Last updated: 2020-12-02

Checks: 7 0

Knit directory: emlr_obs_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5ffd065. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   README.md
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_this_study.Rmd) and HTML (docs/analysis_this_study.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html ec8dc38 jens-daniel-mueller 2020-12-02 Build site.
html dfde8b7 jens-daniel-mueller 2020-12-02 Build site.
html c987de1 jens-daniel-mueller 2020-12-02 Build site.
html 9eb4281 jens-daniel-mueller 2020-12-02 Build site.
html 478f74d jens-daniel-mueller 2020-12-02 Build site.
html 902f65a jens-daniel-mueller 2020-12-02 Build site.
html ee9bf6d jens-daniel-mueller 2020-12-01 Build site.
Rmd e2f207c jens-daniel-mueller 2020-12-01 corrected slab definition for plot
html 22d0127 jens-daniel-mueller 2020-12-01 Build site.
html 0ff728b jens-daniel-mueller 2020-12-01 Build site.
html 92edddb jens-daniel-mueller 2020-12-01 Build site.
Rmd 4843275 jens-daniel-mueller 2020-12-01 auto eras naming
html cf19652 jens-daniel-mueller 2020-11-30 Build site.
html 196be51 jens-daniel-mueller 2020-11-30 Build site.
Rmd 7a4b015 jens-daniel-mueller 2020-11-30 first rebuild on ETH server
Rmd bc61ce3 Jens Müller 2020-11-30 Initial commit
html bc61ce3 Jens Müller 2020-11-30 Initial commit

path_preprocessing    <-
  "/nfs/kryo/work/updata/emlr_cant/observations/preprocessing/"

path_version_data     <-
  paste(
    "/nfs/kryo/work/updata/emlr_cant/observations/",
    params_local$Version_ID,
    "/data/",
    sep = ""
  )

path_version_figures  <-
  paste(
    "/nfs/kryo/work/updata/emlr_cant/observations/",
    params_local$Version_ID,
    "/figures/",
    sep = ""
  )

1 Libraries

Loading libraries specific to the the analysis performed in this section.

library(scales)
library(marelac)
library(kableExtra)

2 Data sources

cant estimates from this study:

  • Mean and SD per grid cell (lat, lon, depth)
  • Zonal mean and SD (basin, lat, depth)
  • Inventories (lat, lon)
cant_3d <-
  read_csv(paste(path_version_data,
                 "cant_3d.csv",
                 sep = ""))

cant_zonal <-
  read_csv(paste(path_version_data,
                 "cant_zonal.csv",
                 sep = ""))

cant_predictor_zonal <-
  read_csv(paste(path_version_data,
                 "cant_predictor_zonal.csv",
                 sep = ""))

cant_inv <-
  read_csv(paste(path_version_data,
                 "cant_inv.csv",
                 sep = ""))

C* estimates from this study:

  • Mean and SD per grid cell (lat, lon, depth)
  • Zonal mean and SD (basin, lat, depth)
cstar_3d <-
  read_csv(paste(path_version_data,
                 "cstar_3d.csv",
                 sep = ""))

cstar_zonal <-
  read_csv(paste(path_version_data,
                 "cstar_zonal.csv",
                 sep = ""))

Cleaned GLODAPv2_2020 file as used in this study

GLODAP <-
  read_csv(paste(
    path_version_data,
    "GLODAPv2.2020_MLR_fitting_ready.csv",
    sep = ""
  ))

3 Cant budgets

Global Cant inventories were estimated in units of Pg C. Please note that here we only added positive Cant values in the upper 3000m and do not apply additional corrections for areas not covered.

cant_inv_budget <- cant_inv %>% 
  mutate(surface_area = earth_surf(lat, lon),
         cant_inv_grid = cant_inv*surface_area) %>% 
  group_by(eras, basin_AIP) %>% 
  summarise(cant_total = sum(cant_inv_grid)*12*1e-15,
            cant_total = round(cant_total,1)) %>% 
  ungroup() %>% 
  arrange(desc(eras)) %>% 
  pivot_wider(values_from = cant_total, names_from = basin_AIP) %>% 
  mutate(total = Atlantic + Indian + Pacific)

cant_inv_budget %>% 
  kableExtra::kable() %>% 
  add_header_above() %>%
  kable_styling(full_width = FALSE)
eras Atlantic Indian Pacific total
2000-2012 –> 2013-2019 7.0 3.7 14.2 24.9
1982-1999 –> 2000-2012 10.3 9.8 16.9 37.0
rm(cant_inv_budget)

4 Cant - positive

In a first series of plots we explore the distribution of cant, taking only positive estimates into account (positive here refers to the mean cant estimate across 10 eMLR model predictions available for each grid cell). Negative values were set to zero before calculating mean sections and inventories.

4.1 Zonal mean sections

# i_basin_AIP <- unique(cant_zonal$basin_AIP)[2]
# i_eras <- unique(cant_zonal$eras)[1]

for (i_basin_AIP in unique(cant_zonal$basin_AIP)) {
  for (i_eras in unique(cant_zonal$eras)) {
   
     print(
      p_section_zonal(
        df = cant_zonal %>%
          filter(basin_AIP == i_basin_AIP,
                 eras == i_eras),
        var = "cant_pos_mean",
        subtitle_text =
          paste("Basin:", i_basin_AIP, "| eras:", i_eras))
    )
    
  }
}

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

4.2 Isoneutral slab distribution

Mean of positive cant within each horizontal grid cell (lon x lat) per isoneutral slab.

Please note that:

  • density slabs covering values >28.1 occur by definition only either in the Atlantic or Indo-Pacific basin
  • gaps in the maps represent areas where (thin) density layers fit between discrete depth levels used for mapping
cant_gamma_maps <- m_cant_slab(cant_3d)

cant_gamma_maps <- cant_gamma_maps %>% 
  arrange(gamma_slab, eras)
# i_eras <- unique(cant_gamma_maps$eras)[1]
# i_gamma_slab <- unique(cant_gamma_maps$gamma_slab)[1]

for (i_eras in unique(cant_gamma_maps$eras)) {
  for (i_gamma_slab in unique(cant_gamma_maps$gamma_slab)) {
    print(
      p_map_cant_slab(
        df = cant_gamma_maps %>%
          filter(eras == i_eras,
                 gamma_slab == i_gamma_slab),
        subtitle_text = paste(
          "Eras:", i_eras,
          "| Neutral density:", i_gamma_slab)
        )
    )
    
  }
}

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

4.3 Inventory map

Column inventory of positive cant between the surface and 3000m water depth per horizontal grid cell (lat x lon).

# i_eras <- unique(cant_inv$eras)[1]

for (i_eras in unique(cant_inv$eras)) {
  
  print(
    p_map_cant_inv(
      df = cant_inv %>% filter(eras == i_eras),
      var = "cant_pos_inv",
      subtitle_text = paste("Eras:", i_eras))
  )
  
}

Version Author Date
dfde8b7 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
dfde8b7 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

4.4 Global sections

for (i_eras in unique(cant_3d$eras)) {
  print(
    p_section_global(
      df = cant_3d %>% filter(eras == i_eras),
      var = "cant_pos",
      subtitle_text = paste("Eras:", i_eras)
    )
  )
  
}

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

5 Cant - all

In a second series of plots we explore the distribution of cant, taking positive and negative estimates into account.

5.1 Zonal mean sections

# i_eras <- unique(cant_zonal$eras)[1]
# i_basin_AIP <- unique(cant_zonal$basin_AIP)[1]

for (i_basin_AIP in unique(cant_zonal$basin_AIP)) {
  for (i_eras in unique(cant_zonal$eras)) {
    print(
      p_section_zonal(
        df = cant_zonal %>%
          filter(basin_AIP == i_basin_AIP,
                 eras == i_eras),
        var = "cant_mean",
        gamma = "gamma_mean",
        breaks = params_global$breaks_cant,
        col = "divergent",
        subtitle_text =
          paste("Basin:", i_basin_AIP, "| eras:", i_eras))
    )
    
  }
}

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

5.2 Isoneutral slab distribution

Mean of cant within each horizontal grid cell (lon x lat) per isoneutral slab.

Please note that:

  • density slabs covering values >28.1 occur by definition only either in the Atlantic or Indo-Pacific basin
  • gaps in the maps represent areas where (thin) density layers fit between discrete depth levels used for mapping
# i_eras <- unique(cant_gamma_maps$eras)[1]
# i_gamma_slab <- unique(cant_gamma_maps$gamma_slab)[5]

for (i_eras in unique(cant_gamma_maps$eras)) {
  for (i_gamma_slab in unique(cant_gamma_maps$gamma_slab)) {
    print(
      p_map_cant_slab(
        df = cant_gamma_maps %>%
          filter(eras == i_eras,
                 gamma_slab == i_gamma_slab),
        var = "cant",
        col = "divergent",
        subtitle_text = paste(
          "Eras:", i_eras,
          "| Neutral density:", i_gamma_slab))
    )
    
  }
}

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

5.3 Inventory map

Column inventory of positive cant between the surface and 3000m water depth per horizontal grid cell (lat x lon).

# i_eras <- unique(cant_inv$eras)[1]

for (i_eras in unique(cant_inv$eras)) {
  
  print(
    p_map_cant_inv(
      df = cant_inv %>% filter(eras == i_eras),
      var = "cant_inv",
      col = "divergent",
      subtitle_text = paste("Eras:", i_eras))
  )
  
}

Version Author Date
dfde8b7 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
dfde8b7 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

6 Cant - standard deviation

6.1 Across models

Standard deviation across Cant from all MLR models was calculate for each grid cell (XYZ). The zonal mean of this standard deviation should reflect the uncertainty associated to the predictor selection within each slab and era.

# i_eras <- unique(cant_zonal$eras)[1]
# i_basin_AIP <- unique(cant_zonal$basin_AIP)[2]

for (i_basin_AIP in unique(cant_zonal$basin_AIP)) {
  for (i_eras in unique(cant_zonal$eras)) {
    print(
      p_section_zonal(
        df = cant_zonal %>%
          filter(basin_AIP == i_basin_AIP,
                 eras == i_eras),
        var = "cant_sd_mean",
        gamma = "gamma_mean",
        legend_title = "sd",
        title_text = "Zonal mean section of Cant sd between models",
        subtitle_text =
          paste("Basin:", i_basin_AIP, "| eras:", i_eras))
    )
    
  }
}

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

6.2 Across basins

Standard deviation of mean cant values was calculate across all longitudes. This standard deviation should reflect the zonal variability of cant within the basin and era.

# i_eras <- unique(cant_zonal$eras)[1]
# i_basin_AIP <- unique(cant_zonal$basin_AIP)[2]

for (i_basin_AIP in unique(cant_zonal$basin_AIP)) {
  for (i_eras in unique(cant_zonal$eras)) {
    print(
      p_section_zonal(
        df = cant_zonal %>%
          filter(basin_AIP == i_basin_AIP,
                 eras == i_eras),
        var = "cant_sd",
        gamma = "gamma_mean",
        legend_title = "sd",
        title_text = "Zonal mean section of sd between model mean Cant",
        subtitle_text =
          paste("Basin:", i_basin_AIP, "| eras:", i_eras))
    )
    
  }
}

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
9eb4281 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

6.3 Correlation

6.3.1 Cant vs model SD

# cant_3d <- cant_3d  %>% 
#   mutate(eras = factor(eras, c("JGOFS_GO", "GO_new")))

cant_3d %>% 
  ggplot(aes(cant, cant_sd)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 10) +
  geom_bin2d() +
  scale_fill_viridis_c(option = "magma",
                       direction = -1,
                       trans = "log10",
                       name = "log10(n)") +
  facet_grid(basin_AIP ~ eras)

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
cant_3d %>% 
  ggplot(aes(cant, cant_sd)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 10) +
  geom_bin2d() +
  scale_fill_viridis_c(option = "magma",
                       direction = -1,
                       trans = "log10",
                       name = "log10(n)") +
  facet_grid(gamma_slab ~ basin_AIP)

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

6.3.2 Cant vs regional SD

cant_zonal %>% 
  ggplot(aes(cant_mean, cant_sd)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 10) +
  geom_bin2d() +
  scale_fill_viridis_c(option = "magma",
                       direction = -1,
                       trans = "log10",
                       name = "log10(n)") +
  facet_grid(basin_AIP ~ eras)

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
cant_zonal %>% 
  ggplot(aes(cant_mean, cant_sd)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 10) +
  geom_bin2d() +
  scale_fill_viridis_c(option = "magma",
                       direction = -1,
                       trans = "log10",
                       name = "log10(n)") +
  facet_grid(gamma_slab ~ basin_AIP)

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

7 Cant - predictor contribution

# cant_predictor_zonal <- cant_predictor_zonal %>% 
#   mutate(eras = factor(eras, c("JGOFS_GO", "GO_new")))

variable <- "cant_intercept"

for (variable in c(
  "cant_intercept",
  "cant_aou",
  "cant_oxygen",
  "cant_phosphate",
  "cant_phosphate_star",
  "cant_silicate",
  "cant_tem",
  "cant_sal")) {

print(
p_section_zonal_divergent_gamma_eras_basin(
  df = cant_predictor_zonal,
  var = variable,
  gamma = "gamma")
)
    
}

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
ee9bf6d jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
rm(variable)

8 Neutral density

8.1 Slab depth

Please note that:

  • density slabs covering values >28.1 occur by definition only either in the Atlantic or Indo-Pacific basin
  • predictor density slabs are only shown for the upper 3000m as used for the mapping, whereas GLODAP observations are displayed for the entire water column as used for fitting eMLRs (in both cases shallow waters are excluded at low density)
GLODAP_obs_coverage <- GLODAP %>% 
  count(lat, lon, gamma_slab, era)
# %>% 
#   mutate(era = factor(era, c("JGOFS_WOCE", "GO_SHIP", "new_era")))
  
map +
  geom_raster(data = cant_gamma_maps,
              aes(lon, lat, fill = depth_max)) +
  geom_raster(data = GLODAP_obs_coverage,
              aes(lon, lat), fill = "red") +
  facet_grid(gamma_slab ~ era) +
  scale_fill_viridis_c(direction = -1) +
  theme(axis.ticks = element_blank(),
        axis.text = element_blank(),
        legend.position = "top")

Version Author Date
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
rm(GLODAP_obs_coverage)

9 C*

9.1 Zonal mean sections

# cstar_zonal <- cstar_zonal %>% 
#     mutate(era = factor(era, c("JGOFS_WOCE", "GO_SHIP", "new_era"))) 

slab_breaks <- c(params_local$slabs_Atl[1:12],Inf)

cstar_zonal %>% 
    ggplot(aes(lat, depth, z = cstar_mean)) +
    geom_contour_filled(bins = 11) +
    scale_fill_viridis_d(name = "cstar") +
    geom_contour(aes(lat, depth, z = gamma_mean),
                 breaks = slab_breaks,
                 col = "white") +
    geom_text_contour(
      aes(lat, depth, z = gamma_mean),
      breaks = slab_breaks,
      col = "white",
      skip = 1
    ) +
    scale_y_reverse() +
    scale_x_continuous(breaks = seq(-100,100,20)) +
    coord_cartesian(expand = 0) +
    guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
    facet_grid(basin_AIP ~ era)

Version Author Date
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
rm(slab_breaks)

10 Sections by model

Zonal sections plots are produced for every 20° longitude, each era and for all models individually and can be downloaded here.

11 Known issues

Deviations between this study and the results by Gruber et al (2019), short G19, for the same period, might be attributable to following known differences in the implementation of the eMLR(C*) method:

  • GLODAPv2_2020 here vs an extended version of GLODAPv2 in G19
  • flagging: Here, we accept f flags 0 and 2 (except for tco2, where only 0 is accepted). G19 claim to use 0 throughout, yet have a high coverage of talk observations in the SE Pacific
  • Neutral density calculation: Here and in GLODAPv2_2020 a polynomial approximation is used, whereas G19 uses the original Matlab code
  • Predictor climatology: Here we used WOA18, whereas G19 used WOA13
  • Missing data in the GLODAP mapped climatology, eg NO3 at surface, where not filled in this study
  • cant on neutral density levels calculate as slab mean, rather than on one surface
  • Here, surface delta cant were calculated based on Luecker constants, rather than Mehrbach as in G19
  • Here, pCO2 was calculated from DIC/TA Climatology

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.1

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.1 marelac_2.1.10   shape_1.4.5      scales_1.1.1    
 [5] metR_0.9.0       scico_1.2.0      patchwork_1.1.0  collapse_1.4.2  
 [9] forcats_0.5.0    stringr_1.4.0    dplyr_1.0.2      purrr_0.3.4     
[13] readr_1.4.0      tidyr_1.1.2      tibble_3.0.4     ggplot2_3.3.2   
[17] tidyverse_1.3.0  workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 lubridate_1.7.9          gsw_1.0-5               
 [4] webshot_0.5.2            httr_1.4.2               rprojroot_2.0.2         
 [7] tools_4.0.3              backports_1.1.10         R6_2.5.0                
[10] DBI_1.1.0                colorspace_2.0-0         withr_2.3.0             
[13] tidyselect_1.1.0         compiler_4.0.3           git2r_0.27.1            
[16] cli_2.2.0                rvest_0.3.6              xml2_1.3.2              
[19] isoband_0.2.2            labeling_0.4.2           checkmate_2.0.0         
[22] digest_0.6.27            rmarkdown_2.5            oce_1.2-0               
[25] pkgconfig_2.0.3          htmltools_0.5.0          dbplyr_1.4.4            
[28] highr_0.8                rlang_0.4.9              readxl_1.3.1            
[31] rstudioapi_0.13          farver_2.0.3             generics_0.0.2          
[34] jsonlite_1.7.1           magrittr_2.0.1           Matrix_1.2-18           
[37] Rcpp_1.0.5               munsell_0.5.0            fansi_0.4.1             
[40] lifecycle_0.2.0          stringi_1.5.3            whisker_0.4             
[43] yaml_2.2.1               plyr_1.8.6               grid_4.0.3              
[46] blob_1.2.1               parallel_4.0.3           promises_1.1.1          
[49] crayon_1.3.4             lattice_0.20-41          haven_2.3.1             
[52] hms_0.5.3                seacarb_3.2.14           knitr_1.30              
[55] pillar_1.4.7             reprex_0.3.0             glue_1.4.2              
[58] evaluate_0.14            RcppArmadillo_0.10.1.2.0 data.table_1.13.2       
[61] modelr_0.1.8             vctrs_0.3.5              httpuv_1.5.4            
[64] testthat_3.0.0           cellranger_1.1.0         gtable_0.3.0            
[67] assertthat_0.2.1         xfun_0.18                broom_0.7.2             
[70] RcppEigen_0.3.3.7.0      later_1.1.0.1            viridisLite_0.3.0       
[73] memoise_1.1.0            ellipsis_0.3.1           here_0.1