Last updated: 2022-11-11

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c53fea0. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/presentation/
    Ignored:    output/publication/

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/data_adjustment_bulk_budgets.Rmd) and HTML (docs/data_adjustment_bulk_budgets.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html ec60f68 jens-daniel-mueller 2022-11-07 Build site.
html e99640e jens-daniel-mueller 2022-07-29 Build site.
html 08c00b4 jens-daniel-mueller 2022-07-16 Build site.
html 692c937 jens-daniel-mueller 2022-07-16 Build site.
html 1aabfea jens-daniel-mueller 2022-07-12 Build site.
html 36462a6 jens-daniel-mueller 2022-07-12 Build site.
Rmd 62c22e8 jens-daniel-mueller 2022-07-12 revised bias decomposition
html d2b50eb jens-daniel-mueller 2022-07-07 Build site.
Rmd bbb470e jens-daniel-mueller 2022-07-07 generalized plots to config parameter
html b44c72a jens-daniel-mueller 2022-07-03 Build site.
html 157af41 jens-daniel-mueller 2022-07-03 Build site.
Rmd ac45ab7 jens-daniel-mueller 2022-07-03 rebuild without bias contribution separation
html a13a7cf jens-daniel-mueller 2022-06-28 Build site.
html b52b159 jens-daniel-mueller 2022-06-27 Build site.
html 1da59de jens-daniel-mueller 2022-06-25 Build site.
html f5f6e64 jens-daniel-mueller 2022-06-20 Build site.
html 09b0780 jens-daniel-mueller 2022-05-24 Build site.
html 25da2fb jens-daniel-mueller 2022-05-24 Build site.
html e09320d jens-daniel-mueller 2022-04-12 Build site.
html 8dca96a jens-daniel-mueller 2022-04-12 Build site.
Rmd e5e9288 jens-daniel-mueller 2022-04-12 3 data adjustment procedures implemented

version_id_pattern <- "1"
config <- "MLR_basins"

1 Read files

print(version_id_pattern)
[1] "1"
# identify required version IDs

Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_1", "1"))

Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_2", "1"))

Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_3", "1"))

Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)

# print(Version_IDs)

1.1 Global

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_global <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global.csv",
                   sep = ""))
  
  dcant_budget_global_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_global_mod_truth.csv",
      sep = ""
    ))
  
  dcant_budget_global_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global_bias.csv",
                   sep = ""))
  
  lm_best_predictor_counts <-
    read_csv(paste(path_version_data,
                   "lm_best_predictor_counts.csv",
                   sep = ""))
  
  lm_best_dcant <-
    read_csv(paste(path_version_data,
                   "lm_best_dcant.csv",
                   sep = ""))
  
  dcant_budget_global <- bind_rows(dcant_budget_global,
                                      dcant_budget_global_mod_truth)
  
  dcant_budget_global <- dcant_budget_global %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_global_bias <- dcant_budget_global_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_predictor_counts <- lm_best_predictor_counts %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_dcant <- lm_best_dcant %>%
    mutate(Version_ID = i_Version_IDs)

  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    MLR_basins := str_c(params_local$MLR_basins, collapse = "|"),
    tref1 = params_local$tref1,
    tref2 = params_local$tref2)
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>%
    mutate(
      median_year_1 = sort(tref$median_year)[1],
      median_year_2 = sort(tref$median_year)[2],
      duration = median_year_2 - median_year_1,
      period = paste(median_year_1, "-", median_year_2)
    )
  
  if (exists("dcant_budget_global_all")) {
    dcant_budget_global_all <-
      bind_rows(dcant_budget_global_all, dcant_budget_global)
  }
  
  if (!exists("dcant_budget_global_all")) {
    dcant_budget_global_all <- dcant_budget_global
  }
  
  if (exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <-
      bind_rows(dcant_budget_global_bias_all,
                dcant_budget_global_bias)
  }

  if (!exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <- dcant_budget_global_bias
  }
  
    
  if (exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <-
      bind_rows(lm_best_predictor_counts_all, lm_best_predictor_counts)
  }
  
  if (!exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <- lm_best_predictor_counts
  }
    
  if (exists("lm_best_dcant_all")) {
    lm_best_dcant_all <-
      bind_rows(lm_best_dcant_all, lm_best_dcant)
  }
  
  if (!exists("lm_best_dcant_all")) {
    lm_best_dcant_all <- lm_best_dcant
  }
  
  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}

rm(
  dcant_budget_global,
  dcant_budget_global_bias,
  dcant_budget_global_mod_truth,
  lm_best_predictor_counts,
  lm_best_dcant,
  params_local,
  tref
)

1.2 Basins

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_AIP <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP.csv",
                   sep = ""))
  
  dcant_budget_basin_AIP_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_AIP_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_AIP <- bind_rows(dcant_budget_basin_AIP,
                                      dcant_budget_basin_AIP_mod_truth)
  
  dcant_budget_basin_AIP_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP_bias.csv",
                   sep = ""))
  
  dcant_slab_budget_bias <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget_bias.csv"))

  dcant_slab_budget <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget.csv"))

  dcant_budget_basin_AIP <- dcant_budget_basin_AIP %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_basin_AIP_bias <- dcant_budget_basin_AIP_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget <- dcant_slab_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget_bias <- dcant_slab_budget_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <-
      bind_rows(dcant_budget_basin_AIP_all, dcant_budget_basin_AIP)
  }
  
  if (!exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP
  }
  
  if (exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <-
      bind_rows(dcant_budget_basin_AIP_bias_all,
                dcant_budget_basin_AIP_bias)
  }
  
  if (!exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias
  }
  
  if (exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <-
      bind_rows(dcant_slab_budget_all, dcant_slab_budget)
  }
  
  if (!exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <- dcant_slab_budget
  }
  
  if (exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <-
      bind_rows(dcant_slab_budget_bias_all,
                dcant_slab_budget_bias)
  }
  
  if (!exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <- dcant_slab_budget_bias
  }
  
}

rm(
  dcant_budget_basin_AIP,
  dcant_budget_basin_AIP_bias,
  dcant_budget_basin_AIP_mod_truth,
  dcant_slab_budget,
  dcant_slab_budget_bias
)

1.3 Basins hemisphere

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_MLR <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_MLR.csv",
                   sep = ""))
  
  dcant_budget_basin_MLR_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_MLR_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_MLR <- bind_rows(dcant_budget_basin_MLR,
                                      dcant_budget_basin_MLR_mod_truth)
  

  dcant_budget_basin_MLR <- dcant_budget_basin_MLR %>%
    mutate(Version_ID = i_Version_IDs)

  if (exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <-
      bind_rows(dcant_budget_basin_MLR_all, dcant_budget_basin_MLR)
  }
  
  if (!exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR
  }

  
}

rm(
  dcant_budget_basin_MLR,
  dcant_budget_basin_MLR_mod_truth
)

1.4 Steady state

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_obs_budget <-
    read_csv(paste0(path_version_data,
                    "anom_dcant_obs_budget.csv"))
  
  dcant_obs_budget <- dcant_obs_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <-
      bind_rows(dcant_obs_budget_all, dcant_obs_budget)
  }
  
  if (!exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <- dcant_obs_budget
  }
  
}


rm(dcant_obs_budget)

1.5 Atm CO2

co2_atm <-
  read_csv(paste(path_preprocessing,
                 "co2_atm.csv",
                 sep = ""))
all_predictors <- c("saltempaouoxygenphosphatenitratesilicate")

params_local_all <- params_local_all %>%
  mutate(MLR_predictors = str_remove_all(all_predictors,
                                         MLR_predictors))
dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_global_all_depth <- dcant_budget_global_all

dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(estimate == "dcant") %>%
  select(-c(estimate))

dcant_budget_global_bias_all_depth <- dcant_budget_global_bias_all

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_basin_AIP_all_depth <- dcant_budget_basin_AIP_all

dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(estimate == "dcant") %>% 
  select(-c(estimate))

dcant_budget_basin_AIP_bias_all_depth <- dcant_budget_basin_AIP_bias_all

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

# dcant_budget_basin_MLR_all_depth <- dcant_budget_basin_MLR_all

dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(estimate == "dcant") %>% 
#   select(-c(estimate))
# 
# dcant_budget_basin_MLR_bias_all_depth <- dcant_budget_basin_MLR_bias_all
# 
# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(inv_depth == params_global$inventory_depth_standard)

2 Bias thresholds

global_bias_rel_max <- 10
global_bias_rel_max
[1] 10
regional_bias_rel_max <- 20
regional_bias_rel_max
[1] 20

3 Individual cases

3.1 Global

3.1.1 Absoulte values

legend_title = expression(atop(Delta * C[ant],
                               (mu * mol ~ kg ^ {
                                 -1
                               })))

dcant_budget_global_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

3.1.2 Biases

dcant_budget_global_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(atop(Delta * C[ant] ~ bias,
                               (PgC)))) +
  geom_point() +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
d2b50eb jens-daniel-mueller 2022-07-07
b44c72a jens-daniel-mueller 2022-07-03
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
p_global_bias <-
  dcant_budget_global_bias_all %>%
  ggplot() +
  geom_hline(yintercept = global_bias_rel_max * c(-1, 1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
  alpha = 0.7) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        axis.title.x = element_blank())

p_global_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_global_bias_all %>%
  group_by(period) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
period dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 1.4833967 1.380833 8.409278 7.827853
1994 - 2014 1.7027847 2.560333 4.426497 6.655748
2004 - 2014 0.8750252 1.282333 4.201196 6.156776

3.2 Basins

3.2.1 Absoulte values

dcant_budget_basin_AIP_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin_AIP ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

3.2.2 Biases

dcant_budget_basin_AIP_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin_AIP ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
d2b50eb jens-daniel-mueller 2022-07-07
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin_AIP)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
d2b50eb jens-daniel-mueller 2022-07-07
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
p_regional_bias <- 
  dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

3.3 Slab budgets

3.3.1 Absolute values

dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  ggplot(aes(MLR_basins, dcant, fill = gamma_slab)) +
  geom_hline(yintercept = 0, col = "red") +
  geom_col() +
  scale_fill_scico_d(direction = -1) +
  facet_grid(basin_AIP ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_basins, dcant, fill = gamma_slab)) +
      geom_hline(yintercept = 0) +
      geom_col() +
      scale_fill_scico_d(direction = -1) +
      labs(title = paste("data_source:", unique(.x$basin_AIP))) +
      facet_grid(gamma_slab ~ period)
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

3.3.2 Bias

dcant_slab_budget_bias_all %>%
  filter(period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_bias, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ MLR_basins) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
    )
[[1]]
Warning: Removed 40 rows containing missing values (position_stack).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[2]]
Warning: Removed 24 rows containing missing values (position_stack).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[3]]
Warning: Removed 108 rows containing missing values (position_stack).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

3.3.3 Spread

dcant_slab_budget_all %>%
  filter(period != "1994 - 2014",
         data_source != "mod_truth") %>%
  group_by(data_source, basin_AIP, gamma_slab, period) %>%
  summarise(dcant_range = max(dcant) - min(dcant)) %>%
  ungroup() %>%
  group_split(basin_AIP) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_range, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ data_source) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
  )
`summarise()` has grouped output by 'data_source', 'basin_AIP', 'gamma_slab'.
You can override using the `.groups` argument.
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

3.4 Basins hemisphere

3.4.1 Absoulte values

dcant_budget_basin_MLR_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

3.4.2 Biases

dcant_budget_basin_MLR_bias_all <-
  dcant_budget_basin_MLR_all %>%
  filter(data_source %in% c("mod", "mod_truth")) %>%
  pivot_wider(names_from = data_source,
              values_from = dcant) %>%
  mutate(dcant_bias = mod - mod_truth,
         dcant_bias_rel = 100*(mod - mod_truth)/mod_truth)
  
dcant_budget_basin_MLR_bias_all %>%   
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
p_regional_bias <- 
  dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
dcant_budget_basin_MLR_bias_all %>%
  group_by(period, basin) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'period'. You can override using the
`.groups` argument.
period basin dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 Indian 1.0007868 0.2176667 20.758905 4.514969
1994 - 2004 N_Atlantic 0.2362022 0.1993333 12.106723 10.216983
1994 - 2004 N_Pacific 0.1824507 0.4686667 6.717626 17.255768
1994 - 2004 S_Atlantic 0.2887396 0.0931667 11.549585 3.726667
1994 - 2004 S_Pacific 0.8045703 0.4018333 14.235143 7.109578
1994 - 2014 Indian 1.2942746 0.7320000 12.387774 7.006126
1994 - 2014 N_Atlantic 0.3476788 -0.0441667 8.093083 -1.028088
1994 - 2014 N_Pacific 0.2580019 0.5698333 4.419354 9.760763
1994 - 2014 S_Atlantic 0.3458229 0.4513333 6.538531 8.533434
1994 - 2014 S_Pacific 1.2838389 0.8515000 10.191624 6.759546
2004 - 2014 Indian 0.5371781 0.4613333 9.548135 8.200024
2004 - 2014 N_Atlantic 0.1774111 -0.1245000 7.565506 -5.309168
2004 - 2014 N_Pacific 0.2131529 0.1391667 6.827448 4.457613
2004 - 2014 S_Atlantic 0.2114705 0.4118333 7.582305 14.766344
2004 - 2014 S_Pacific 0.5022452 0.3953333 7.231753 5.692345

4 Ensemble

4.1 Global

dcant_budget_global_all_in <- dcant_budget_global_all %>% 
  filter(data_source %in% c("mod", "obs"))

dcant_budget_global_ensemble <- dcant_budget_global_all_in %>% 
  group_by(data_source, period, tref2) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'data_source', 'period'. You can override
using the `.groups` argument.

4.1.1 Mean

legend_title = expression(Delta * C[ant]~(PgC))

ggplot() +
  geom_col(data = dcant_budget_global_ensemble,
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
  geom_errorbar(
    data = dcant_budget_global_ensemble,
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  geom_point(
    data = dcant_budget_global_all,
    aes(period, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0.2, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  labs(y = legend_title) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
p_global_dcant <- ggplot() +
  geom_col(data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
    geom_point(
    data = dcant_budget_global_all %>% 
             filter(data_source == "obs"),
    aes(period, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0.1, height = 0)
  ) +
  geom_errorbar(
    data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

p_global_dcant_bias <-
p_global_dcant / p_global_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_global_dcant_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
# ggsave(plot = p_global_dcant_bias,
#        path = here::here("output/publication"),
#        filename = "Fig_global_dcant_budget.png",
#        height = 5,
#        width = 5)

rm(p_global_bias, p_global_dcant, p_global_dcant_bias)

4.1.2 Mean vs atm CO2

dcant_ensemble <- dcant_budget_global_ensemble %>% 
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  select(year = tref2, dcant_mean, dcant_sd)

tcant_S04 <- bind_cols(year = 1994, dcant_mean = 118, dcant_sd = 19)

tcant_ensemble <- full_join(dcant_ensemble, tcant_S04)
Joining, by = c("year", "dcant_mean", "dcant_sd")
tcant_ensemble <- left_join(tcant_ensemble, co2_atm)
Joining, by = "year"
co2_atm_pi <- bind_cols(pCO2 = 280, dcant_mean = 0, year = 1750, dcant_sd = 0)

tcant_ensemble <- full_join(tcant_ensemble, co2_atm_pi)
Joining, by = c("year", "dcant_mean", "dcant_sd", "pCO2")
tcant_ensemble <- tcant_ensemble %>% 
  arrange(year) %>% 
  mutate(tcant = cumsum(dcant_mean),
         tcant_sd = cumsum(dcant_sd))

tcant_ensemble %>% 
  ggplot(aes(pCO2, tcant, ymin = tcant - tcant_sd, ymax = tcant + tcant_sd)) +
  geom_ribbon(fill = "grey80") +
  geom_point() +
  geom_line() +
  scale_x_continuous(breaks = seq(280, 400, 30),
                     sec.axis = dup_axis(labels =  c(1750, 1940, 1980, 2000, 2015),
                                         name = "Year")) +
  geom_text(aes(label = year), nudge_x = -5, nudge_y = 5) +
  labs(x = expression(Atmospheric~pCO[2]~(µatm)),
       y = expression(Total~oceanic~C[ant]~(PgC)))

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
# ggsave(path = "output/publication",
#        filename = "Fig_global_dcant_budget_vs_atm_pCO2.png",
#        height = 4,
#        width = 7)

4.1.3 Sum decades

dcant_budget_global_all_in_sum <-
  dcant_budget_global_all_in %>%
  filter(period != "1994 - 2014") %>%
  arrange(tref1) %>%
  group_by(data_source, MLR_basins) %>%
  mutate(dcant = dcant + lag(dcant)) %>% 
  ungroup() %>%
  drop_na() %>% 
  mutate(estimate = "sum")

dcant_budget_global_all_in_sum <-
  bind_rows(
    dcant_budget_global_all_in_sum,
    dcant_budget_global_all_in %>%
      filter(period == "1994 - 2014") %>%
      mutate(estimate = "direct")
  )

ggplot() +
  geom_point(
    data = dcant_budget_global_all_in_sum,
    aes(estimate, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

4.1.4 Mean bias

dcant_budget_global_ensemble_bias <- full_join(
  dcant_budget_global_ensemble %>%
    filter(data_source == "mod") %>% 
    select(period, dcant_mean, dcant_sd),
  dcant_budget_global_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_budget_global_all$MLR_basins)[1]) %>% 
    select(period, dcant)
)
Joining, by = "period"
dcant_budget_global_ensemble_bias <- dcant_budget_global_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)

dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

4.1.5 Vertical patterns

4.1.5.1 Absoulte values

dcant_budget_global_all_depth %>%
  filter(data_source != "mod_truth") %>% 
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_basins, fill=period)) +
      geom_vline(xintercept = 0) +
      geom_col(position = "dodge") +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ .) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

4.1.5.2 Biases

dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_basins, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
d2b50eb jens-daniel-mueller 2022-07-07
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_basins, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
rm(dcant_budget_global_all,
   dcant_budget_global_all_depth,
   dcant_budget_global_bias_all,
   dcant_budget_global_bias_all_depth,
   dcant_budget_global_ensemble,
   dcant_budget_global_ensemble_bias)

4.2 Basins

dcant_budget_basin_AIP_ensemble <- dcant_budget_basin_AIP_all %>% 
  filter(data_source %in% c("mod", "obs")) %>% 
  group_by(basin_AIP, data_source, period) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'basin_AIP', 'data_source'. You can override
using the `.groups` argument.

4.2.1 Mean

dcant_budget_basin_AIP_ensemble %>%
  ggplot(aes(period, dcant_mean, col=basin_AIP)) +
  geom_pointrange(aes(ymax = dcant_mean + dcant_sd,
                      ymin = dcant_mean - dcant_sd),
                  shape = 21) +
  facet_grid(. ~ data_source)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
p_regional_dcant <- ggplot() +
  geom_col(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(x = period,
        y = dcant_mean),
    fill = "darkgrey"
  ) +
  geom_point(
    data = dcant_budget_basin_AIP_all %>%
      filter(data_source == "obs"),
    aes(period, dcant, col = MLR_basins),
    position = position_jitter(width = 0.1, height = 0),
    alpha = 0.7
  ) +
  geom_errorbar(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0, 35), expand = c(0, 0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP)

p_regional_dcant_bias <-
p_regional_dcant / p_regional_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_regional_dcant_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
# ggsave(plot = p_regional_dcant_bias,
#        path = "output/publication",
#        filename = "Fig_regional_dcant_budget.png",
#        height = 5,
#        width = 10)

rm(p_regional_bias, p_regional_dcant, p_regional_dcant_bias)

4.2.2 Mean bias

dcant_budget_basin_AIP_ensemble_bias <- full_join(
  dcant_budget_basin_AIP_ensemble %>%
    filter(data_source == "mod") %>% 
    select(basin_AIP, period, dcant_mean, dcant_sd),
  dcant_budget_basin_AIP_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_budget_basin_AIP_all$MLR_basins)[1]) %>% 
    select(basin_AIP, period, dcant)
)
Joining, by = c("basin_AIP", "period")
dcant_budget_basin_AIP_ensemble_bias <- dcant_budget_basin_AIP_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)


dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

4.2.3 Vertical patterns

4.2.3.1 Absoulte values

dcant_budget_basin_AIP_all_depth %>%
  filter(data_source != "mod_truth") %>%
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_basins, fill = basin_AIP)) +
      geom_vline(xintercept = 0) +
      geom_col() +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ period) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

4.2.3.2 Biases

dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_basins, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
d2b50eb jens-daniel-mueller 2022-07-07
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_basins, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

5 Steady state

dcant_obs_budget_all %>%
  group_by(inv_depth) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(estimate, dcant_pos, fill = basin_AIP)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      facet_grid(MLR_basins ~ period) +
      labs(title = paste("inventory depth:",unique(.x$inv_depth)))
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[4]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[5]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

6 Predictor analysis

lm_best_predictor_counts_all <-
  full_join(lm_best_predictor_counts_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_predictor_counts_all <- lm_best_predictor_counts_all %>% 
  mutate(n_predictors_total = rowSums(across(aou:temp), na.rm = TRUE)/10)

lm_best_predictor_counts_all %>%
  ggplot(aes(x = MLR_basins, y = n_predictors_total)) +
  # ggdist::stat_halfeye(
  #   adjust = .5,
  #   width = .6,
  #   .width = 0,
  #   justification = -.2,
  #   point_colour = NA
  # ) +
  geom_boxplot(width = 0.5,
               outlier.shape = NA) +
  gghalves::geom_half_point(
    side = "l",
    range_scale = .4,
    alpha = .5,
    aes(col = gamma_slab)
  ) +
  scale_color_viridis_d() +
  facet_grid(basin ~ data_source)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
lm_best_predictor_counts_all %>%
  pivot_longer(aou:temp,
               names_to = "predictor",
               values_to = "count") %>%
  group_split(predictor) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_basins, count, color = gamma_slab)) +
      geom_jitter(alpha = 0.5) +
      scale_color_viridis_d() +
      labs(title = paste0("predictor:", unique(.x$predictor))) +
      coord_cartesian(ylim = c(0, 10)) +
      facet_grid(basin ~ data_source)
  )
[[1]]
Warning: Removed 2 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[2]]
Warning: Removed 43 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[3]]
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[4]]
Warning: Removed 9 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[5]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[6]]
Warning: Removed 3 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12

[[7]]
Warning: Removed 2 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
157af41 jens-daniel-mueller 2022-07-03
1da59de jens-daniel-mueller 2022-06-25
f5f6e64 jens-daniel-mueller 2022-06-20
8dca96a jens-daniel-mueller 2022-04-12
lm_best_dcant_all <-
  full_join(lm_best_dcant_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_dcant_all %>%
  count(basin, data_source, gamma_slab, MLR_basins, period) %>%
  ggplot(aes(MLR_basins, n)) +
  geom_jitter(height = 0, alpha = 0.3) +
  facet_grid(basin ~ data_source)

Version Author Date
157af41 jens-daniel-mueller 2022-07-03
8dca96a jens-daniel-mueller 2022-04-12

7 Drift and bias

dcant_budget_global_all_dissic %>%
  filter(estimate == "dcant") %>%
  ggplot(aes(inv_depth, value, col = !!sym(config))) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  geom_point() +
  geom_path() +
  labs(y = "DIC change (PgC)") +
  facet_grid(data_source ~ period, scales = "free_y")

Version Author Date
d2b50eb jens-daniel-mueller 2022-07-07
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  filter(estimate == "dcant") %>%
  select(inv_depth, dcant_bias, contribution, !!sym(config), period) %>%
  pivot_wider(names_from = contribution,
              values_from = dcant_bias)

dcant_budget_global_bias_all_decomposition <-
  full_join(
    dcant_budget_global_bias_all_decomposition,
    dcant_budget_global_bias_all_depth %>%
      select(inv_depth, !!sym(config), period, mod_truth)
  )
Joining, by = c("inv_depth", "MLR_basins", "period")
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `delta C* - mod_truth`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
36462a6 jens-daniel-mueller 2022-07-12
d2b50eb jens-daniel-mueller 2022-07-07
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `C* prediction error`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
36462a6 jens-daniel-mueller 2022-07-12
d2b50eb jens-daniel-mueller 2022-07-07
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    `dcant offset`,
    `C* prediction error` + `delta C* - mod_truth`,
    col = !!sym(config)
  )) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
36462a6 jens-daniel-mueller 2022-07-12
d2b50eb jens-daniel-mueller 2022-07-07
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `C* drift`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
36462a6 jens-daniel-mueller 2022-07-12
d2b50eb jens-daniel-mueller 2022-07-07
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    `dcant offset` - `C* drift`,
    `C* prediction error`,
    col = !!sym(config)
  )) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
36462a6 jens-daniel-mueller 2022-07-12
d2b50eb jens-daniel-mueller 2022-07-07
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    x = period,
    fill = !!sym(config),
    col = !!sym(config)
  )) +
  geom_hline(yintercept = 0) +
  geom_point(
    aes(y = `dcant offset`, shape = "dcant offset"),
    position = position_nudge(x = -0.05),
    alpha = 0.5
  ) +
  geom_point(
    aes(y = `dcant offset` - `C* drift`, shape = "dcant offset - C* drift"),
    position = position_nudge(x = 0.05),
    alpha = 0.5
  ) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  scale_shape_manual(values = c(21,23)) +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
36462a6 jens-daniel-mueller 2022-07-12
d2b50eb jens-daniel-mueller 2022-07-07
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  mutate(
    `dcant offset rel` = 100 * `dcant offset` / mod_truth,
    `dcant offset rel corr` = 100 * (`dcant offset` - `C* drift`) / mod_truth,
    `C* prediction error rel` = 100 * (`C* prediction error`) / mod_truth
  )

dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    x = period,
    fill = !!sym(config),
    col = !!sym(config)
  )) +
  geom_hline(yintercept = 0) +
  geom_point(
    aes(y = `dcant offset rel`, shape = "dcant offset"),
    position = position_nudge(x = -0.05),
    alpha = 0.5
  ) +
  geom_point(
    aes(y = `dcant offset rel corr`, shape = "dcant offset - C* drift"),
    position = position_nudge(x = 0.05),
    alpha = 0.5
  ) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  scale_shape_manual(values = c(21,23)) +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
36462a6 jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  pivot_longer(-c(inv_depth:period),
               names_to = "estimate",
               values_to = "value")


dcant_budget_global_bias_all_decomposition %>%
  group_by(inv_depth, estimate) %>%
  summarise(mean = mean(value),
            sd = sd(value)) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth'. You can override using the
`.groups` argument.
inv_depth estimate mean sd
100 C* drift 0.2033333 0.0740032
100 C* prediction error -0.2391111 0.3443555
100 C* prediction error rel -4.4515883 8.1934879
100 dcant offset 0.2471111 0.1599599
100 dcant offset rel 5.5353768 4.2718119
100 dcant offset rel corr 1.2433100 3.9844194
100 delta C* - mod_truth -0.3946667 0.2164184
100 mod_truth 4.7563333 1.7425592
500 C* drift 1.3446667 0.4893907
500 C* prediction error -1.2963889 0.9653540
500 C* prediction error rel -7.4109646 5.0169723
500 dcant offset 0.3843333 0.7342137
500 dcant offset rel 2.5502655 5.0799307
500 dcant offset rel corr -5.4161000 4.6323980
500 delta C* - mod_truth 0.3773333 0.1374833
500 mod_truth 16.9600000 6.2242462
1000 C* drift 3.1486667 1.1458415
1000 C* prediction error -2.9645000 1.6109195
1000 C* prediction error rel -12.9337088 5.2504381
1000 dcant offset 0.4256667 1.0760204
1000 dcant offset rel 2.0355519 5.1985013
1000 dcant offset rel corr -11.8735177 4.8173420
1000 delta C* - mod_truth 2.0866667 0.7598902
1000 mod_truth 22.7516667 8.3557301
3000 C* drift 3.9900000 1.4521475
3000 C* prediction error -2.1806111 1.4910324
3000 C* prediction error rel -8.5124471 5.3029087
3000 dcant offset 1.7411667 1.4429640
3000 dcant offset rel 6.8801260 5.6808762
3000 dcant offset rel corr -8.7640186 5.6679475
3000 delta C* - mod_truth 2.6026667 0.9469936
3000 mod_truth 25.6453333 9.4254881
10000 C* drift 3.3760000 1.2289476
10000 C* prediction error -1.0419444 1.8280571
10000 C* prediction error rel -3.9717258 7.3229476
10000 dcant offset 2.0316667 2.0175664
10000 dcant offset rel 7.9171906 7.9181615
10000 dcant offset rel corr -5.1216855 7.8865110
10000 delta C* - mod_truth 1.7546667 0.6384472
10000 mod_truth 26.0420000 9.5725748
dcant_budget_global_bias_all_decomposition %>%
  group_by(inv_depth, estimate, period) %>%
  summarise(mean = mean(value),
            sd = sd(value)) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth', 'estimate'. You can override
using the `.groups` argument.
inv_depth estimate period mean sd
100 C* drift 1994 - 2004 0.1550000 0.0000000
100 C* drift 1994 - 2014 0.3050000 0.0000000
100 C* drift 2004 - 2014 0.1500000 0.0000000
100 C* prediction error 1994 - 2004 0.1225000 0.1901902
100 C* prediction error 1994 - 2014 -0.4071667 0.2597333
100 C* prediction error 2004 - 2014 -0.4326667 0.2525428
100 C* prediction error rel 1994 - 2004 3.6908707 5.7303455
100 C* prediction error rel 1994 - 2014 -5.7074105 3.6407802
100 C* prediction error rel 2004 - 2014 -11.3382250 6.6179979
100 dcant offset 1994 - 2004 0.3516667 0.0549861
100 dcant offset 1994 - 2014 0.3446667 0.0629910
100 dcant offset 2004 - 2014 0.0450000 0.0802969
100 dcant offset rel 1994 - 2004 10.5955609 1.6567056
100 dcant offset rel 1994 - 2014 4.8313242 0.8829689
100 dcant offset rel 2004 - 2014 1.1792453 2.1042177
100 dcant offset rel corr 1994 - 2004 5.9254796 1.6567056
100 dcant offset rel corr 1994 - 2014 0.5560228 0.8829689
100 dcant offset rel corr 2004 - 2014 -2.7515723 2.1042177
100 delta C* - mod_truth 1994 - 2004 -0.4900000 0.0000000
100 delta C* - mod_truth 1994 - 2014 -0.5910000 0.0000000
100 delta C* - mod_truth 2004 - 2014 -0.1030000 0.0000000
100 mod_truth 1994 - 2004 3.3190000 0.0000000
100 mod_truth 1994 - 2014 7.1340000 0.0000000
100 mod_truth 2004 - 2014 3.8160000 0.0000000
500 C* drift 1994 - 2004 1.0250000 0.0000000
500 C* drift 1994 - 2014 2.0170000 0.0000000
500 C* drift 2004 - 2014 0.9920000 0.0000000
500 C* prediction error 1994 - 2004 -0.4928333 0.6312988
500 C* prediction error 1994 - 2014 -2.0061667 1.0093020
500 C* prediction error 2004 - 2014 -1.3901667 0.6011015
500 C* prediction error rel 1994 - 2004 -4.1961118 5.3750429
500 C* prediction error rel 1994 - 2014 -7.8858753 3.9673822
500 C* prediction error rel 2004 - 2014 -10.1509067 4.3892038
500 dcant offset 1994 - 2004 0.8548333 0.5030433
500 dcant offset 1994 - 2014 0.5353333 0.7888953
500 dcant offset 2004 - 2014 -0.2371667 0.4482283
500 dcant offset rel 1994 - 2004 7.2782744 4.2830422
500 dcant offset rel 1994 - 2014 2.1042977 3.1010037
500 dcant offset rel 2004 - 2014 -1.7317756 3.2729336
500 dcant offset rel corr 1994 - 2004 -1.4488435 4.2830422
500 dcant offset rel corr 1994 - 2014 -5.8241614 3.1010037
500 dcant offset rel corr 2004 - 2014 -8.9752951 3.2729336
500 delta C* - mod_truth 1994 - 2004 0.2920000 0.0000000
500 delta C* - mod_truth 1994 - 2014 0.5660000 0.0000000
500 delta C* - mod_truth 2004 - 2014 0.2740000 0.0000000
500 mod_truth 1994 - 2004 11.7450000 0.0000000
500 mod_truth 1994 - 2014 25.4400000 0.0000000
500 mod_truth 2004 - 2014 13.6950000 0.0000000
1000 C* drift 1994 - 2004 2.3950000 0.0000000
1000 C* drift 1994 - 2014 4.7230000 0.0000000
1000 C* drift 2004 - 2014 2.3280000 0.0000000
1000 C* prediction error 1994 - 2004 -1.8501667 1.2180584
1000 C* prediction error 1994 - 2014 -4.4883333 1.6001824
1000 C* prediction error 2004 - 2014 -2.5550000 0.5487834
1000 C* prediction error rel 1994 - 2004 -11.7845011 7.7583335
1000 C* prediction error rel 1994 - 2014 -13.1518543 4.6889045
1000 C* prediction error rel 2004 - 2014 -13.8647710 2.9779867
1000 dcant offset 1994 - 2004 0.7628333 1.1425910
1000 dcant offset 1994 - 2014 0.6178333 1.4029803
1000 dcant offset 2004 - 2014 -0.1036667 0.3817799
1000 dcant offset rel 1994 - 2004 4.8588110 7.2776496
1000 dcant offset rel 1994 - 2014 1.8103945 4.1110567
1000 dcant offset rel 2004 - 2014 -0.5625497 2.0717379
1000 dcant offset rel corr 1994 - 2004 -10.3959660 7.2776496
1000 dcant offset rel corr 1994 - 2014 -12.0290874 4.1110567
1000 dcant offset rel corr 2004 - 2014 -13.1954996 2.0717379
1000 delta C* - mod_truth 1994 - 2004 1.5570000 0.0000000
1000 delta C* - mod_truth 1994 - 2014 3.1310000 0.0000000
1000 delta C* - mod_truth 2004 - 2014 1.5720000 0.0000000
1000 mod_truth 1994 - 2004 15.7000000 0.0000000
1000 mod_truth 1994 - 2014 34.1270000 0.0000000
1000 mod_truth 2004 - 2014 18.4280000 0.0000000
3000 C* drift 1994 - 2004 3.0410000 0.0000000
3000 C* drift 1994 - 2014 5.9850000 0.0000000
3000 C* drift 2004 - 2014 2.9440000 0.0000000
3000 C* prediction error 1994 - 2004 -1.6551667 1.3563294
3000 C* prediction error 1994 - 2014 -3.3191667 1.6347687
3000 C* prediction error 2004 - 2014 -1.5675000 0.8418664
3000 C* prediction error rel 1994 - 2004 -9.3830310 7.6889420
3000 C* prediction error rel 1994 - 2014 -8.6283838 4.2496846
3000 C* prediction error rel 2004 - 2014 -7.5259266 4.0419937
3000 dcant offset 1994 - 2004 1.3808333 1.4833967
3000 dcant offset 1994 - 2014 2.5603333 1.7027847
3000 dcant offset 2004 - 2014 1.2823333 0.8750252
3000 dcant offset rel 1994 - 2004 7.8278534 8.4092783
3000 dcant offset rel 1994 - 2014 6.6557485 4.4264967
3000 dcant offset rel 2004 - 2014 6.1567761 4.2011964
3000 dcant offset rel corr 1994 - 2004 -9.4113757 8.4092783
3000 dcant offset rel corr 1994 - 2014 -8.9026377 4.4264967
3000 dcant offset rel corr 2004 - 2014 -7.9780424 4.2011964
3000 delta C* - mod_truth 1994 - 2004 1.9330000 0.0000000
3000 delta C* - mod_truth 1994 - 2014 3.9040000 0.0000000
3000 delta C* - mod_truth 2004 - 2014 1.9710000 0.0000000
3000 mod_truth 1994 - 2004 17.6400000 0.0000000
3000 mod_truth 1994 - 2014 38.4680000 0.0000000
3000 mod_truth 2004 - 2014 20.8280000 0.0000000
10000 C* drift 1994 - 2004 2.5830000 0.0000000
10000 C* drift 1994 - 2014 5.0640000 0.0000000
10000 C* drift 2004 - 2014 2.4810000 0.0000000
10000 C* prediction error 1994 - 2004 -0.7951667 1.9603254
10000 C* prediction error 1994 - 2014 -1.6348333 2.4162526
10000 C* prediction error 2004 - 2014 -0.6958333 1.0209269
10000 C* prediction error rel 1994 - 2004 -4.4417756 10.9503152
10000 C* prediction error rel 1994 - 2014 -4.1851198 6.1855274
10000 C* prediction error rel 2004 - 2014 -3.2882819 4.8245684
10000 dcant offset 1994 - 2004 1.6108333 2.1354795
10000 dcant offset 1994 - 2014 2.9723333 2.5535937
10000 dcant offset 2004 - 2014 1.5118333 1.0771355
10000 dcant offset rel 1994 - 2004 8.9980635 11.9287201
10000 dcant offset rel 1994 - 2014 7.6090759 6.5371161
10000 dcant offset rel 2004 - 2014 7.1444324 5.0901920
10000 dcant offset rel corr 1994 - 2004 -5.4304919 11.9287201
10000 dcant offset rel corr 1994 - 2014 -5.3545981 6.5371161
10000 dcant offset rel corr 2004 - 2014 -4.5799663 5.0901920
10000 delta C* - mod_truth 1994 - 2004 1.3030000 0.0000000
10000 delta C* - mod_truth 1994 - 2014 2.6320000 0.0000000
10000 delta C* - mod_truth 2004 - 2014 1.3290000 0.0000000
10000 mod_truth 1994 - 2004 17.9020000 0.0000000
10000 mod_truth 1994 - 2014 39.0630000 0.0000000
10000 mod_truth 2004 - 2014 21.1610000 0.0000000

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.4   geomtextpath_0.1.0 colorspace_2.0-2   marelac_2.1.10    
 [5] shape_1.4.6        ggforce_0.3.3      metR_0.11.0        scico_1.3.0       
 [9] patchwork_1.1.1    collapse_1.7.0     forcats_0.5.1      stringr_1.4.0     
[13] dplyr_1.0.7        purrr_0.3.4        readr_2.1.1        tidyr_1.1.4       
[17] tibble_3.1.6       ggplot2_3.3.5      tidyverse_1.3.1    workflowr_1.7.0   

loaded via a namespace (and not attached):
 [1] fs_1.5.2           gghalves_0.1.1     bit64_4.0.5        lubridate_1.8.0   
 [5] gsw_1.0-6          RColorBrewer_1.1-2 webshot_0.5.2      httr_1.4.2        
 [9] rprojroot_2.0.2    tools_4.1.2        backports_1.4.1    bslib_0.3.1       
[13] utf8_1.2.2         R6_2.5.1           DBI_1.1.2          withr_2.4.3       
[17] tidyselect_1.1.1   processx_3.5.2     bit_4.0.4          compiler_4.1.2    
[21] git2r_0.29.0       textshaping_0.3.6  cli_3.1.1          rvest_1.0.2       
[25] xml2_1.3.3         labeling_0.4.2     sass_0.4.0         scales_1.1.1      
[29] checkmate_2.0.0    SolveSAPHE_2.1.0   callr_3.7.0        systemfonts_1.0.3 
[33] digest_0.6.29      svglite_2.0.0      rmarkdown_2.11     oce_1.5-0         
[37] pkgconfig_2.0.3    htmltools_0.5.2    highr_0.9          dbplyr_2.1.1      
[41] fastmap_1.1.0      rlang_1.0.2        readxl_1.3.1       rstudioapi_0.13   
[45] jquerylib_0.1.4    generics_0.1.1     farver_2.1.0       jsonlite_1.7.3    
[49] vroom_1.5.7        magrittr_2.0.1     Rcpp_1.0.8         munsell_0.5.0     
[53] fansi_1.0.2        lifecycle_1.0.1    stringi_1.7.6      whisker_0.4       
[57] yaml_2.2.1         MASS_7.3-55        grid_4.1.2         parallel_4.1.2    
[61] promises_1.2.0.1   crayon_1.4.2       haven_2.4.3        hms_1.1.1         
[65] seacarb_3.3.0      knitr_1.37         ps_1.6.0           pillar_1.6.4      
[69] reprex_2.0.1       glue_1.6.0         evaluate_0.14      getPass_0.2-2     
[73] data.table_1.14.2  modelr_0.1.8       vctrs_0.3.8        tzdb_0.2.0        
[77] tweenr_1.0.2       httpuv_1.6.5       cellranger_1.1.0   gtable_0.3.0      
[81] polyclip_1.10-0    assertthat_0.2.1   xfun_0.29          broom_0.7.11      
[85] later_1.3.0        viridisLite_0.4.0  ellipsis_0.3.2     here_1.0.1