.0
[73] reshape_0.8.8 assertthat_0.2.1 xfun_0.20
[76] openxlsx_4.2.3 RcppEigen_0.3.3.9.1 later_1.1.0.1
[79] viridisLite_0.3.0 ellipsis_0.3.1 here_1.0.1