Last updated: 2020-12-15

Checks: 7 0

Knit directory: emlr_obs_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 449195a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   analysis/_site.yml
    Deleted:    analysis/mapping_cant_calculation.Rmd
    Deleted:    analysis/mapping_cstar_calculation.Rmd
    Modified:   code/Workflowr_project_managment.R
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eMLR_data_preparation.Rmd) and HTML (docs/eMLR_data_preparation.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 449195a jens-daniel-mueller 2020-12-15 rebuild without subsetting nitrate
html 7a9a4cb jens-daniel-mueller 2020-12-15 Build site.
Rmd d234226 jens-daniel-mueller 2020-12-15 rebuild with cstar_tref
html 61b263c jens-daniel-mueller 2020-12-15 Build site.
html 4d612dd jens-daniel-mueller 2020-12-15 Build site.
Rmd e7e5ff1 jens-daniel-mueller 2020-12-15 rebuild with eMLR target variable selection
html 953caf3 jens-daniel-mueller 2020-12-15 Build site.
html 42daf5c jens-daniel-mueller 2020-12-14 Build site.
Rmd 923aa7f jens-daniel-mueller 2020-12-14 rebuild with new path and auto folder creation
html 984697e jens-daniel-mueller 2020-12-12 Build site.
html 3ebff89 jens-daniel-mueller 2020-12-12 Build site.
html 7d82772 jens-daniel-mueller 2020-12-11 Build site.
Rmd 6069c23 jens-daniel-mueller 2020-12-11 selectable basinmask, try 5
html 7788175 jens-daniel-mueller 2020-12-09 Build site.
Rmd 64b795c jens-daniel-mueller 2020-12-09 added histograms after data preparation
html b01a367 jens-daniel-mueller 2020-12-09 Build site.
html 24a632f jens-daniel-mueller 2020-12-07 Build site.
html 92dca91 jens-daniel-mueller 2020-12-07 Build site.
html 6a8004b jens-daniel-mueller 2020-12-07 Build site.
html 70bf1a5 jens-daniel-mueller 2020-12-07 Build site.
html 7555355 jens-daniel-mueller 2020-12-07 Build site.
html 143d6fa jens-daniel-mueller 2020-12-07 Build site.
html 3c8a83c jens-daniel-mueller 2020-12-04 Build site.
Rmd e11f455 jens-daniel-mueller 2020-12-04 improved output plots by using stat_2d instead of points
html abc6818 jens-daniel-mueller 2020-12-03 Build site.
Rmd 992ba15 jens-daniel-mueller 2020-12-03 rebuild with variable inventory depth
html 090e4d5 jens-daniel-mueller 2020-12-02 Build site.
Rmd c98d27b jens-daniel-mueller 2020-12-02 cleaned subsetting and data preparation
html 37e9dac jens-daniel-mueller 2020-12-02 Build site.
Rmd 9ff071b jens-daniel-mueller 2020-12-02 minor improvement of tref adejustment, formatting
html 7c25f7a jens-daniel-mueller 2020-12-02 Build site.
html ec8dc38 jens-daniel-mueller 2020-12-02 Build site.
html c987de1 jens-daniel-mueller 2020-12-02 Build site.
html f8358f8 jens-daniel-mueller 2020-12-02 Build site.
html b03ddb8 jens-daniel-mueller 2020-12-02 Build site.
Rmd 9183e8f jens-daniel-mueller 2020-12-02 revised assignment of era to eras
html 22d0127 jens-daniel-mueller 2020-12-01 Build site.
html 0ff728b jens-daniel-mueller 2020-12-01 Build site.
html b02b7a4 jens-daniel-mueller 2020-12-01 Build site.
Rmd 60bea48 jens-daniel-mueller 2020-12-01 auto eras naming
html cf19652 jens-daniel-mueller 2020-11-30 Build site.
Rmd 2842970 jens-daniel-mueller 2020-11-30 cleaned for eMLR part only
html 196be51 jens-daniel-mueller 2020-11-30 Build site.
Rmd 7a4b015 jens-daniel-mueller 2020-11-30 first rebuild on ETH server
Rmd bc61ce3 Jens Müller 2020-11-30 Initial commit
html bc61ce3 Jens Müller 2020-11-30 Initial commit

1 Required data

Required are:

  • GLODAPv2.2020
    • cleaned data file
    • horizontal grid of sampling coordinates
  • Cant from Sabine 2004
  • annual mean atmospheric pCO2
GLODAP <-
  read_csv(paste(path_version_data,
                 "GLODAPv2.2020_clean.csv",
                 sep = ""))

GLODAP_obs_grid <-
  read_csv(paste(path_version_data,
                 "GLODAPv2.2020_clean_obs_grid.csv",
                 sep = ""))

S04_cant_3d <-
  read_csv(paste(path_preprocessing,
                 "S04_cant_3d.csv",
                 sep = ""))

co2_atm <-
  read_csv(paste(path_preprocessing,
                 "co2_atm.csv",
                 sep = ""))

2 PO4*

2.1 Calculation

The predictor PO4* was be calculated according to Clement and Gruber (2018), ie based on oxygen. Please note that an erroneous equations for PO4* calculation is given in the supplement of Gruber et al (2019), based on nitrate.

Here we use following equation:

print(b_phosphate_star)
function (phosphate, oxygen) 
{
    phosphate_star = phosphate + (oxygen/params_local$rPO) - 
        params_local$rPO_offset
    return(phosphate_star)
}
GLODAP <- GLODAP %>% 
  mutate(phosphate_star = b_phosphate_star(phosphate, oxygen))

3 C*

C* serves as a conservative tracer of anthropogenic CO2 uptake. It is derived from measured DIC by removing the impact of

  • organic matter formation and respiration
  • calcification and calcium carbonate dissolution

Contributions of those processes are estimated from phosphate and alkalinity concentrations.

3.1 Stoichiometric ratios

The stoichiometric nutrient ratios for the production and mineralization of organic matter were set to:

  • C/P: 117
  • N/P: 16

3.2 Calculation

C* was calculated as:

print(b_cstar)
function (tco2, phosphate, talk) 
{
    cstar = tco2 - (params_local$rCP * phosphate) - 0.5 * (talk - 
        (params_local$rNP * phosphate))
    return(cstar)
}
GLODAP <- GLODAP %>% 
  mutate(rCP_phosphate = -params_local$rCP * phosphate,
         talk_05 = -0.5 * talk,
         rNP_phosphate_05 = -0.5 * params_local$rNP * phosphate,
         cstar = b_cstar(tco2, phosphate, talk))

3.3 Reference year adjustment

The reference year adjustment relies on an apriori estimate of Cant at a given location and depth, which is used as a scaling factor for the concurrent change in atmospheric CO2. The underlying assumption is a transient steady state for the oceanic Cant uptake. Here, Cant from the GLODAP mapped Climatology was used.

Note that eq. 6 in Clement and Gruber (2018) misses pCO2 pre-industrial in the denominator. Here we use the equation published in Gruber et al. (2019).

3.3.1 Combine GLODAP + Cant

S04_cant_3d_obs <- left_join(
  GLODAP_obs_grid,
  S04_cant_3d %>% select(-c(cant, eras))
  )

# calculate number of cant data points per grid cell
S04_cant_3d_obs <- S04_cant_3d_obs %>%
  group_by(lon, lat) %>% 
  mutate(n = n()) %>% 
  ungroup()

# S04_cant_3d_obs %>%
#   filter(n <= 1) %>%
#   ggplot(aes(lon,lat)) +
#   geom_point(data = GLODAP_obs_grid, aes(lon, lat)) +
#   geom_point(col = "red")

rm(S04_cant_3d, GLODAP_obs_grid)

GLODAP_cant_obs <- full_join(GLODAP, S04_cant_3d_obs)

rm(GLODAP, S04_cant_3d_obs)

# fill number of cant data points per grid cell to all observations
GLODAP_cant_obs <- GLODAP_cant_obs %>%
  group_by(lon, lat) %>% 
  fill(n, .direction = "updown") %>% 
  ungroup()

The mapped Cant product was merged with GLODAP observation by:

  • using an identical 1x1° horizontal grid
  • linear interpolation of Cant from standard to sampling depth
# interpolate cant to observation depth
GLODAP_cant_obs_int <- GLODAP_cant_obs %>%
  filter(n > 1) %>% 
  group_by(lat, lon) %>%
  arrange(depth) %>%
  mutate(cant_pos_int = approxfun(depth, cant_pos, rule = 2)(depth)) %>%
  ungroup()

# set cant for observation depth if only one cant available
GLODAP_cant_obs_set <- GLODAP_cant_obs %>%
  filter(n == 1) %>%
  group_by(lat, lon) %>%
  mutate(cant_pos_int = mean(cant_pos, na.rm = TRUE)) %>%
  ungroup()

# bin data sets with interpolated and set cant
GLODAP_cant_obs <- bind_rows(GLODAP_cant_obs_int, GLODAP_cant_obs_set)
rm(GLODAP_cant_obs_int, GLODAP_cant_obs_set)


ggplot() +
  geom_path(
    data = GLODAP_cant_obs %>%
      filter(lat == 48.5, lon == 165.5,!is.na(cant_pos)) %>%
      arrange(depth),
    aes(cant_pos, depth, col = "mapped")
  ) +
  geom_point(
    data = GLODAP_cant_obs %>%
      filter(lat == 48.5, lon == 165.5,!is.na(cant_pos)) %>%
      arrange(depth),
    aes(cant_pos, depth, col = "mapped")
  ) +
  geom_point(
    data = GLODAP_cant_obs %>%
      filter(lat == 48.5, lon == 165.5, date == ymd("2018-06-27")),
    aes(cant_pos_int, depth, col = "interpolated")
  ) +
  scale_y_reverse() +
  scale_color_brewer(palette = "Dark2", name = "") +
  labs(title = "Cant interpolation to sampling depth - example profile")

Version Author Date
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
# remove cant data at grid cells without observations
GLODAP <- GLODAP_cant_obs %>%
  filter(!is.na(cstar)) %>%
  mutate(cant_pos = cant_pos_int) %>%
  select(-cant_pos_int, n)

rm(GLODAP_cant_obs)

3.3.2 Merge GLODAP + atm. pCO2

GLODAP observations were merged with mean annual atmospheric pCO2 levels by year.

GLODAP <- left_join(GLODAP, co2_atm)

3.3.3 Calculation

Cant for median year of each era was calculated by applying alpha = 0.28/13 * (median year - 1994) to the estimate of Sabine et al. (2004).

# assign reference year
GLODAP <- GLODAP %>% 
  group_by(era) %>% 
  mutate(tref = median(year)) %>% 
  ungroup()

# calculate reference year
tref <- GLODAP %>% 
  group_by(era) %>% 
  summarise(year = median(year)) %>% 
  ungroup()

# extract atm pCO2 at reference year
co2_atm_tref <- right_join(co2_atm, tref) %>% 
  select(-year) %>% 
  rename(pCO2_tref = pCO2)

# merge atm pCO2 at tref with GLODAP
GLODAP <- full_join(GLODAP, co2_atm_tref)
rm(co2_atm, tref)

# scale cant to reference year
GLODAP <- GLODAP %>%
  mutate(alpha = (tref - 1994) * (0.28 / 13),
         cant_pos = cant_pos * (1 + alpha))

# calculate cstar for reference year
GLODAP <- GLODAP %>%
  mutate(
    cstar_tref_delta =
      ((pCO2 - pCO2_tref) / (pCO2_tref - params_local$preind_atm_pCO2)) * cant_pos,
    cstar_tref = cstar - cstar_tref_delta)

3.4 Control plots

GLODAP %>% 
  ggplot(aes(cstar_tref_delta)) +
  geom_histogram(binwidth = 1) +
  labs(title = "Histogramm with binwidth = 1")

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
7d82772 jens-daniel-mueller 2020-12-11
7788175 jens-daniel-mueller 2020-12-09
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
37e9dac jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
b02b7a4 jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
GLODAP %>% 
  sample_n(1e4) %>% 
  ggplot(aes(year, cstar_tref_delta, col = cant_pos)) +
  geom_point() +
  scale_color_viridis_c() +
  labs(title = "Time series of random subsample 1e4")

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
7d82772 jens-daniel-mueller 2020-12-11
7788175 jens-daniel-mueller 2020-12-09
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
37e9dac jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
b02b7a4 jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
GLODAP %>% 
  ggplot(aes(year, cstar_tref_delta)) +
  geom_bin2d(binwidth = 1) +
  scale_fill_viridis_c(trans = "log10") +
  labs(title = "Heatmap with binwidth = 1")

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
7d82772 jens-daniel-mueller 2020-12-11
7788175 jens-daniel-mueller 2020-12-09
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
37e9dac jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
b02b7a4 jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

4 Selected section plots

A selected section is plotted to demonstrate the magnitude of various parameters and corrections relevant to C*.

GLODAP_cruise <- GLODAP %>% 
  filter(cruise %in% params_global$cruises_meridional)
map +
  geom_path(data = GLODAP_cruise %>%
              arrange(date),
            aes(lon, lat)) +
  geom_point(data = GLODAP_cruise %>%
              arrange(date),
             aes(lon, lat, col = date)) +
  scale_color_viridis_c(trans = "date") +
  labs(title = paste("Cruise year:", mean(GLODAP_cruise$year)))

Version Author Date
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
lat_section <- 
GLODAP_cruise %>%
  ggplot(aes(lat, depth)) +
  scale_y_reverse() +
  scale_fill_viridis_c() +
  theme(axis.title.x = element_blank())

for (i_var in c("tco2",
                "rCP_phosphate",
                "talk_05",
                "rNP_phosphate_05",
                "cstar",
                "cstar_tref")) {
  print(lat_section +
          stat_summary_2d(aes(z = !!sym(i_var))) +
          scale_fill_viridis_c(name = i_var)
        )
  
}

Version Author Date
7d82772 jens-daniel-mueller 2020-12-11
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
3c8a83c jens-daniel-mueller 2020-12-04
090e4d5 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
7a9a4cb jens-daniel-mueller 2020-12-15
7d82772 jens-daniel-mueller 2020-12-11
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
3c8a83c jens-daniel-mueller 2020-12-04
090e4d5 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
7a9a4cb jens-daniel-mueller 2020-12-15
7d82772 jens-daniel-mueller 2020-12-11
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
3c8a83c jens-daniel-mueller 2020-12-04
090e4d5 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
7a9a4cb jens-daniel-mueller 2020-12-15
7d82772 jens-daniel-mueller 2020-12-11
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
3c8a83c jens-daniel-mueller 2020-12-04
090e4d5 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
7a9a4cb jens-daniel-mueller 2020-12-15
7d82772 jens-daniel-mueller 2020-12-11
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
3c8a83c jens-daniel-mueller 2020-12-04
090e4d5 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
7a9a4cb jens-daniel-mueller 2020-12-15
7d82772 jens-daniel-mueller 2020-12-11
7788175 jens-daniel-mueller 2020-12-09
6a8004b jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
3c8a83c jens-daniel-mueller 2020-12-04
090e4d5 jens-daniel-mueller 2020-12-02
37e9dac jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
b02b7a4 jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
rm(lat_section, GLODAP_cruise)

5 Isoneutral slabs

The following boundaries for isoneutral slabs were defined:

  • Atlantic: -, 26, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 27.85, 27.95, 28.05, 28.1, 28.15, 28.2,
  • Indo-Pacific: -, 26, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 27.85, 27.95, 28.05, 28.1,

Continuous neutral densities (gamma) values from GLODAP are grouped into isoneutral slabs.

GLODAP <- m_cut_gamma(GLODAP, "gamma")
GLODAP_cruise <- GLODAP %>% 
  filter(cruise %in% params_global$cruises_meridional)

lat_section <- 
GLODAP_cruise %>%
  ggplot(aes(lat, depth)) +
  scale_y_reverse() +
  theme(legend.position = "bottom")

lat_section +
  geom_point(aes(col = gamma_slab)) +
  scale_color_viridis_d()

Version Author Date
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
rm(lat_section, GLODAP_cruise)
# this section was only used to calculate gamma locally, and compare it to the value provided in GLODAP data set

GLODAP_cruise <- GLODAP %>% 
  filter(cruise %in% params_global$cruises_meridional)

library(oce)
library(gsw)
# calculate pressure from depth

GLODAP_cruise <- GLODAP_cruise %>% 
  mutate(CTDPRS = gsw_p_from_z(-depth,
                               lat))

GLODAP_cruise <- GLODAP_cruise %>% 
  mutate(THETA = swTheta(salinity = sal,
                         temperature = temp,
                         pressure = CTDPRS,
                         referencePressure = 0,
                         longitude = lon-180,
                         latitude = lat))

GLODAP_cruise <- GLODAP_cruise %>% 
  rename(LATITUDE = lat,
         LONGITUDE = lon,
         SALNTY = sal,
         gamma_provided = gamma)

library(reticulate)
source_python(here::here("code/python_scripts",
                         "Gamma_GLODAP_python.py"))

GLODAP_cruise <- calculate_gamma(GLODAP_cruise)

GLODAP_cruise <- GLODAP_cruise %>% 
  mutate(gamma_delta = gamma_provided - GAMMA)

lat_section <- 
GLODAP_cruise %>%
  ggplot(aes(LATITUDE, CTDPRS)) +
  scale_y_reverse() +
  theme(legend.position = "bottom")

lat_section +
  stat_summary_2d(aes(z = gamma_delta)) +
  scale_color_viridis_c()

GLODAP_cruise %>% 
  ggplot(aes(gamma_delta))+
  geom_histogram()

rm(lat_section, GLODAP_cruise, cruises_meridional)

6 Observations coverage

GLODAP <- GLODAP %>% 
  mutate(gamma_slab = factor(gamma_slab), 
         gamma_slab = factor(gamma_slab, levels = rev(levels(gamma_slab))))

for (i_basin in unique(GLODAP$basin)) {
  # i_basin <- unique(GLODAP$basin)[3]
  
  print(
    GLODAP %>%
      filter(basin == i_basin) %>%
      ggplot(aes(lat, gamma_slab)) +
      geom_bin2d(binwidth = 5) +
      scale_fill_viridis_c(
        option = "magma",
        direction = -1,
        trans = "log10"
      ) +
      scale_x_continuous(breaks = seq(-100, 100, 20),
                         limits = c(params_global$lat_min,
                                    params_global$lat_max)) +
      facet_grid(era ~ .) +
      labs(title = paste("MLR region: ", i_basin))
  )
  
}

Version Author Date
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
7d82772 jens-daniel-mueller 2020-12-11

Version Author Date
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
7d82772 jens-daniel-mueller 2020-12-11

Version Author Date
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
7d82772 jens-daniel-mueller 2020-12-11

6.1 Histograms

GLODAP_vars <- GLODAP %>% 
  select(cstar_tref,
         sal,
         temp,
         oxygen,
         aou,
         silicate,
         phosphate,
         phosphate_star)

GLODAP_vars_long <- GLODAP_vars %>% 
  pivot_longer(cstar_tref:phosphate_star, names_to = "variable", values_to = "value")

GLODAP_vars_long %>% 
  ggplot(aes(value)) +
  geom_histogram() +
  facet_wrap(~ variable,
             ncol = 2,
             scales = "free")

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
7d82772 jens-daniel-mueller 2020-12-11
7788175 jens-daniel-mueller 2020-12-09
rm(GLODAP_vars, GLODAP_vars_long)

7 Individual cruise sections

Zonal and meridional section plots are produce for each cruise individually and can be downloaded here.

if (params_local$plot_all_figures == "y") {

cruises <- GLODAP %>% 
  group_by(cruise) %>% 
  summarise(date_mean = mean(date, na.rm = TRUE),
            n = n()) %>% 
  ungroup() %>% 
  arrange(date_mean)

GLODAP <- full_join(GLODAP, cruises)

n <- 0
for (i_cruise in unique(cruises$cruise)) {

# i_cruise <- unique(cruises$cruise)[1]
# n <- n + 1
# print(n)  
  
GLODAP_cruise <- GLODAP %>%
  filter(cruise == i_cruise) %>% 
  arrange(date)

cruises_cruise <- cruises %>%
  filter(cruise == i_cruise)
  
map_plot <- 
  map +
  geom_point(data = GLODAP_cruise,
             aes(lon, lat, col = date)) +
  scale_color_viridis_c(trans = "date") +
  labs(title = paste("Mean date:", cruises_cruise$date_mean,
                     "| cruise:", cruises_cruise$cruise,
                     "| n(samples):", cruises_cruise$n))


lon_section <- GLODAP_cruise %>%
  ggplot(aes(lon, depth)) +
  scale_y_reverse() +
  scale_fill_viridis_c()

lon_tco2 <- lon_section+
  stat_summary_2d(aes(z=tco2))

lon_talk <- lon_section+
  stat_summary_2d(aes(z=talk))

lon_phosphate <- lon_section+
  stat_summary_2d(aes(z=phosphate))

lon_oxygen <- lon_section+
  stat_summary_2d(aes(z=oxygen))

lon_aou <- lon_section+
  stat_summary_2d(aes(z=aou))

lon_phosphate_star <- lon_section+
  stat_summary_2d(aes(z=phosphate_star))

lon_nitrate <- lon_section+
  stat_summary_2d(aes(z=nitrate))

lon_cstar <- lon_section+
  stat_summary_2d(aes(z=cstar_tref))


lat_section <- GLODAP_cruise %>%
  ggplot(aes(lat, depth)) +
  scale_y_reverse() +
  scale_fill_viridis_c()

lat_tco2 <- lat_section+
  stat_summary_2d(aes(z=tco2))

lat_talk <- lat_section+
  stat_summary_2d(aes(z=talk))

lat_phosphate <- lat_section+
  stat_summary_2d(aes(z=phosphate))

lat_oxygen <- lat_section+
  stat_summary_2d(aes(z=oxygen))

lat_aou <- lat_section+
  stat_summary_2d(aes(z=aou))

lat_phosphate_star <- lat_section+
  stat_summary_2d(aes(z=phosphate_star))

lat_nitrate <- lat_section+
  stat_summary_2d(aes(z=nitrate))

lat_cstar <- lat_section+
  stat_summary_2d(aes(z=cstar_tref))

hist_tco2 <- GLODAP_cruise %>%
  ggplot(aes(tco2)) +
  geom_histogram()

hist_talk <- GLODAP_cruise %>%
  ggplot(aes(talk)) +
  geom_histogram()

hist_phosphate <- GLODAP_cruise %>%
  ggplot(aes(phosphate)) +
  geom_histogram()

hist_oxygen <- GLODAP_cruise %>%
  ggplot(aes(oxygen)) +
  geom_histogram()

hist_aou <- GLODAP_cruise %>%
  ggplot(aes(aou)) +
  geom_histogram()

hist_phosphate_star <- GLODAP_cruise %>%
  ggplot(aes(phosphate_star)) +
  geom_histogram()

hist_nitrate <- GLODAP_cruise %>%
  ggplot(aes(nitrate)) +
  geom_histogram()

hist_cstar <- GLODAP_cruise %>%
  ggplot(aes(cstar_tref)) +
  geom_histogram()

(map_plot /
    ((hist_tco2 / hist_talk / hist_phosphate / hist_cstar) |
       (hist_oxygen / hist_phosphate_star / hist_nitrate / hist_aou)
    )) |
  ((lat_tco2 / lat_talk / lat_phosphate / lat_oxygen / lat_aou / lat_phosphate_star / lat_nitrate / lat_cstar) |
     (lon_tco2 / lon_talk / lon_phosphate / lon_oxygen /  lon_aou /lon_phosphate_star / lon_nitrate / lon_cstar))    

ggsave(
  path = paste(path_version_figures, "Cruise_sections_histograms/", sep = ""),
  filename = paste(
    "Cruise_date",
    cruises_cruise$date_mean,
    "count",
    cruises_cruise$n,
    "cruiseID",
    cruises_cruise$cruise,
    ".png",
    sep = "_"
  ),
width = 20, height = 12)

rm(map_plot,
   lon_section, lat_section,
   lat_tco2, lat_talk, lat_phosphate, lon_tco2, lon_talk, lon_phosphate,
   GLODAP_cruise, cruises_cruise)

}

}

8 Write files

# select relevant columns
GLODAP <- GLODAP %>%
  select(
    year,
    date,
    era,
    basin,
    basin_AIP,
    lat,
    lon,
    depth,
    gamma,
    gamma_slab,
    params_local$MLR_predictors,
    params_local$MLR_target
  )

GLODAP %>% write_csv(paste(
  path_version_data,
  "GLODAPv2.2020_MLR_fitting_ready.csv",
  sep = ""
))

co2_atm_tref %>%  write_csv(paste(path_version_data,
                                  "co2_atm_tref.csv",
                                  sep = ""))

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.1

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.7.9 marelac_2.1.10  shape_1.4.5     metR_0.9.0     
 [5] scico_1.2.0     patchwork_1.1.0 collapse_1.4.2  forcats_0.5.0  
 [9] stringr_1.4.0   dplyr_1.0.2     purrr_0.3.4     readr_1.4.0    
[13] tidyr_1.1.2     tibble_3.0.4    ggplot2_3.3.2   tidyverse_1.3.0
[17] workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2               viridisLite_0.3.0        jsonlite_1.7.1          
 [4] here_0.1                 modelr_0.1.8             assertthat_0.2.1        
 [7] blob_1.2.1               cellranger_1.1.0         yaml_2.2.1              
[10] pillar_1.4.7             backports_1.1.10         lattice_0.20-41         
[13] glue_1.4.2               RcppEigen_0.3.3.7.0      digest_0.6.27           
[16] RColorBrewer_1.1-2       promises_1.1.1           checkmate_2.0.0         
[19] rvest_0.3.6              colorspace_2.0-0         htmltools_0.5.0         
[22] httpuv_1.5.4             Matrix_1.2-18            pkgconfig_2.0.3         
[25] broom_0.7.2              seacarb_3.2.14           haven_2.3.1             
[28] scales_1.1.1             whisker_0.4              later_1.1.0.1           
[31] git2r_0.27.1             farver_2.0.3             generics_0.0.2          
[34] ellipsis_0.3.1           withr_2.3.0              cli_2.2.0               
[37] magrittr_2.0.1           crayon_1.3.4             readxl_1.3.1            
[40] evaluate_0.14            fs_1.5.0                 fansi_0.4.1             
[43] xml2_1.3.2               RcppArmadillo_0.10.1.2.0 oce_1.2-0               
[46] tools_4.0.3              data.table_1.13.2        hms_0.5.3               
[49] lifecycle_0.2.0          munsell_0.5.0            reprex_0.3.0            
[52] gsw_1.0-5                compiler_4.0.3           rlang_0.4.9             
[55] grid_4.0.3               rstudioapi_0.13          labeling_0.4.2          
[58] rmarkdown_2.5            testthat_3.0.0           gtable_0.3.0            
[61] DBI_1.1.0                R6_2.5.0                 knitr_1.30              
[64] rprojroot_2.0.2          stringi_1.5.3            parallel_4.0.3          
[67] Rcpp_1.0.5               vctrs_0.3.5              dbplyr_1.4.4            
[70] tidyselect_1.1.0         xfun_0.18