Last updated: 2021-08-19
Checks: 7 0
Knit directory: emlr_obs_v_XXX/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 1a3562a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: code/Workflowr_project_managment.R
Modified: data/auxillary/params_local.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mapping_dcant_mod_truth.Rmd
) and HTML (docs/mapping_dcant_mod_truth.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 77f4ba7 | jens-daniel-mueller | 2021-08-19 | Build site. |
html | ece96df | jens-daniel-mueller | 2021-08-19 | Build site. |
html | 27c99b8 | jens-daniel-mueller | 2021-08-19 | Build site. |
html | a03f2f0 | jens-daniel-mueller | 2021-08-18 | Build site. |
html | 9335b31 | jens-daniel-mueller | 2021-08-10 | Build site. |
html | 9943b45 | jens-daniel-mueller | 2021-08-10 | Build site. |
Rmd | 4b27dd8 | jens-daniel-mueller | 2021-08-10 | without P, AIP basins |
html | ee6c815 | jens-daniel-mueller | 2021-08-09 | Build site. |
Rmd | c1efeb3 | jens-daniel-mueller | 2021-08-09 | added cstar-based dcant estimate |
html | 17518ad | jens-daniel-mueller | 2021-08-09 | Build site. |
Rmd | 1d6ee94 | jens-daniel-mueller | 2021-08-09 | added cstar-based dcant estimate |
html | 00fc082 | jens-daniel-mueller | 2021-08-09 | Build site. |
Rmd | d0f77eb | jens-daniel-mueller | 2021-08-09 | added cstar-based dcant estimate |
html | bf149ea | jens-daniel-mueller | 2021-08-09 | Build site. |
Rmd | 39e32f2 | jens-daniel-mueller | 2021-08-09 | added cstar-based dcant estimate |
html | 0b00a2b | jens-daniel-mueller | 2021-08-09 | Build site. |
html | 755c6b1 | jens-daniel-mueller | 2021-08-09 | Build site. |
html | cd8e0d5 | jens-daniel-mueller | 2021-08-06 | Build site. |
html | 15773a0 | jens-daniel-mueller | 2021-08-06 | included calculation of revelle factor |
html | da61d1a | jens-daniel-mueller | 2021-08-06 | Build site. |
html | 340d731 | jens-daniel-mueller | 2021-08-06 | Build site. |
html | 71546e4 | jens-daniel-mueller | 2021-08-06 | test with stricter CANYON-B filtering |
html | 29444a1 | jens-daniel-mueller | 2021-08-05 | Build site. |
html | 42e80c0 | jens-daniel-mueller | 2021-08-04 | Build site. |
html | 48f6eed | jens-daniel-mueller | 2021-08-04 | Build site. |
Rmd | 7499718 | jens-daniel-mueller | 2021-08-04 | test with eMLR to surface |
html | 1c597ab | jens-daniel-mueller | 2021-08-04 | Build site. |
Rmd | 92bb6b3 | jens-daniel-mueller | 2021-08-04 | test with intermediate CANYON-B offset threshold |
html | 81a46a4 | jens-daniel-mueller | 2021-08-03 | Build site. |
html | b88c61b | jens-daniel-mueller | 2021-08-03 | Build site. |
html | 0f0d5e5 | jens-daniel-mueller | 2021-08-03 | Build site. |
html | a53656d | jens-daniel-mueller | 2021-08-03 | Build site. |
html | 88f7356 | jens-daniel-mueller | 2021-08-02 | Build site. |
html | d759279 | jens-daniel-mueller | 2021-08-02 | Build site. |
html | 127b801 | jens-daniel-mueller | 2021-07-24 | Build site. |
html | 1f65ef1 | jens-daniel-mueller | 2021-07-23 | Build site. |
html | 912d90e | jens-daniel-mueller | 2021-07-23 | Build site. |
html | 2477316 | jens-daniel-mueller | 2021-07-23 | rebuild: surface dcant mapping seperate |
html | c9ccc00 | jens-daniel-mueller | 2021-07-22 | Build site. |
html | f3c0d7a | jens-daniel-mueller | 2021-07-22 | Build site. |
Rmd | 203223f | jens-daniel-mueller | 2021-07-22 | surface dcant mapping seperate |
html | 426b2df | jens-daniel-mueller | 2021-07-21 | Build site. |
html | 971ce87 | jens-daniel-mueller | 2021-07-13 | Build site. |
Rmd | 89d9fcb | jens-daniel-mueller | 2021-07-13 | complete revision |
html | 8d6c6c2 | jens-daniel-mueller | 2021-07-09 | Build site. |
Rmd | 6743f76 | jens-daniel-mueller | 2021-07-09 | complete revision |
The results displayed on this site correspond to the Version_ID: v_XXX
tref <-
read_csv(paste(path_version_data,
"tref.csv",
sep = ""))
tcant_tref_1 <-
read_csv(
paste(
path_model_preprocessing,
"cant_annual_field_AD",
"/cant_",
unique(tref$median_year[1]),
".csv",
sep = ""
)
)
tcant_tref_1 <- tcant_tref_1 %>%
rename(tcant_tref_1 = cant_total) %>%
select(-year)
tcant_tref_2 <-
read_csv(
paste(
path_model_preprocessing,
"cant_annual_field_AD",
"/cant_",
unique(tref$median_year[2]),
".csv",
sep = ""
)
)
tcant_tref_2 <- tcant_tref_2 %>%
rename(tcant_tref_2 = cant_total) %>%
select(-year)
tcant_cc_tref_1 <-
read_csv(
paste(
path_model_preprocessing,
"cant_annual_field_CB",
"/cant_",
unique(tref$median_year[1]),
".csv",
sep = ""
)
)
tcant_cc_tref_1 <- tcant_cc_tref_1 %>%
rename(tcant_tref_1 = cant_total) %>%
select(-year)
tcant_cc_tref_2 <-
read_csv(
paste(
path_model_preprocessing,
"cant_annual_field_CB",
"/cant_",
unique(tref$median_year[2]),
".csv",
sep = ""
)
)
tcant_cc_tref_2 <- tcant_cc_tref_2 %>%
rename(tcant_tref_2 = cant_total) %>%
select(-year)
cstar_tref_1 <-
read_csv(
paste(
path_model_preprocessing,
"cstar_annual_field_A",
"/cstar_A_",
unique(tref$median_year[1]),
".csv",
sep = ""
)
)
cstar_tref_1 <- cstar_tref_1 %>%
select(lon, lat, depth, cstar_no3, cstar_po4) %>%
pivot_longer(cstar_no3:cstar_po4,
names_to = "data_source",
names_prefix = "cstar_",
values_to = "cstar_tref_1")
cstar_tref_2 <-
read_csv(
paste(
path_model_preprocessing,
"cstar_annual_field_A",
"/cstar_A_",
unique(tref$median_year[2]),
".csv",
sep = ""
)
)
cstar_tref_2 <- cstar_tref_2 %>%
select(lon, lat, depth, cstar_no3, cstar_po4) %>%
pivot_longer(cstar_no3:cstar_po4,
names_to = "data_source",
names_prefix = "cstar_",
values_to = "cstar_tref_2")
climatology <-
read_csv(paste0(path_model_preprocessing,
"climatology_runA_2007.csv"))
climatology <- climatology %>%
select(lon, lat, depth, gamma)
dcant_3d <- left_join(tcant_tref_1, tcant_tref_2) %>%
mutate(dcant = tcant_tref_2 - tcant_tref_1)
rm(tcant_tref_1, tcant_tref_2)
dcant_3d <- dcant_3d %>%
mutate(dcant_pos = if_else(dcant <= 0, 0, dcant))
dcant_3d <- full_join(dcant_3d, climatology)
dcant_3d <- dcant_3d %>%
mutate(
method = "surface",
method = if_else(
depth >= params_local$depth_min | gamma >= params_local$gamma_min,
"eMLR",
method
)
)
dcant_3d <- m_cut_gamma(dcant_3d, "gamma")
dcant_3d_vc <- dcant_3d %>%
mutate(data_source = "mod_truth") %>%
select(lon, lat, depth, basin_AIP, data_source, method,
tcant_tref_1, dcant, dcant_pos,
gamma, gamma_slab)
dcant_3d <- left_join(tcant_cc_tref_1, tcant_cc_tref_2) %>%
mutate(dcant = tcant_tref_2 - tcant_tref_1)
rm(tcant_cc_tref_1, tcant_cc_tref_2)
dcant_3d <- dcant_3d %>%
mutate(dcant_pos = if_else(dcant <= 0, 0, dcant))
dcant_3d <- full_join(dcant_3d, climatology)
dcant_3d <- dcant_3d %>%
mutate(
method = "surface",
method = if_else(
depth >= params_local$depth_min | gamma >= params_local$gamma_min,
"eMLR",
method
)
)
dcant_3d <- m_cut_gamma(dcant_3d, "gamma")
dcant_3d_cc <- dcant_3d %>%
mutate(data_source = "mod_truth_cc") %>%
select(lon, lat, depth, basin_AIP, data_source, method,
tcant_tref_1, dcant, dcant_pos,
gamma, gamma_slab)
rm(dcant_3d)
dcant_3d <- bind_rows(
dcant_3d_cc,
dcant_3d_vc
)
rm(
dcant_3d_cc,
dcant_3d_vc
)
surface_data <- nrow(dcant_3d %>% filter(method == "surface")) > 0
dcant_3d_cstar <- left_join(cstar_tref_1, cstar_tref_2) %>%
mutate(dcant = cstar_tref_2 - cstar_tref_1)
rm(cstar_tref_1, cstar_tref_2)
dcant_3d_cstar <- dcant_3d_cstar %>%
mutate(dcant_pos = if_else(dcant <= 0, 0, dcant))
dcant_3d_cstar <- full_join(dcant_3d_cstar, climatology)
dcant_3d_cstar <- dcant_3d_cstar %>%
mutate(
method = "surface",
method = if_else(
depth >= params_local$depth_min | gamma >= params_local$gamma_min,
"eMLR",
method
)
)
dcant_3d_cstar <- inner_join(
dcant_3d_cstar,
basinmask %>%
filter(MLR_basins == params_local$MLR_basins) %>%
select(-MLR_basins)
)
dcant_3d_cstar <- m_cut_gamma(dcant_3d_cstar, "gamma")
dcant_3d_cstar <- dcant_3d_cstar %>%
# mutate(data_source = "mod_truth_cstar") %>%
select(lon, lat, depth, basin_AIP, data_source, data_source, method,
cstar_tref_1, cstar_tref_2, dcant, dcant_pos,
gamma, gamma_slab)
dcant_3d %>%
group_split(data_source) %>%
# head(1) %>%
map(~ p_map_climatology(
df = .x,
var = "dcant",
subtitle_text = paste("Climate: ", .x$data_source)
))
[[1]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
bf149ea | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
8d6c6c2 | jens-daniel-mueller | 2021-07-09 |
[[2]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
bf149ea | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
8d6c6c2 | jens-daniel-mueller | 2021-07-09 |
dcant_3d_cstar %>%
group_split(data_source) %>%
# head(1) %>%
map(~ p_map_climatology(
df = .x,
var = "dcant",
subtitle_text = paste("data_source: ", .x$data_source)
))
[[1]]
[[2]]
dcant_3d %>%
group_split(data_source) %>%
# head(1) %>%
map(~ p_section_climatology_regular(
df = .x,
var = "dcant",
subtitle_text = paste("Climate: ", .x$data_source)
))
[[1]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
bf149ea | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
8d6c6c2 | jens-daniel-mueller | 2021-07-09 |
[[2]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
bf149ea | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
971ce87 | jens-daniel-mueller | 2021-07-13 |
dcant_3d_cstar %>%
group_split(data_source) %>%
# head(1) %>%
map(~ p_section_climatology_regular(
df = .x,
var = "dcant",
subtitle_text = paste("data_source: ", .x$data_source)
))
[[1]]
[[2]]
dcant_zonal <- dcant_3d %>%
group_by(data_source) %>%
nest() %>%
mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
select(-data) %>%
unnest(zonal)
dcant_zonal <- m_cut_gamma(dcant_zonal, "gamma_mean")
dcant_zonal_method <- dcant_3d %>%
group_by(data_source, method) %>%
nest() %>%
mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
select(-data) %>%
unnest(zonal)
dcant_zonal_method <- m_cut_gamma(dcant_zonal_method,
"gamma_mean")
dcant_zonal <- dcant_zonal %>%
rename(dcant = dcant_mean,
dcant_pos = dcant_pos_mean)
dcant_zonal_method <- dcant_zonal_method %>%
rename(dcant = dcant_mean,
dcant_pos = dcant_pos_mean)
dcant_zonal_cstar <- dcant_3d_cstar %>%
group_by(data_source) %>%
nest() %>%
mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
select(-data) %>%
unnest(zonal)
dcant_zonal_cstar <- m_cut_gamma(dcant_zonal_cstar, "gamma_mean")
dcant_zonal_method_cstar <- dcant_3d_cstar %>%
group_by(data_source, method) %>%
nest() %>%
mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
select(-data) %>%
unnest(zonal)
dcant_zonal_method_cstar <- m_cut_gamma(dcant_zonal_method_cstar,
"gamma_mean")
dcant_zonal_cstar <- dcant_zonal_cstar %>%
rename(dcant = dcant_mean,
dcant_pos = dcant_pos_mean)
dcant_zonal_method_cstar <- dcant_zonal_method_cstar %>%
rename(dcant = dcant_mean,
dcant_pos = dcant_pos_mean)
To calculate dcant column inventories, we:
Step 2 is performed separately for all Cant and positive Cant values only.
dcant_inv <- dcant_3d %>%
group_by(data_source) %>%
nest() %>%
mutate(inv = map(.x = data, ~m_dcant_inv(.x))) %>%
select(-data) %>%
unnest(inv)
p_map_cant_inv(df = dcant_inv,
var = "dcant",
subtitle_text = "for predefined integration depths") +
facet_grid(inv_depth ~ data_source)
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
f3c0d7a | jens-daniel-mueller | 2021-07-22 |
971ce87 | jens-daniel-mueller | 2021-07-13 |
8d6c6c2 | jens-daniel-mueller | 2021-07-09 |
if (surface_data == FALSE){
dcant_inv <- dcant_inv %>%
mutate(method = "total")
}
dcant_inv_cstar <- dcant_3d_cstar %>%
group_by(data_source) %>%
nest() %>%
mutate(inv = map(.x = data, ~m_dcant_inv(.x))) %>%
select(-data) %>%
unnest(inv)
p_map_cant_inv(df = dcant_inv_cstar,
var = "dcant",
subtitle_text = "for predefined integration depths") +
facet_grid(inv_depth ~ data_source)
if (surface_data == FALSE){
dcant_inv <- dcant_inv %>%
mutate(method = "total")
}
dcant_inv_surface <- dcant_3d %>%
filter(method == "surface") %>%
group_by(data_source) %>%
nest() %>%
mutate(inv = map(.x = data, ~m_dcant_inv(.x))) %>%
select(-data) %>%
unnest(inv)
p_map_cant_inv(
df = dcant_inv_surface %>%
filter(inv_depth < 1000),
var = "dcant_pos",
subtitle_text = "for predefined integration depths",
breaks = c(-Inf, seq(0, 4, 0.5), Inf)
) +
facet_grid(inv_depth ~ data_source)
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
f3c0d7a | jens-daniel-mueller | 2021-07-22 |
dcant_inv_surface_cstar <- dcant_3d_cstar %>%
filter(method == "surface") %>%
group_by(data_source) %>%
nest() %>%
mutate(inv = map(.x = data, ~m_dcant_inv(.x))) %>%
select(-data) %>%
unnest(inv)
p_map_cant_inv(
df = dcant_inv_surface_cstar %>%
filter(inv_depth < 1000),
var = "dcant_pos",
subtitle_text = "for predefined integration depths",
breaks = c(-Inf, seq(0, 4, 0.5), Inf)
) +
facet_grid(inv_depth ~ data_source)
dcant_inv <- full_join(
dcant_inv %>% rename(dcant_total = dcant,
dcant_pos_total = dcant_pos),
dcant_inv_surface %>% rename(dcant_surface = dcant,
dcant_pos_surface = dcant_pos)
)
dcant_inv <- dcant_inv %>%
mutate(dcant_eMLR = dcant_total -
replace(dcant_surface, is.na(dcant_surface), 0),
dcant_pos_eMLR = dcant_pos_total -
replace(dcant_pos_surface, is.na(dcant_pos_surface), 0))
dcant_inv_all <- dcant_inv %>%
select(-starts_with("dcant_pos")) %>%
pivot_longer(starts_with("dcant_"),
names_to = "method",
names_prefix = "dcant_",
values_to = "dcant")
dcant_inv_pos <- dcant_inv %>%
select(data_source, lon, lat, basin_AIP, inv_depth,
starts_with("dcant_pos_")) %>%
pivot_longer(starts_with("dcant_pos_"),
names_to = "method",
names_prefix = "dcant_pos_",
values_to = "dcant_pos")
dcant_inv <- full_join(
dcant_inv_all,
dcant_inv_pos
)
rm(dcant_inv_all, dcant_inv_pos, dcant_inv_surface)
dcant_inv %>%
group_by(inv_depth) %>%
group_split() %>%
# tail(1) %>%
map(
~ p_map_cant_inv(df = .x,
var = "dcant",
subtitle_text = paste("Integration depth",
unique(.x$inv_depth))) +
facet_grid(method ~ data_source)
)
[[1]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
f3c0d7a | jens-daniel-mueller | 2021-07-22 |
[[2]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
f3c0d7a | jens-daniel-mueller | 2021-07-22 |
[[3]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
f3c0d7a | jens-daniel-mueller | 2021-07-22 |
[[4]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
f3c0d7a | jens-daniel-mueller | 2021-07-22 |
[[5]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
f3c0d7a | jens-daniel-mueller | 2021-07-22 |
dcant_inv_cstar <- full_join(
dcant_inv_cstar %>% rename(dcant_total = dcant,
dcant_pos_total = dcant_pos),
dcant_inv_surface_cstar %>% rename(dcant_surface = dcant,
dcant_pos_surface = dcant_pos)
)
dcant_inv_cstar <- dcant_inv_cstar %>%
mutate(dcant_eMLR = dcant_total -
replace(dcant_surface, is.na(dcant_surface), 0),
dcant_pos_eMLR = dcant_pos_total -
replace(dcant_pos_surface, is.na(dcant_pos_surface), 0))
dcant_inv_all_cstar <- dcant_inv_cstar %>%
select(-starts_with("dcant_pos")) %>%
pivot_longer(starts_with("dcant_"),
names_to = "method",
names_prefix = "dcant_",
values_to = "dcant")
dcant_inv_pos_cstar <- dcant_inv_cstar %>%
select(data_source, lon, lat, basin_AIP, inv_depth,
starts_with("dcant_pos_")) %>%
pivot_longer(starts_with("dcant_pos_"),
names_to = "method",
names_prefix = "dcant_pos_",
values_to = "dcant_pos")
dcant_inv_cstar <- full_join(
dcant_inv_all_cstar,
dcant_inv_pos_cstar
)
rm(dcant_inv_all_cstar, dcant_inv_pos_cstar, dcant_inv_surface_cstar)
dcant_inv_cstar %>%
group_by(inv_depth) %>%
group_split() %>%
# tail(1) %>%
map(
~ p_map_cant_inv(df = .x,
var = "dcant",
subtitle_text = paste("Integration depth",
unique(.x$inv_depth))) +
facet_grid(method ~ data_source)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
Global dcant budgets were estimated in units of Pg C. Please note that here we added dcant (all vs postitive only) values and do not apply additional corrections for areas not covered.
dcant_budget_global <- m_dcant_budget(dcant_inv)
dcant_budget_global %>%
filter(inv_depth == params_global$inventory_depth_standard,
method == "total") %>%
ggplot(aes(estimate, value)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(~data_source)
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
f3c0d7a | jens-daniel-mueller | 2021-07-22 |
971ce87 | jens-daniel-mueller | 2021-07-13 |
dcant_budget_global_cstar <- m_dcant_budget(dcant_inv_cstar)
dcant_budget_global_cstar %>%
filter(inv_depth == params_global$inventory_depth_standard,
method == "total") %>%
ggplot(aes(estimate, value)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(~data_source)
dcant_budget_global %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
ggplot(aes(estimate, value, fill=method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(.~data_source)
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
f3c0d7a | jens-daniel-mueller | 2021-07-22 |
dcant_budget_global_cstar %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
ggplot(aes(estimate, value, fill=method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(.~data_source)
dcant_budget_basin_AIP <- dcant_inv %>%
group_by(basin_AIP) %>%
nest() %>%
mutate(budget = map(.x = data, ~m_dcant_budget(.x))) %>%
select(-data) %>%
unnest(budget)
dcant_budget_basin_AIP_cstar <- dcant_inv_cstar %>%
group_by(basin_AIP) %>%
nest() %>%
mutate(budget = map(.x = data, ~m_dcant_budget(.x))) %>%
select(-data) %>%
unnest(budget)
dcant_budget_basin_AIP %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
ggplot(aes(basin_AIP, value, fill=method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(estimate~data_source)
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
dcant_budget_basin_AIP_cstar %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
ggplot(aes(basin_AIP, value, fill=method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(estimate~data_source)
dcant_budget_basin_MLR <-
full_join(dcant_inv, basinmask) %>%
group_by(basin, MLR_basins) %>%
nest() %>%
mutate(budget = map(.x = data, ~ m_dcant_budget(.x))) %>%
select(-data) %>%
unnest(budget)
dcant_budget_basin_MLR_cstar <-
full_join(dcant_inv_cstar, basinmask) %>%
group_by(basin, MLR_basins) %>%
nest() %>%
mutate(budget = map(.x = data, ~ m_dcant_budget(.x))) %>%
select(-data) %>%
unnest(budget)
dcant_budget_basin_MLR %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
group_by(MLR_basins) %>%
group_split() %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(basin, value, fill = method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(estimate ~ data_source) +
labs(title = paste("MLR_basins:", unique(.x$MLR_basins)))
)
[[1]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
[[2]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
[[3]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
[[4]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
[[5]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
[[6]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
[[7]]
dcant_budget_basin_MLR_cstar %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
group_by(MLR_basins) %>%
group_split() %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(basin, value, fill = method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(estimate ~ data_source) +
labs(title = paste("MLR_basins:", unique(.x$MLR_basins)))
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
dcant_budget_lat_grid <-
dcant_inv %>%
m_grid_horizontal_coarse() %>%
group_by(lat_grid, basin_AIP) %>%
nest() %>%
mutate(budget = map(.x = data, ~ m_dcant_budget(.x))) %>%
select(-data) %>%
unnest(budget)
dcant_budget_lat_grid_cstar <-
dcant_inv_cstar %>%
m_grid_horizontal_coarse() %>%
group_by(lat_grid, basin_AIP) %>%
nest() %>%
mutate(budget = map(.x = data, ~ m_dcant_budget(.x))) %>%
select(-data) %>%
unnest(budget)
dcant_budget_lat_grid %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
group_by(basin_AIP) %>%
group_split() %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(lat_grid, value, fill = method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
coord_flip() +
facet_grid(estimate ~ data_source) +
labs(title = paste("MLR_basins:", unique(.x$basin_AIP)))
)
[[1]]
Version | Author | Date |
---|---|---|
27c99b8 | jens-daniel-mueller | 2021-08-19 |
a03f2f0 | jens-daniel-mueller | 2021-08-18 |
0b00a2b | jens-daniel-mueller | 2021-08-09 |
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
[[2]]
[[3]]
dcant_budget_lat_grid_cstar %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
group_by(basin_AIP) %>%
group_split() %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(lat_grid, value, fill = method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
coord_flip() +
facet_grid(estimate ~ data_source) +
labs(title = paste("MLR_basins:", unique(.x$basin_AIP)))
)
[[1]]
[[2]]
[[3]]
dcant_3d <- dcant_3d %>%
select(-c(tcant_tref_1))
dcant_3d %>%
filter(data_source == "mod_truth") %>%
write_csv(paste(path_version_data,
"dcant_3d_mod_truth.csv", sep = ""))
dcant_3d %>%
filter(data_source == "mod_truth_cc") %>%
write_csv(paste(path_version_data,
"dcant_3d_mod_truth_cc.csv", sep = ""))
dcant_zonal %>%
filter(data_source == "mod_truth") %>%
write_csv(paste(path_version_data,
"dcant_zonal_mod_truth.csv", sep = ""))
dcant_zonal_method %>%
filter(data_source == "mod_truth") %>%
write_csv(paste(path_version_data,
"dcant_zonal_mod_truth_method.csv", sep = ""))
dcant_zonal %>%
filter(data_source == "mod_truth_cc") %>%
write_csv(paste(path_version_data,
"dcant_zonal_mod_truth_cc.csv", sep = ""))
dcant_zonal_method %>%
filter(data_source == "mod_truth_cc") %>%
write_csv(paste(path_version_data,
"dcant_zonal_mod_truth_cc_method.csv", sep = ""))
dcant_inv %>%
filter(data_source == "mod_truth",
method == "total") %>%
write_csv(paste(path_version_data,
"dcant_inv_mod_truth.csv", sep = ""))
dcant_inv %>%
filter(data_source == "mod_truth_cc",
method == "total") %>%
write_csv(paste(path_version_data,
"dcant_inv_mod_truth_cc.csv", sep = ""))
dcant_inv %>%
filter(data_source == "mod_truth",
method != "total") %>%
write_csv(paste(path_version_data,
"dcant_inv_mod_truth_method.csv", sep = ""))
dcant_inv %>%
filter(data_source == "mod_truth_cc",
method != "total") %>%
write_csv(paste(path_version_data,
"dcant_inv_mod_truth_cc_method.csv", sep = ""))
dcant_budget_global %>%
filter(data_source == "mod_truth") %>%
write_csv(paste(path_version_data,
"dcant_budget_global_mod_truth.csv", sep = ""))
dcant_budget_global %>%
filter(data_source == "mod_truth_cc") %>%
write_csv(paste(path_version_data,
"dcant_budget_global_mod_truth_cc.csv", sep = ""))
dcant_budget_basin_AIP %>%
filter(data_source == "mod_truth") %>%
write_csv(paste(path_version_data,
"dcant_budget_basin_AIP_mod_truth.csv", sep = ""))
dcant_budget_basin_AIP %>%
filter(data_source == "mod_truth_cc") %>%
write_csv(paste(path_version_data,
"dcant_budget_basin_AIP_mod_truth_cc.csv", sep = ""))
dcant_budget_basin_MLR %>%
filter(data_source == "mod_truth") %>%
write_csv(paste(path_version_data,
"dcant_budget_basin_MLR_mod_truth.csv", sep = ""))
dcant_budget_basin_MLR %>%
filter(data_source == "mod_truth_cc") %>%
write_csv(paste(path_version_data,
"dcant_budget_basin_MLR_mod_truth_cc.csv", sep = ""))
dcant_budget_lat_grid %>%
filter(data_source == "mod_truth") %>%
write_csv(paste(path_version_data,
"dcant_budget_lat_grid_mod_truth.csv", sep = ""))
dcant_budget_lat_grid %>%
filter(data_source == "mod_truth_cc") %>%
write_csv(paste(path_version_data,
"dcant_budget_lat_grid_mod_truth_cc.csv", sep = ""))
dcant_3d_cstar %>%
write_csv(paste(path_version_data,
"dcant_3d_cstar.csv", sep = ""))
dcant_zonal_cstar %>%
write_csv(paste(path_version_data,
"dcant_zonal_cstar.csv", sep = ""))
dcant_zonal_method_cstar %>%
write_csv(paste(path_version_data,
"dcant_zonal_method_cstar.csv", sep = ""))
dcant_inv_cstar %>%
filter(method == "total") %>%
write_csv(paste(path_version_data,
"dcant_inv_cstar.csv", sep = ""))
dcant_inv_cstar %>%
filter(method != "total") %>%
write_csv(paste(path_version_data,
"dcant_inv_method_cstar.csv", sep = ""))
dcant_budget_global_cstar %>%
filter(data_source == "mod_truth") %>%
write_csv(paste(path_version_data,
"dcant_budget_global_cstar.csv", sep = ""))
dcant_budget_basin_AIP_cstar %>%
write_csv(paste(path_version_data,
"dcant_budget_basin_AIP_cstar.csv", sep = ""))
dcant_budget_basin_MLR_cstar %>%
write_csv(paste(path_version_data,
"dcant_budget_basin_MLR_cstar.csv", sep = ""))
dcant_budget_lat_grid_cstar %>%
write_csv(paste(path_version_data,
"dcant_budget_lat_grid_cstar.csv", sep = ""))
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] marelac_2.1.10 shape_1.4.5 ggforce_0.3.3 metR_0.9.0
[5] scico_1.2.0 patchwork_1.1.1 collapse_1.5.0 forcats_0.5.0
[9] stringr_1.4.0 dplyr_1.0.5 purrr_0.3.4 readr_1.4.0
[13] tidyr_1.1.3 tibble_3.1.3 ggplot2_3.3.5 tidyverse_1.3.0
[17] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.9 gsw_1.0-5
[4] RColorBrewer_1.1-2 httr_1.4.2 rprojroot_2.0.2
[7] tools_4.0.3 backports_1.1.10 utf8_1.1.4
[10] R6_2.5.0 DBI_1.1.0 colorspace_2.0-2
[13] withr_2.3.0 tidyselect_1.1.0 compiler_4.0.3
[16] git2r_0.27.1 cli_3.0.1 rvest_0.3.6
[19] xml2_1.3.2 isoband_0.2.2 labeling_0.4.2
[22] scales_1.1.1 checkmate_2.0.0 digest_0.6.27
[25] rmarkdown_2.10 oce_1.2-0 pkgconfig_2.0.3
[28] htmltools_0.5.0 highr_0.8 dbplyr_1.4.4
[31] rlang_0.4.10 readxl_1.3.1 rstudioapi_0.13
[34] farver_2.0.3 generics_0.1.0 jsonlite_1.7.1
[37] magrittr_1.5 Matrix_1.2-18 Rcpp_1.0.5
[40] munsell_0.5.0 fansi_0.4.1 lifecycle_1.0.0
[43] stringi_1.5.3 whisker_0.4 yaml_2.2.1
[46] MASS_7.3-53 grid_4.0.3 blob_1.2.1
[49] parallel_4.0.3 promises_1.1.1 crayon_1.3.4
[52] lattice_0.20-41 haven_2.3.1 hms_0.5.3
[55] seacarb_3.2.14 knitr_1.33 pillar_1.6.2
[58] reprex_0.3.0 glue_1.4.2 evaluate_0.14
[61] RcppArmadillo_0.10.1.2.0 data.table_1.14.0 modelr_0.1.8
[64] vctrs_0.3.8 tweenr_1.0.2 httpuv_1.5.4
[67] testthat_2.3.2 cellranger_1.1.0 gtable_0.3.0
[70] polyclip_1.10-0 assertthat_0.2.1 xfun_0.25
[73] broom_0.7.9 RcppEigen_0.3.3.7.0 later_1.2.0
[76] viridisLite_0.3.0 ellipsis_0.3.2 here_0.1