Last updated: 2025-01-09
Checks: 6 1
Knit directory: PODFRIDGE/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230302)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 0c90de8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.Rhistory
Ignored: data/.DS_Store
Unstaged changes:
Modified: analysis/relative-distribution.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/relative-distribution.Rmd
)
and HTML (docs/relative-distribution.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 0c90de8 | linmatch | 2024-12-18 | clean and organize the document |
Rmd | f567c4a | linmatch | 2024-12-16 | update |
html | f567c4a | linmatch | 2024-12-16 | update |
Rmd | 231390a | linmatch | 2024-12-11 | update analysis |
html | 231390a | linmatch | 2024-12-11 | update analysis |
Rmd | 8007864 | linmatch | 2024-12-03 | update workflow page |
html | 8007864 | linmatch | 2024-12-03 | update workflow page |
Rmd | e553adc | linmatch | 2024-11-21 | Update relative-distribution.Rmd |
Rmd | e76576b | linmatch | 2024-11-21 | Update relative-distribution.Rmd |
Rmd | 21f0f4f | linmatch | 2024-11-19 | Update relative-distribution.Rmd |
Rmd | f583798 | linmatch | 2024-11-14 | Update relative-distribution.Rmd |
Rmd | 900b2e4 | linmatch | 2024-11-14 | Update relative-distribution.Rmd |
Rmd | 776920f | linmatch | 2024-11-12 | update the model fit analysis in children’s part |
html | 776920f | linmatch | 2024-11-12 | update the model fit analysis in children’s part |
Rmd | 06a8f96 | linmatch | 2024-11-05 | update sibling’s part |
html | 06a8f96 | linmatch | 2024-11-05 | update sibling’s part |
Rmd | 1741cb1 | linmatch | 2024-11-05 | fix test |
Rmd | 4e68621 | linmatch | 2024-11-05 | fix chisq-test in cohort stability |
html | 4e68621 | linmatch | 2024-11-05 | fix chisq-test in cohort stability |
Rmd | 6fb5b40 | linmatch | 2024-10-29 | update sibling’s distribution plot |
Rmd | 570abb0 | linmatch | 2024-10-22 | update sibling part |
Rmd | 2e09e08 | linmatch | 2024-10-22 | workflow build |
html | 2e09e08 | linmatch | 2024-10-22 | workflow build |
Rmd | bb2c61b | linmatch | 2024-10-21 | complete fertility shift analysis |
Rmd | 842d935 | linmatch | 2024-10-17 | update fertility shift |
Rmd | 2ae8460 | linmatch | 2024-10-16 | fix the chisq-test |
Rmd | 9632ae1 | linmatch | 2024-10-12 | update cohort stability |
Rmd | 9852339 | linmatch | 2024-10-08 | update cohort stability |
html | 9852339 | linmatch | 2024-10-08 | update cohort stability |
Rmd | 7ec169f | linmatch | 2024-10-03 | update sibling distribution |
Rmd | 27b986f | linmatch | 2024-10-01 | update stability cohort analysis |
Rmd | 57a97db | linmatch | 2024-09-30 | Update relative-distribution.Rmd |
Rmd | 52aa7f8 | linmatch | 2024-09-27 | improving code on Part1 |
Rmd | c54a746 | linmatch | 2024-09-26 | update and fix step 2 |
Rmd | 94d00b3 | linmatch | 2024-09-24 | fix step1 |
Rmd | 1225480 | linmatch | 2024-09-23 | update on step1 |
Rmd | 83174c0 | Tina Lasisi | 2024-09-22 | Instructions and layout for relative distribution |
html | 83174c0 | Tina Lasisi | 2024-09-22 | Instructions and layout for relative distribution |
Rmd | 78c1621 | Tina Lasisi | 2024-09-21 | Update relative-distribution.Rmd |
Rmd | f4c2830 | Tina Lasisi | 2024-09-21 | Update relative-distribution.Rmd |
Rmd | 2851385 | Tina Lasisi | 2024-09-21 | rename old analysis |
html | 2851385 | Tina Lasisi | 2024-09-21 | rename old analysis |
The relative genetic surveillance of a population is influenced by the number of genetically detectable relatives individuals have. First-degree relatives (parents, siblings, and children) are especially relevant in forensic analyses using short tandem repeat (STR) loci, where close familial searches are commonly employed. To explore potential disparities in genetic detectability between African American and European American populations, we examined U.S. Census data from four census years (1960, 1970, 1980, and 1990) focusing on the number of children born to women over the age of 40.
We used publicly available data from the Integrated Public Use Microdata Series (IPUMS) for the U.S. Census years 1960, 1970, 1980, and 1990. The datasets include information on:
Data citation: Steven Ruggles, Sarah Flood, Matthew Sobek, Daniel Backman, Annie Chen, Grace Cooper, Stephanie Richards, Renae Rogers, and Megan Schouweiler. IPUMS USA: Version 14.0 [dataset]. Minneapolis, MN: IPUMS, 2023. https://doi.org/10.18128/D010.V14.0
Filtering Criteria: We selected women aged 40 and above to ensure that most had completed childbearing.
Due to the terms of agreement for using this data, we cannot share the full dataset but our repo contains the subset that was used to calculate the mean number of offspring and variance.
Race Classification: We categorized individuals into two groups:
Calculating Number of Siblings: For each child of these women, the number of siblings (n_sib) is one less than the number of children born to the mother:
\[ n_{sib} = chborn_{num} - 1 \]
path <- file.path(".", "data")
savepath <- file.path(".", "output")
prop_race_year <- file.path(path, "proportions_table_by_race_year.csv")
data_filter <- file.path(path, "data_filtered_recoded.csv")
children_data = read.csv(prop_race_year)
mother_data = read.csv(data_filter)
df <- mother_data %>%
# Filter for women aged 40 and above
filter(AGE >= 40) %>%
mutate(
# Create new age ranges
AGE_RANGE = case_when(
AGE >= 70 ~ "70+",
AGE >= 60 ~ "60-69",
AGE >= 50 ~ "50-59",
AGE >= 40 ~ "40-49",
TRUE ~ as.character(AGE_RANGE) # This shouldn't occur due to the filter, but included for completeness
),
# Convert CHBORN to ordered factor
CHBORN = factor(case_when(
chborn_num == 0 ~ "No children",
chborn_num == 1 ~ "1 child",
chborn_num == 2 ~ "2 children",
chborn_num == 3 ~ "3 children",
chborn_num == 4 ~ "4 children",
chborn_num == 5 ~ "5 children",
chborn_num == 6 ~ "6 children",
chborn_num == 7 ~ "7 children",
chborn_num == 8 ~ "8 children",
chborn_num == 9 ~ "9 children",
chborn_num == 10 ~ "10 children",
chborn_num == 11 ~ "11 children",
chborn_num >= 12 ~ "12+ children"
), levels = c("No children", "1 child", "2 children", "3 children",
"4 children", "5 children", "6 children", "7 children",
"8 children", "9 children", "10 children", "11 children",
"12+ children"), ordered = TRUE),
# Ensure RACE variable is correctly formatted and filtered
RACE = factor(RACE, levels = c("White", "Black/African American"))
) %>%
# Filter for African American and European American women
filter(RACE %in% c("Black/African American", "White")) %>%
# Select and reorder columns
dplyr::select(YEAR, SEX, AGE, BIRTHYR, RACE, CHBORN, AGE_RANGE, chborn_num)
# Display the first few rows of the processed data
head(df)
YEAR SEX AGE BIRTHYR RACE CHBORN AGE_RANGE chborn_num
1 1960 Female 65 1894 White No children 60-69 0
2 1960 Female 49 1911 White 2 children 40-49 2
3 1960 Female 54 1905 White No children 50-59 0
4 1960 Female 56 1903 White 1 child 50-59 1
5 1960 Female 54 1905 White 1 child 50-59 1
6 1960 Female 50 1910 White No children 50-59 0
# Summary of the processed data
summary(df)
YEAR SEX AGE BIRTHYR
Min. :1960 Length:1917477 Min. : 41.00 Min. :1859
1st Qu.:1970 Class :character 1st Qu.: 49.00 1st Qu.:1905
Median :1970 Mode :character Median : 58.00 Median :1916
Mean :1976 Mean : 59.24 Mean :1916
3rd Qu.:1980 3rd Qu.: 68.00 3rd Qu.:1926
Max. :1990 Max. :100.00 Max. :1949
RACE CHBORN AGE_RANGE
White :1740755 2 children :452594 Length:1917477
Black/African American: 176722 No children:343319 Class :character
3 children :335119 Mode :character
1 child :292001
4 children :204983
5 children :113593
(Other) :175868
chborn_num
Min. : 0.00
1st Qu.: 1.00
Median : 2.00
Mean : 2.57
3rd Qu.: 4.00
Max. :12.00
# Check the levels of the RACE factor
levels(df$RACE)
[1] "White" "Black/African American"
# Count of observations by RACE
table(df$RACE)
White Black/African American
1740755 176722
# Count of observations by AGE_RANGE
table(df$AGE_RANGE)
40-49 50-59 60-69 70+
529160 517620 436829 433868
First we visualize the general trends in the frequency of the number of children for African American and European American mothers across the Census years by age group.
# Calculate proportions within each group, ensuring proper normalization
df_proportions <- df %>%
group_by(YEAR, RACE, AGE_RANGE, chborn_num) %>%
summarise(count = n(), .groups = "drop") %>%
group_by(YEAR, RACE, AGE_RANGE) %>%
mutate(proportion = count / sum(count)) %>%
ungroup()
# Reshape data for the mirror plot
df_mirror <- df_proportions %>%
mutate(proportion = if_else(RACE == "White", -proportion, proportion))
# Create color palette
my_colors <- colorRampPalette(c("#FFB000", "#F77A2E", "#DE3A8A", "#7253FF", "#5E8BFF"))(13)
# Create the plot
child_plot <- ggplot(df_mirror, aes(x = chborn_num, y = proportion, fill = as.factor(chborn_num))) +
geom_col(aes(alpha = RACE)) +
geom_hline(yintercept = 0, color = "black", size = 0.5) +
facet_grid(AGE_RANGE ~ YEAR, scales = "free_y") +
coord_flip() +
scale_y_continuous(
labels = function(x) abs(x),
limits = function(x) c(-max(abs(x)), max(abs(x)))
) +
scale_x_continuous(breaks = 0:12, labels = c(0:11, "12+")) +
scale_fill_manual(values = my_colors) +
scale_alpha_manual(values = c("White" = 0.7, "Black/African American" = 1), guide = "none") +
labs(
title = "Distribution of Number of Children by Census Year, Race, and Age Range",
x = "Number of Children",
y = "Proportion",
fill = "Number of Children",
caption = "White population shown on left (negative values), Black/African American on right (positive values)\nProportions normalized within each age range, race, and census year\nFootnote: The category '12+' includes families with 12 or more children."
) +
theme_minimal() +
theme(
plot.title = element_text(size = 14, hjust = 0.5),
axis.text.y = element_text(size = 8),
strip.text = element_text(size = 10),
legend.position = "none",
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank()
)
print(child_plot)
Version | Author | Date |
---|---|---|
f567c4a | linmatch | 2024-12-16 |
# Print summary to check age ranges and normalization
print(df_proportions %>%
group_by(YEAR, RACE, AGE_RANGE) %>%
summarise(total_proportion = sum(proportion), .groups = "drop") %>%
arrange(YEAR, RACE, AGE_RANGE))
# A tibble: 32 × 4
YEAR RACE AGE_RANGE total_proportion
<int> <fct> <chr> <dbl>
1 1960 White 40-49 1
2 1960 White 50-59 1
3 1960 White 60-69 1
4 1960 White 70+ 1
5 1960 Black/African American 40-49 1
6 1960 Black/African American 50-59 1
7 1960 Black/African American 60-69 1
8 1960 Black/African American 70+ 1
9 1970 White 40-49 1
10 1970 White 50-59 1
# ℹ 22 more rows
With this visualization of the distribution of the data, we can see that there are differences between White and Black Americans.
# Mean Number of Children By race and Year
df %>% group_by(RACE, YEAR) %>% summarise(Mean = mean(chborn_num))
`summarise()` has grouped output by 'RACE'. You can override using the
`.groups` argument.
# A tibble: 8 × 3
# Groups: RACE [2]
RACE YEAR Mean
<fct> <int> <dbl>
1 White 1960 2.62
2 White 1970 2.45
3 White 1980 2.55
4 White 1990 2.53
5 Black/African American 1960 3.02
6 Black/African American 1970 3.00
7 Black/African American 1980 3.21
8 Black/African American 1990 3.20
We will now test for differences in 1) the mean and variance, and 2) zero-inflation.
For each combination of race, census year, and age range, we fit the following candidate models:
combinations <- df %>%
group_by(YEAR, RACE, AGE_RANGE) %>%
group_split()
# Initialize the data frame to store results
best_models <- data.frame(
Race = character(),
Census_Year = numeric(),
Age_Range = character(),
AIC_poisson = numeric(),
AIC_nb = numeric(),
AIC_zip = numeric(),
AIC_zinb = numeric(),
stringsAsFactors = FALSE
)
# Loop through each subset of data
for (i in seq_along(combinations)) {
subset_data <- combinations[[i]]
# Fit Poisson model
poisson_model <- glm(chborn_num ~ 1, family = poisson, data = subset_data)
# Fit Negative Binomial model
nb_model <- glm.nb(chborn_num ~ 1, data = subset_data)
# Fit Zero-Inflated Poisson model
zip_model <- zeroinfl(chborn_num ~ 1 | 1, data = subset_data, dist = "poisson")
# Fit Zero-Inflated Negative Binomial model
zinb_model <- zeroinfl(chborn_num ~ 1 | 1, data = subset_data, dist = "negbin")
# Append the result to the best_models data frame
best_models <- rbind(
best_models,
data.frame(
Race = unique(subset_data$RACE),
Census_Year = unique(subset_data$YEAR),
Age_Range = unique(subset_data$AGE_RANGE),
AIC_poisson = AIC(poisson_model),
AIC_nb = AIC(nb_model),
AIC_zip = AIC(zip_model),
AIC_zinb = AIC(zinb_model),
stringsAsFactors = FALSE
)
)
}
# Add a Best_Model column to store the best model based on minimum AIC
best_models$Best_Model <- apply(best_models, 1, function(row) {
# Get AIC values for Poisson, NB, ZIP, and ZINB models
aic_values <- c(Poisson = as.numeric(row['AIC_poisson']),
Negative_Binomial = as.numeric(row['AIC_nb']),
Zero_Inflated_Poisson = as.numeric(row['AIC_zip']),
Zero_Inflated_NB= as.numeric(row['AIC_zinb']))
# Find the name of the model with the minimum AIC value
best_model <- names(which.min(aic_values))
return(best_model)
})
best_models <- best_models %>% dplyr::select(Race, Census_Year, Age_Range, Best_Model)
# View the updated table with the Best_Model column
print(best_models)
Race Census_Year Age_Range Best_Model
1 White 1960 40-49 Zero_Inflated_NB
2 White 1960 50-59 Zero_Inflated_NB
3 White 1960 60-69 Zero_Inflated_NB
4 White 1960 70+ Zero_Inflated_NB
5 Black/African American 1960 40-49 Zero_Inflated_NB
6 Black/African American 1960 50-59 Zero_Inflated_NB
7 Black/African American 1960 60-69 Zero_Inflated_NB
8 Black/African American 1960 70+ Zero_Inflated_NB
9 White 1970 40-49 Zero_Inflated_NB
10 White 1970 50-59 Zero_Inflated_NB
11 White 1970 60-69 Zero_Inflated_NB
12 White 1970 70+ Zero_Inflated_NB
13 Black/African American 1970 40-49 Zero_Inflated_NB
14 Black/African American 1970 50-59 Zero_Inflated_NB
15 Black/African American 1970 60-69 Zero_Inflated_NB
16 Black/African American 1970 70+ Zero_Inflated_NB
17 White 1980 40-49 Zero_Inflated_Poisson
18 White 1980 50-59 Zero_Inflated_NB
19 White 1980 60-69 Zero_Inflated_NB
20 White 1980 70+ Zero_Inflated_NB
21 Black/African American 1980 40-49 Zero_Inflated_NB
22 Black/African American 1980 50-59 Zero_Inflated_NB
23 Black/African American 1980 60-69 Zero_Inflated_NB
24 Black/African American 1980 70+ Zero_Inflated_NB
25 White 1990 40-49 Zero_Inflated_Poisson
26 White 1990 50-59 Zero_Inflated_Poisson
27 White 1990 60-69 Zero_Inflated_NB
28 White 1990 70+ Zero_Inflated_NB
29 Black/African American 1990 40-49 Zero_Inflated_NB
30 Black/African American 1990 50-59 Zero_Inflated_NB
31 Black/African American 1990 60-69 Zero_Inflated_NB
32 Black/African American 1990 70+ Zero_Inflated_NB
# Recode Best_Model to a binary variable (e.g., "Zero_Inflated_NB" vs. "Other")
best_models$Best_Model_Binary <- ifelse(best_models$Best_Model == "Zero_Inflated_NB", 1, 0)
# Fit binary logistic regression
model_logistic <- glm(Best_Model_Binary ~ Race + Census_Year + Age_Range, family = binomial(), data = best_models)
# Summary of the logistic regression model
summary(model_logistic)
Call:
glm(formula = Best_Model_Binary ~ Race + Census_Year + Age_Range,
family = binomial(), data = best_models)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.741e+03 7.710e+06 0.001 0.999
RaceBlack/African American 8.903e+01 8.227e+04 0.001 0.999
Census_Year -4.426e+00 3.902e+03 -0.001 0.999
Age_Range50-59 4.390e+01 5.002e+04 0.001 0.999
Age_Range60-69 8.990e+01 1.045e+05 0.001 0.999
Age_Range70+ 8.990e+01 1.045e+05 0.001 0.999
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1.9912e+01 on 31 degrees of freedom
Residual deviance: 2.4509e-09 on 26 degrees of freedom
AIC: 12
Number of Fisher Scoring iterations: 25
RESULT:The p-value for each variable is larger than 0.05, indicating non-significant effects on best model fitting.
ggplot(best_models, aes(x = Census_Year, y = Age_Range, fill = Best_Model)) +
geom_tile(color = "white", lwd = 0.5, linetype = 1) +
facet_wrap(~Race, nrow = 2) +
scale_fill_manual(values = c("Zero_Inflated_Poisson" = "#0072B2", "Zero_Inflated_NB" = "#F0E442")) +
labs(
title = "Best Model by Race, Census Year, and Age Range",
x = "Census Year",
y = "Age Range",
fill = "Best Model"
) +
theme_minimal() +
theme(
plot.title = element_text(size = 14, face = "bold"),
legend.position = "bottom"
)
Version | Author | Date |
---|---|---|
2851385 | Tina Lasisi | 2024-09-21 |
The logistics regression shows that there isn’t a significant association between the predictors(races, age ranges, and census year) and the best-fitting model. According to the resulting visualization, the ZINB model is the best fit for the black population across census year and age group. However, the ZINB model perform the best among the white population only across year 1960 and 1970, and age group 60-69 and 70+.
The goal is to determine if there is a significant change in zero inflation, family size, or model fit for the same cohort across different census years, given race.
calculate_cohort <- function(census_year, age_range) {
age_limits <- as.numeric(unlist(strsplit(age_range, "-|\\+")))
if (length(age_limits) == 1) {
lower_age <- age_limits
upper_age <- Inf
} else {
lower_age <- age_limits[1]
upper_age <- age_limits[2]
}
lower_cohort <- census_year - upper_age
upper_cohort <- census_year - lower_age
if (upper_age == Inf) {
upper_cohort <- census_year - 70
}
return(paste(lower_cohort, upper_cohort, sep = "-"))
}
best_models <- best_models %>%
mutate(Cohort = mapply(calculate_cohort, Census_Year, Age_Range)) %>%
dplyr::select(Race, Census_Year, Age_Range, Best_Model, Cohort)
print(best_models)
Race Census_Year Age_Range Best_Model Cohort
1 White 1960 40-49 Zero_Inflated_NB 1911-1920
2 White 1960 50-59 Zero_Inflated_NB 1901-1910
3 White 1960 60-69 Zero_Inflated_NB 1891-1900
4 White 1960 70+ Zero_Inflated_NB -Inf-1890
5 Black/African American 1960 40-49 Zero_Inflated_NB 1911-1920
6 Black/African American 1960 50-59 Zero_Inflated_NB 1901-1910
7 Black/African American 1960 60-69 Zero_Inflated_NB 1891-1900
8 Black/African American 1960 70+ Zero_Inflated_NB -Inf-1890
9 White 1970 40-49 Zero_Inflated_NB 1921-1930
10 White 1970 50-59 Zero_Inflated_NB 1911-1920
11 White 1970 60-69 Zero_Inflated_NB 1901-1910
12 White 1970 70+ Zero_Inflated_NB -Inf-1900
13 Black/African American 1970 40-49 Zero_Inflated_NB 1921-1930
14 Black/African American 1970 50-59 Zero_Inflated_NB 1911-1920
15 Black/African American 1970 60-69 Zero_Inflated_NB 1901-1910
16 Black/African American 1970 70+ Zero_Inflated_NB -Inf-1900
17 White 1980 40-49 Zero_Inflated_Poisson 1931-1940
18 White 1980 50-59 Zero_Inflated_NB 1921-1930
19 White 1980 60-69 Zero_Inflated_NB 1911-1920
20 White 1980 70+ Zero_Inflated_NB -Inf-1910
21 Black/African American 1980 40-49 Zero_Inflated_NB 1931-1940
22 Black/African American 1980 50-59 Zero_Inflated_NB 1921-1930
23 Black/African American 1980 60-69 Zero_Inflated_NB 1911-1920
24 Black/African American 1980 70+ Zero_Inflated_NB -Inf-1910
25 White 1990 40-49 Zero_Inflated_Poisson 1941-1950
26 White 1990 50-59 Zero_Inflated_Poisson 1931-1940
27 White 1990 60-69 Zero_Inflated_NB 1921-1930
28 White 1990 70+ Zero_Inflated_NB -Inf-1920
29 Black/African American 1990 40-49 Zero_Inflated_NB 1941-1950
30 Black/African American 1990 50-59 Zero_Inflated_NB 1931-1940
31 Black/African American 1990 60-69 Zero_Inflated_NB 1921-1930
32 Black/African American 1990 70+ Zero_Inflated_NB -Inf-1920
df_merg <- df %>%
rename(Census_Year = YEAR, Race = RACE, Age_Range = AGE_RANGE)
# Perform a left join to merge the data frames
merged_data <- left_join(df_merg, best_models, by = c("Race", "Census_Year", "Age_Range"))
calculate_mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
summary_table <- merged_data %>% group_by(Race, Cohort, Census_Year) %>%
summarise(
Mean = mean(chborn_num),
Variance = var(chborn_num),
Mode = calculate_mode(chborn_num),
Prob_0 = mean(chborn_num == 0),
Prob_1 = mean(chborn_num == 1),
Prob_2 = mean(chborn_num == 2),
Prob_3 = mean(chborn_num == 3),
Prob_4 = mean(chborn_num == 4),
Prob_5 = mean(chborn_num == 5),
Prob_6 = mean(chborn_num == 6),
Prob_7 = mean(chborn_num == 7),
Prob_8 = mean(chborn_num == 8),
Prob_9 = mean(chborn_num == 9),
Prob_10 = mean(chborn_num == 10),
Prob_11 = mean(chborn_num == 11),
Prob_12plus = mean(chborn_num >= 12)
#Total_Prob = Prob_0 + Prob_1 + Prob_2 + Prob_3 + Prob_4 + Prob_5 + Prob_6 +
# Prob_7 + Prob_8 + Prob_9 + Prob_10 + Prob_11 + Prob_12plus
) %>%
ungroup() %>% as.data.frame()
`summarise()` has grouped output by 'Race', 'Cohort'. You can override using
the `.groups` argument.
# View the summary table
print(summary_table)
Race Cohort Census_Year Mean Variance Mode
1 White -Inf-1890 1960 3.295149 8.035775 2
2 White -Inf-1900 1970 2.619220 6.411794 0
3 White -Inf-1910 1980 2.259255 4.905316 0
4 White -Inf-1920 1990 2.310209 4.125397 2
5 White 1891-1900 1960 2.749532 6.109824 2
6 White 1901-1910 1960 2.357718 4.870047 2
7 White 1901-1910 1970 2.198574 4.786569 0
8 White 1911-1920 1960 2.383745 3.784971 2
9 White 1911-1920 1970 2.290355 3.947823 2
10 White 1911-1920 1980 2.299697 3.885418 2
11 White 1921-1930 1970 2.697188 3.906783 2
12 White 1921-1930 1980 2.728259 3.886124 2
13 White 1921-1930 1990 2.796851 3.950610 2
14 White 1931-1940 1980 2.901081 3.393930 2
15 White 1931-1940 1990 2.894691 3.351678 2
16 White 1941-1950 1990 2.204755 2.090623 2
17 Black/African American -Inf-1890 1960 3.902162 13.245048 0
18 Black/African American -Inf-1900 1970 3.087770 10.564482 0
19 Black/African American -Inf-1910 1980 2.613889 9.158011 0
20 Black/African American -Inf-1920 1990 2.856028 9.809749 0
21 Black/African American 1891-1900 1960 3.166572 10.973569 0
22 Black/African American 1901-1910 1960 2.741205 9.730068 0
23 Black/African American 1901-1910 1970 2.618036 9.023970 0
24 Black/African American 1911-1920 1960 2.820761 9.475099 0
25 Black/African American 1911-1920 1970 2.795064 9.124200 0
26 Black/African American 1911-1920 1980 2.817014 9.453284 0
27 Black/African American 1921-1930 1970 3.411675 9.564633 0
28 Black/African American 1921-1930 1980 3.400445 9.646242 0
29 Black/African American 1921-1930 1990 3.643816 10.234543 0
30 Black/African American 1931-1940 1980 3.721409 7.972764 3
31 Black/African American 1931-1940 1990 3.723892 7.741557 2
32 Black/African American 1941-1950 1990 2.690402 3.955388 2
Prob_0 Prob_1 Prob_2 Prob_3 Prob_4 Prob_5 Prob_6
1 0.1601171 0.14383842 0.1735320 0.14095304 0.10820180 0.07719472 0.05585582
2 0.2337344 0.15563563 0.1907270 0.13766146 0.09400089 0.06100962 0.04147614
3 0.2425410 0.17905944 0.2217025 0.14213617 0.08185637 0.04957835 0.03016161
4 0.2003224 0.17086054 0.2495743 0.16517318 0.09503183 0.05020253 0.02764322
5 0.1790942 0.17183505 0.2064320 0.14997168 0.10013557 0.06473203 0.04249112
6 0.2000759 0.19774610 0.2351671 0.14591432 0.08571877 0.04872973 0.03009123
7 0.2484123 0.18579166 0.2226615 0.13859746 0.08031093 0.04560480 0.02848213
8 0.1548323 0.18555184 0.2691760 0.17613893 0.09801059 0.05041189 0.02763336
9 0.1967171 0.16973904 0.2562944 0.16982255 0.09505741 0.04905532 0.02524530
10 0.1926550 0.16842906 0.2583952 0.17291618 0.09513579 0.04901138 0.02691150
11 0.1351880 0.12673286 0.2507330 0.20721415 0.13102862 0.06863779 0.03679984
12 0.1318459 0.12042477 0.2503092 0.21324354 0.13229042 0.07044023 0.03706567
13 0.1234195 0.11569770 0.2477657 0.21626065 0.13752802 0.07369103 0.03953569
14 0.1037357 0.09351712 0.2399871 0.23964134 0.16043259 0.08265468 0.04216199
15 0.1031027 0.09122701 0.2441949 0.24135347 0.15966028 0.08278604 0.04035221
16 0.1389518 0.13595406 0.3532313 0.22043189 0.09474345 0.03452663 0.01315010
17 0.1979522 0.14761092 0.1242890 0.08902162 0.08447099 0.05830489 0.06058020
18 0.2601452 0.16502234 0.1285369 0.09959047 0.08460536 0.05835815 0.04579300
19 0.3019568 0.19414247 0.1310909 0.09464126 0.06778360 0.04744852 0.03824018
20 0.2758865 0.18308004 0.1298886 0.09979737 0.07163121 0.05420466 0.04346505
21 0.2480664 0.17732503 0.1284663 0.09677419 0.07508017 0.05715903 0.04584041
22 0.2864718 0.19580962 0.1319193 0.09169684 0.07281428 0.04837041 0.03879979
23 0.2998207 0.18659938 0.1367953 0.09436218 0.07231556 0.05491733 0.03625739
24 0.2685870 0.18750000 0.1383696 0.09891304 0.07510870 0.05206522 0.04413043
25 0.2644968 0.18741749 0.1396872 0.10373718 0.07936427 0.05255408 0.04305880
26 0.2708013 0.17914380 0.1436883 0.10406147 0.07178924 0.05433589 0.04368825
27 0.1825328 0.15683751 0.1417145 0.12075385 0.09643760 0.07621236 0.05796369
28 0.1890040 0.15089492 0.1437869 0.12280552 0.09454483 0.07185065 0.05917616
29 0.1674815 0.14605222 0.1425153 0.11640487 0.09497555 0.07968376 0.06407989
30 0.1190148 0.12667930 0.1436445 0.14424733 0.12435412 0.10032725 0.07543920
31 0.1110096 0.12261307 0.1537688 0.14536318 0.13001370 0.09821836 0.07747830
32 0.1258126 0.15923518 0.2409178 0.18860421 0.12466539 0.07319312 0.04221797
Prob_7 Prob_8 Prob_9 Prob_10 Prob_11 Prob_12plus
1 0.041084387 0.034021662 0.0232983786 0.0170538963 0.0107017506 0.0141469822
2 0.027730366 0.021085755 0.0136685140 0.0098475111 0.0061248428 0.0072978345
3 0.018016649 0.012731042 0.0087478429 0.0054809686 0.0032668743 0.0047212303
4 0.015665041 0.009936348 0.0059849549 0.0041084566 0.0023807556 0.0031164752
5 0.028642035 0.019752536 0.0133514098 0.0101079439 0.0054400988 0.0080142781
6 0.019685606 0.013481499 0.0084292090 0.0063219068 0.0035732517 0.0050653787
7 0.016949039 0.011846964 0.0078935242 0.0056162892 0.0031186767 0.0047147446
8 0.015027420 0.008985590 0.0057688199 0.0033710799 0.0022909100 0.0028013199
9 0.014739040 0.009003132 0.0055114823 0.0034551148 0.0020929019 0.0032672234
10 0.013830609 0.009086128 0.0053711101 0.0032338559 0.0018127497 0.0032114763
11 0.018971640 0.010663352 0.0060738619 0.0036086503 0.0017938349 0.0025543789
12 0.019924245 0.010812430 0.0055849728 0.0036524562 0.0019035288 0.0025026089
13 0.019747920 0.011179196 0.0063567977 0.0038260350 0.0019827629 0.0030090171
14 0.019447458 0.009181204 0.0046502200 0.0023370336 0.0011565932 0.0010969750
15 0.019026010 0.009492189 0.0043714027 0.0021336608 0.0010720345 0.0012281560
16 0.005115379 0.002117610 0.0008191578 0.0004008645 0.0002875767 0.0002701478
17 0.047781570 0.044368601 0.0346985210 0.0315699659 0.0236063709 0.0557451650
18 0.037043931 0.029318690 0.0252233805 0.0209419211 0.0134028295 0.0320178704
19 0.034531270 0.023404527 0.0170098478 0.0170098478 0.0092083387 0.0235324210
20 0.037082067 0.029078014 0.0217831814 0.0163120567 0.0094224924 0.0283687943
21 0.039615167 0.034899076 0.0239577438 0.0260328240 0.0130164120 0.0337672137
22 0.029487843 0.028711847 0.0210812209 0.0165545784 0.0102172788 0.0280651837
23 0.029749651 0.023109104 0.0184607212 0.0138787436 0.0094959825 0.0242379972
24 0.035434783 0.026847826 0.0191304348 0.0186956522 0.0103260870 0.0248913043
25 0.031938662 0.028688941 0.0201076470 0.0160454961 0.0108662537 0.0220371687
26 0.031503842 0.025795829 0.0222832053 0.0171240395 0.0107574094 0.0250274424
27 0.049046196 0.036037692 0.0242702827 0.0204091014 0.0130085038 0.0247759136
28 0.047529331 0.036139419 0.0262053610 0.0196968399 0.0139590648 0.0244069538
29 0.052637054 0.039633829 0.0263185270 0.0241339852 0.0160199730 0.0300634557
30 0.057698932 0.040475370 0.0259214606 0.0170513262 0.0102480193 0.0148983810
31 0.055824577 0.039013248 0.0278666058 0.0152581087 0.0074920055 0.0160804020
32 0.020573614 0.012848948 0.0061185468 0.0022944551 0.0014531549 0.0020650096
The goal is to determine if there is a significant change in any of the following across census years for the same cohort:
## divided the corhort by race
merged_df_black <- merged_data %>% filter(Race == "Black/African American")
merged_df_white <- merged_data %>% filter(Race == "White")
# Data frame to store proportions
proportions_df_b <- data.frame(Cohort = character(), Census_Year = character(),
Proportion_Zero_Children = numeric(), Race = character(), stringsAsFactors = FALSE)
# Filter cohorts with more than one census year
cohort_counts <- merged_df_black %>%
group_by(Cohort) %>%
summarise(Unique_Census_Years = n_distinct(Census_Year)) %>%
filter(Unique_Census_Years > 1)
# Get the list of cohorts for testing
cohorts_for_test <- cohort_counts$Cohort
# Initialize results data frame
results_black <- data.frame(RACE = character(), Cohort = character(), Chi_Square = numeric(), p_value = numeric(), stringsAsFactors = FALSE)
# Loop through each cohort and run the chi-square test
for (cohort in cohorts_for_test) {
cohort_data <- merged_df_black %>% filter(Cohort == cohort)
# Create contingency table
contingency_table <- table(cohort_data$Census_Year, cohort_data$chborn_num == "0")
# Perform the chi-square test only if more than one row is in the table
if (nrow(contingency_table) > 1) {
test_result <- chisq.test(contingency_table)
# Append results to the results data frame
results_black <- rbind(results_black, data.frame(
RACE = "Black/African American",
Cohort = cohort,
Chi_Square = test_result$statistic,
p_value = test_result$p.value
))
# proportion across year
proportions <- cohort_data %>%
group_by(Census_Year) %>%
summarise(Proportion_Zero_Children = mean(chborn_num == "0"))
proportions$Cohort <- cohort
proportions$Race <- "Black"
# Combine into one data frame
proportions_df_b <- rbind(proportions_df_b, proportions)
# Print proportions for review
print(paste("Proportions for cohort:", cohort))
print(proportions)
}
}
[1] "Proportions for cohort: 1901-1910"
# A tibble: 2 × 4
Census_Year Proportion_Zero_Children Cohort Race
<int> <dbl> <chr> <chr>
1 1960 0.286 1901-1910 Black
2 1970 0.300 1901-1910 Black
[1] "Proportions for cohort: 1911-1920"
# A tibble: 3 × 4
Census_Year Proportion_Zero_Children Cohort Race
<int> <dbl> <chr> <chr>
1 1960 0.269 1911-1920 Black
2 1970 0.264 1911-1920 Black
3 1980 0.271 1911-1920 Black
[1] "Proportions for cohort: 1921-1930"
# A tibble: 3 × 4
Census_Year Proportion_Zero_Children Cohort Race
<int> <dbl> <chr> <chr>
1 1970 0.183 1921-1930 Black
2 1980 0.189 1921-1930 Black
3 1990 0.167 1921-1930 Black
[1] "Proportions for cohort: 1931-1940"
# A tibble: 2 × 4
Census_Year Proportion_Zero_Children Cohort Race
<int> <dbl> <chr> <chr>
1 1980 0.119 1931-1940 Black
2 1990 0.111 1931-1940 Black
results_black <- results_black %>%
mutate(Significance = ifelse(p_value > 0.05, "No", "Yes"))
print(results_black)
RACE Cohort Chi_Square p_value
X-squared Black/African American 1901-1910 4.310851 0.0378700083
X-squared1 Black/African American 1911-1920 1.421550 0.4912633533
X-squared2 Black/African American 1921-1930 17.245995 0.0001799202
X-squared3 Black/African American 1931-1940 3.466056 0.0626405054
Significance
X-squared Yes
X-squared1 No
X-squared2 Yes
X-squared3 No
# Function to determine the nature of change
determine_nature_of_change <- function(proportions) {
if (nrow(proportions) > 1) {
if (all(diff(proportions$Proportion_Zero_Children) > 0)) {
return("Increase")
} else if (all(diff(proportions$Proportion_Zero_Children) < 0)) {
return("Decrease")
} else {
return("Mixed/No Change")
}
} else {
return("Not Applicable")
}
}
# Add the Nature_of_Change column
results_black$Nature_of_Change <- NA # Initialize the column
# Loop through each cohort in results_black
for (i in 1:nrow(results_black)) {
cohort <- results_black$Cohort[i]
cohort_data <- merged_df_black %>% filter(Cohort == cohort)
# Calculate proportions for the cohort
proportions <- cohort_data %>%
group_by(Census_Year) %>%
summarise(Proportion_Zero_Children = mean(chborn_num == "0"))
# Determine nature of change
results_black$Nature_of_Change[i] <- determine_nature_of_change(proportions)
}
# View the updated results_black
print(results_black)
RACE Cohort Chi_Square p_value
X-squared Black/African American 1901-1910 4.310851 0.0378700083
X-squared1 Black/African American 1911-1920 1.421550 0.4912633533
X-squared2 Black/African American 1921-1930 17.245995 0.0001799202
X-squared3 Black/African American 1931-1940 3.466056 0.0626405054
Significance Nature_of_Change
X-squared Yes Increase
X-squared1 No Mixed/No Change
X-squared2 Yes Mixed/No Change
X-squared3 No Decrease
# Data frame to store proportions
proportions_df_w <- data.frame(Cohort = character(), Census_Year = character(),
Proportion_Zero_Children = numeric(), Race = character(), stringsAsFactors = FALSE)
# Filter cohorts with more than one census year
cohort_counts2 <- merged_df_white %>%
group_by(Cohort) %>%
summarise(Unique_Census_Years = n_distinct(Census_Year)) %>%
filter(Unique_Census_Years > 1)
# Get the list of cohorts for testing
cohorts_for_test2 <- cohort_counts2$Cohort
# Initialize results data frame
results_white <- data.frame(RACE = character(), Cohort = character(), Chi_Square = numeric(), p_value = numeric(), stringsAsFactors = FALSE)
# Loop through each cohort and run the chi-square test
for (cohort in cohorts_for_test2) {
cohort_data <- merged_df_white %>% filter(Cohort == cohort)
# Create contingency table
contingency_table <- table(cohort_data$Census_Year, cohort_data$chborn_num == "0")
# Perform the chi-square test only if more than one row is in the table
if (nrow(contingency_table) > 1) {
test_result <- chisq.test(contingency_table)
# Append results to the results data frame
results_white <- rbind(results_white, data.frame(
RACE = "White",
Cohort = cohort,
Chi_Square = test_result$statistic,
p_value = test_result$p.value
))
# proportion across year
proportions <- cohort_data %>%
group_by(Census_Year) %>%
summarise(Proportion_Zero_Children = mean(chborn_num == "0"))
proportions$Cohort <- cohort
proportions$Race <- "White"
# Combine into one data frame
proportions_df_w <- rbind(proportions_df_w, proportions)
# Print proportions for review
print(paste("Proportions for cohort:", cohort))
print(proportions)
}
}
[1] "Proportions for cohort: 1901-1910"
# A tibble: 2 × 4
Census_Year Proportion_Zero_Children Cohort Race
<int> <dbl> <chr> <chr>
1 1960 0.200 1901-1910 White
2 1970 0.248 1901-1910 White
[1] "Proportions for cohort: 1911-1920"
# A tibble: 3 × 4
Census_Year Proportion_Zero_Children Cohort Race
<int> <dbl> <chr> <chr>
1 1960 0.155 1911-1920 White
2 1970 0.197 1911-1920 White
3 1980 0.193 1911-1920 White
[1] "Proportions for cohort: 1921-1930"
# A tibble: 3 × 4
Census_Year Proportion_Zero_Children Cohort Race
<int> <dbl> <chr> <chr>
1 1970 0.135 1921-1930 White
2 1980 0.132 1921-1930 White
3 1990 0.123 1921-1930 White
[1] "Proportions for cohort: 1931-1940"
# A tibble: 2 × 4
Census_Year Proportion_Zero_Children Cohort Race
<int> <dbl> <chr> <chr>
1 1980 0.104 1931-1940 White
2 1990 0.103 1931-1940 White
results_white <- results_white %>%
mutate(Significance = ifelse(p_value > 0.05, "No", "Yes"))
print(results_white)
RACE Cohort Chi_Square p_value Significance
X-squared White 1901-1910 662.9400598 3.427247e-146 Yes
X-squared1 White 1911-1920 711.8344845 2.673657e-155 Yes
X-squared2 White 1921-1930 80.1733778 3.895581e-18 Yes
X-squared3 White 1931-1940 0.1867867 6.656046e-01 No
# Add the Nature_of_Change column
results_white$Nature_of_Change <- NA # Initialize the column
# Loop through each cohort in results_white
for (i in 1:nrow(results_white)) {
cohort <- results_white$Cohort[i]
cohort_data <- merged_df_white %>% filter(Cohort == cohort)
# Calculate proportions for the cohort
proportions <- cohort_data %>%
group_by(Census_Year) %>%
summarise(Proportion_Zero_Children = mean(chborn_num == "0"))
# Determine nature of change
results_white$Nature_of_Change[i] <- determine_nature_of_change(proportions)
}
# View the updated results_white
print(results_white)
RACE Cohort Chi_Square p_value Significance
X-squared White 1901-1910 662.9400598 3.427247e-146 Yes
X-squared1 White 1911-1920 711.8344845 2.673657e-155 Yes
X-squared2 White 1921-1930 80.1733778 3.895581e-18 Yes
X-squared3 White 1931-1940 0.1867867 6.656046e-01 No
Nature_of_Change
X-squared Increase
X-squared1 Mixed/No Change
X-squared2 Decrease
X-squared3 Decrease
# Combine the two data frames
combined_result <- rbind(results_black, results_white)
# Create the plot
ggplot(combined_result, aes(x = Cohort, y = p_value, color = RACE, shape = Significance)) +
geom_point(size = 2) +
geom_line(aes(group = RACE)) +
annotate("text", x = Inf, y = 0.05, label = "p = 0.05", hjust = 1.1, vjust = -0.5, color = "red", size = 3) +
geom_hline(yintercept = 0.05, linetype = "dashed", color = "red", size = 0.5) +
scale_y_log10() + # Use log scale for better visualization if p-values vary widely
labs(
title = "Change of p-values by Cohort",
x = "Cohort",
y = "p-value (log scale)",
color = "Race",
shape = "Significance"
) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
Version | Author | Date |
---|---|---|
2851385 | Tina Lasisi | 2024-09-21 |
RESULT: The graph shows that there is a discrepancy in the p-value within the cohorts like 1901-1910, 1911-1920 and 1921-1930 by race. However, in cohort 1931-1941, the p-value of each race is pretty close to each other. The overall trend of the p-value for black population is stable across cohort, while the trend for white population fluctuate a lot.
merged_data2 <- left_join(merged_data, summary_table, by = c("Race","Cohort","Census_Year")) %>% dplyr::select(Race, Cohort, Census_Year, Mean, Variance)
merged_black = merged_data2 %>% filter(Race == "Black/African American")
merged_white = merged_data2 %>% filter(Race == "White")
cohorts1 <- unique(merged_black$Cohort)
# Loop through each cohort and apply ANOVA for Mean and Variance
for (cohort in cohorts1) {
# Filter data for the specific cohort
cohort_data_b <- merged_black[merged_black$Cohort == cohort, ]
# Check if there are at least two unique Census_Year values
if (length(unique(cohort_data_b$Census_Year)) < 2) {
cat("\nCohort:", cohort, "has only one Census Year. Skipping ANOVA.\n")
next
}
# Perform ANOVA for Mean
anova_mean_result <- aov(Mean ~ factor(Census_Year), data = cohort_data_b)
# Perform ANOVA for Variance
anova_variance_result <- aov(Variance ~ factor(Census_Year), data = cohort_data_b)
# Output the results
cat("\nCohort:", cohort)
cat("\nANOVA for Mean Family Size:\n")
print(summary(anova_mean_result))
}
Cohort: 1891-1900 has only one Census Year. Skipping ANOVA.
Cohort: 1911-1920
ANOVA for Mean Family Size:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 2 5.453 2.727 8.507e+23 <2e-16 ***
Residuals 38001 0.000 0.000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: 1901-1910
ANOVA for Mean Family Size:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 1 77.51 77.51 7.094e+25 <2e-16 ***
Residuals 22789 0.00 0.00
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: -Inf-1890 has only one Census Year. Skipping ANOVA.
Cohort: 1921-1930
ANOVA for Mean Family Size:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 2 417 208.5 4.477e+26 <2e-16 ***
Residuals 43042 0 0.0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: -Inf-1900 has only one Census Year. Skipping ANOVA.
Cohort: 1931-1940
ANOVA for Mean Family Size:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 1 0.03475 0.03475 1.223e+22 <2e-16 ***
Residuals 22555 0.00000 0.00000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: -Inf-1910 has only one Census Year. Skipping ANOVA.
Cohort: 1941-1950 has only one Census Year. Skipping ANOVA.
Cohort: -Inf-1920 has only one Census Year. Skipping ANOVA.
cohorts2 <- unique(merged_white$Cohort)
# Loop through each cohort and apply ANOVA for Mean and Variance
for (cohort in cohorts2) {
# Filter data for the specific cohort
cohort_data_w <- merged_white[merged_white$Cohort == cohort, ]
# Check if there are at least two unique Census_Year values
if (length(unique(cohort_data_w$Census_Year)) < 2) {
cat("\nCohort:", cohort, "has only one Census Year. Skipping ANOVA.\n")
next
}
# Perform ANOVA for Mean
anova_mean_result <- aov(Mean ~ factor(Census_Year), data = cohort_data_w)
# Output the results
cat("\nCohort:", cohort)
cat("\nANOVA for Mean Family Size:\n")
print(summary(anova_mean_result))
}
Cohort: 1891-1900 has only one Census Year. Skipping ANOVA.
Cohort: 1911-1920
ANOVA for Mean Family Size:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 2 535.2 267.6 4.546e+24 <2e-16 ***
Residuals 365210 0.0 0.0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: 1901-1910
ANOVA for Mean Family Size:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 1 1281 1281 9.604e+25 <2e-16 ***
Residuals 226142 0 0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: -Inf-1890 has only one Census Year. Skipping ANOVA.
Cohort: -Inf-1900 has only one Census Year. Skipping ANOVA.
Cohort: 1921-1930
ANOVA for Mean Family Size:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 2 653.9 327 8.029e+23 <2e-16 ***
Residuals 394507 0.0 0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: 1931-1940
ANOVA for Mean Family Size:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 1 1.829 1.829 8.533e+22 <2e-16 ***
Residuals 179944 0.000 0.000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: -Inf-1910 has only one Census Year. Skipping ANOVA.
Cohort: -Inf-1920 has only one Census Year. Skipping ANOVA.
Cohort: 1941-1950 has only one Census Year. Skipping ANOVA.
RESULT: 1.In both racial group, the ANOVA is not applicable for the following cohort since there is only one census year available in the data for those cohorts:-Inf-1910, 1941-1950, -Inf-1920, -Inf-1890, -Inf-1900, and 1891-1900 2.By looking at the ANOVA for mean family size in both racial group, the p-value of the rest cohorts (1901-1910, 1911-1920, 1921-1930, 1931-1940) are smaller than 0.05, indicating mean family size for these cohort has significantly changed over different census years in both population.
# Due to the due lack of data variability, I use visualization instead of test
ggplot(best_models, aes(x = Census_Year, y = Cohort, fill = Best_Model)) +
geom_tile(color = "white", lwd = 0.5, linetype = 1) + # Create the tiles
facet_wrap(~Race, nrow = 2) + # Facet by Race
scale_fill_manual(values = c("Zero_Inflated_Poisson" = "#0072B2", "Zero_Inflated_NB" = "#F0E442")) +
labs(
title = "Best Model by Race, Census Year, and Cohort(Birth Range)",
x = "Census Year",
y = "Birth Range",
fill = "Best Model"
) +
theme_minimal() +
theme(
plot.title = element_text(size = 14, face = "bold"),
legend.position = "bottom"
)
RESULT: Based on the heatmap created, we can see that the model fit for each cohort(cohort with 2+ corresponding census year) across year does not change.
The goal is to summarize the previous information and create visualization that illustrates significant fertility shifts in cohorts, compares fertility patterns of 40-49 year-olds to 50-59 year-olds in the 1990 census so we can pick the set of fertility distributions we want to use to visualize the sibling distribution and do the math on the genetic surveillance.
part1<- child_plot +
geom_rect(data = df_mirror %>% filter((YEAR == 1960 & AGE_RANGE == "50-59")|
(YEAR == 1970 & AGE_RANGE == "40-49")|
(YEAR == 1970 & AGE_RANGE == "60-69")|
(YEAR == 1980 & AGE_RANGE == "50-59")|
(YEAR == 1990 & AGE_RANGE == "60-69")),
aes(xmin = -0.45, xmax = 0.45, ymin = -0.3, ymax = 0.3),
fill = "blue", alpha = 0.03)
part2<- part1 +
geom_rect(data = df_mirror %>% filter((YEAR == 1960 & AGE_RANGE == "40-49")|
(YEAR == 1970 & AGE_RANGE == "50-59")|
(YEAR == 1980 & AGE_RANGE == "60-69")),
aes(xmin = -0.45, xmax = 0.45, ymin = -0.3, ymax = 0),
fill = "blue", alpha = 0.03) +
labs(title = "Fertility Distribution Shifts",
subtitle = "Highlighted significant shifts in Number of zero Children",
caption = "Annotations indicate key shifts in number of zero children across census years. White population shown on left (negative values), Black/African American on right (positive values)\nProportions normalized within each age range, race, and census year\nFootnote: The category '12+' includes families with 12 or more children.") +
theme_minimal()+
theme(
plot.title = element_text(size = 14, hjust = 0.5),
plot.subtitle = element_text(size = 12, hjust = 0.5),
plot.caption = element_text(size = 9, hjust = 0.5),
axis.text.y = element_text(size = 8),
strip.text = element_text(size = 10)
)
part2
Version | Author | Date |
---|---|---|
2851385 | Tina Lasisi | 2024-09-21 |
child_plot +
geom_rect(data = df_mirror %>% filter((YEAR == 1960 & AGE_RANGE == "40-49")|
(YEAR == 1960 & AGE_RANGE == "50-59")|
(YEAR == 1970 & AGE_RANGE == "40-49")|
(YEAR == 1970 & AGE_RANGE == "50-59")|
(YEAR == 1970 & AGE_RANGE == "60-69")|
(YEAR == 1980 & AGE_RANGE == "40-49")|
(YEAR == 1980 & AGE_RANGE == "50-59")|
(YEAR == 1980 & AGE_RANGE == "60-69")|
(YEAR == 1990 & AGE_RANGE == "50-59")|
(YEAR == 1990 & AGE_RANGE == "60-69")),
aes(xmin = -0.45, xmax = 13, ymin = -0.3, ymax = 0.3),
fill = "blue", alpha = 0.01) +
labs(title = "Fertility Distribution Shifts",
subtitle = "Highlighted significant shifts in Mean Family Size",
caption = "Annotations indicate key shifts in Mean Family Size across census years. White population shown on left (negative values), Black/African American on right (positive values)\nProportions normalized within each age range, race, and census year\nFootnote: The category '12+' includes families with 12 or more children.") +
theme_minimal()+
theme(
plot.title = element_text(size = 14, hjust = 0.5),
plot.subtitle = element_text(size = 12, hjust = 0.5),
plot.caption = element_text(size = 9, hjust = 0.5),
axis.text.y = element_text(size = 8),
strip.text = element_text(size = 10)
)
Version | Author | Date |
---|---|---|
2851385 | Tina Lasisi | 2024-09-21 |
# Significant Change in Zero Inflation
## Balck population
filter_prop_b <- proportions_df_b %>%
filter(Cohort %in% c("1901-1910", "1921-1930"))
## White population
filter_prop_w <- proportions_df_w %>%
filter(Cohort %in% c("1901-1910", "1911-1920", "1921-1930"))
combined_data <- bind_rows(filter_prop_b, filter_prop_w)
ggplot(combined_data, aes(x = Census_Year, y = Proportion_Zero_Children, color = Cohort)) +
geom_line(size = 1) +
geom_point(size = 2) +
facet_wrap(~ Race, scales = "free_x") +
labs(
title = "Significant Change in Probability of Zero Children by Race and Cohort",
x = "Census Year",
y = "Proportion of Zero Children",
color = "Cohort"
) +
theme_minimal() +
theme(
axis.text.x = element_text(angle = 45, hjust = 1),
legend.position = "bottom"
)
Version | Author | Date |
---|---|---|
2851385 | Tina Lasisi | 2024-09-21 |
# Significant Change in mean family size
significant_cohorts <- c("1901-1910", "1911-1920", "1921-1930", "1931-1940") # Replace with actual significant cohorts
filtered_data <- merged_data2 %>% filter(Cohort %in% significant_cohorts)
# Plot for significant cohorts
ggplot(filtered_data, aes(x = as.factor(Census_Year), y = Mean, color = Race, group = interaction(Cohort, Race))) +
geom_line(size = 1) +
geom_point(size = 2) +
facet_wrap(~ Cohort, scales = "free_x") +
labs(
title = "Significant Changes in Mean Family Size Over Census Years",
x = "Census Year",
y = "Mean Family Size",
color = "Race"
) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
filter_df <- df_proportions %>%
filter(YEAR == "1990", AGE_RANGE %in% c("40-49", "50-59"))
ggplot(filter_df, aes(x = chborn_num, y = proportion, fill = AGE_RANGE)) +
geom_col(position = "identity", alpha = 0.5) +
facet_wrap(~ RACE) +
labs(
title = "Distribution of Number of Children for Women in 40-49 and 50-59 Age Groups in 1990",
x = "Number of Children",
y = "Proportion",
fill = "Age Range"
)
summary_stats <- filter_df %>%
group_by(AGE_RANGE, RACE) %>%
summarise(
mean_children = weighted.mean(chborn_num, count), # Mean number of children
variance_children = sum(count * (chborn_num - weighted.mean(chborn_num, count))^2) / sum(count), # Variance
zero_inflation = sum(count[chborn_num == 0]) / sum(count) # Proportion of women with 0 children
)
`summarise()` has grouped output by 'AGE_RANGE'. You can override using the
`.groups` argument.
# Print summary statistics table
summary_stats
# A tibble: 4 × 5
# Groups: AGE_RANGE [2]
AGE_RANGE RACE mean_children variance_children zero_inflation
<chr> <fct> <dbl> <dbl> <dbl>
1 40-49 White 2.20 2.09 0.139
2 40-49 Black/African Americ… 2.69 3.96 0.126
3 50-59 White 2.89 3.35 0.103
4 50-59 Black/African Americ… 3.72 7.74 0.111
## Check the normality assumption for black population
# Subset data for the 40-49 and 50-59 age groups
data_40_49_b <- df %>% filter(AGE_RANGE == "40-49", RACE == "Black/African American")
data_50_59_b <- df %>% filter(AGE_RANGE == "50-59", RACE == "Black/African American")
qqnorm(data_40_49_b$chborn_num, main = "QQ Plot: 40-49 Age Group (Black/African American)")
qqline(data_40_49_b$chborn_num)
# QQ plot for the 50-59 age group
qqnorm(data_50_59_b$chborn_num, main = "QQ Plot: 50-59 Age Group (Black/African American)")
qqline(data_50_59_b$chborn_num)
## Check the normality assumption for white population
data_40_49_w <- df %>% filter(AGE_RANGE == "40-49", RACE == "White")
data_50_59_w <- df %>% filter(AGE_RANGE == "50-59", RACE == "White")
qqnorm(data_40_49_w$chborn_num, main = "QQ Plot: 40-49 Age Group (White)")
qqline(data_40_49_w$chborn_num)
# QQ plot for the 50-59 age group
qqnorm(data_50_59_w$chborn_num, main = "QQ Plot: 50-59 Age Group (White)")
qqline(data_50_59_w$chborn_num)
Since the data for black population and white population violate normality assumption, we perform a Mann-Whitney U test for both racial groups in the follwoing:
wilcox_test_result <- wilcox.test(data_40_49_b$chborn_num, data_50_59_b$chborn_num)$p.value
wilcox_test_result2 <- wilcox.test(data_40_49_w$chborn_num, data_50_59_w$chborn_num)$p.value
print(c(wilcox_test_result, wilcox_test_result2))
[1] 1.012022e-31 3.463246e-126
RESULT: These p-values are both extremely small (close to zero), meaning there is a very strong statistical difference between the two age groups (40-49 and 50-59) in terms of the mean number of children within each racial group.
## Apply Levene's test since non-normality
df_w <- df %>% filter(RACE == "White")
df_b <- df %>% filter(RACE == "Black/African American")
# Levene's test for Black group
levene_test_b <- leveneTest(chborn_num ~ as.factor(AGE_RANGE), data = df_b)
# Levene's test for White group
levene_test_w <- leveneTest(chborn_num ~ as.factor(AGE_RANGE), data = df_w)
# Print results
print(levene_test_b)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 3 93.887 < 2.2e-16 ***
176718
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(levene_test_w)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 3 4205.8 < 2.2e-16 ***
1740751
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RESULT: Since the p values are smaller than 0.05 for both racial group, we have enough evidence to reject the null hypothesis, indicating that the variances of the number of children between the two age groups within each racial group are significantly different.
# contingency tables showing the counts of women with zero children and those with one or more children for each age group
ZI_table <- df %>% filter(YEAR == "1990", AGE_RANGE %in% c("40-49", "50-59")) %>%
mutate(childlessness = ifelse(chborn_num == 0, "0 Children", "1+ Children")) %>% group_by(RACE, AGE_RANGE, childlessness) %>%
summarise(count = n())
`summarise()` has grouped output by 'RACE', 'AGE_RANGE'. You can override using
the `.groups` argument.
ZI_table
# A tibble: 8 × 4
# Groups: RACE, AGE_RANGE [4]
RACE AGE_RANGE childlessness count
<fct> <chr> <chr> <int>
1 White 40-49 0 Children 15945
2 White 40-49 1+ Children 98807
3 White 50-59 0 Children 9906
4 White 50-59 1+ Children 86173
5 Black/African American 40-49 0 Children 1645
6 Black/African American 40-49 1+ Children 11430
7 Black/African American 50-59 0 Children 1215
8 Black/African American 50-59 1+ Children 9730
ZI_table_b <- ZI_table %>%
filter(RACE == "Black/African American")
cont_table_b <- xtabs(count ~ AGE_RANGE + childlessness, data = ZI_table_b)
chi_test_b <- chisq.test(cont_table_b)
chi_test_b
Pearson's Chi-squared test with Yates' continuity correction
data: cont_table_b
X-squared = 12.306, df = 1, p-value = 0.0004515
ZI_table_w <- ZI_table %>%
filter(RACE == "White")
cont_table_w <- xtabs(count ~ AGE_RANGE + childlessness, data = ZI_table_w)
chi_test_w <- chisq.test(cont_table_w)
chi_test_w
Pearson's Chi-squared test with Yates' continuity correction
data: cont_table_w
X-squared = 624.38, df = 1, p-value < 2.2e-16
RESULT: The p-values for both tests are extremely low, suggests that there is a significant difference in the proportion of women with 0 children across age ranges (40-49 vs. 50-59) for both the Black/African American and White racial groups. The results imply that childlessness is not uniformly distributed across age groups.
Write a clear and concise summary addressing the following points.
Having analyzed the distribution of the number of children, we now turn our attention to the distribution of the number of siblings. We will explore the trends in the frequency of the number of siblings for African American and European American mothers across the Census years by age group.
Frequency of siblings is calculated as follows.
\[ \text{freq}_{n_{\text{sib}}} = \text{freq}_{\text{mother}} \cdot \text{chborn}_{\text{num}} \]
For example, suppose 10 mothers (generation 0) have 7 children, then there will be 70 children (generation 1) in total who each have 6 siblings.
We take our original data and calculate the frequency of siblings for each mother based on the number of children they have. We then aggregate this data to get the frequency of siblings for each generation along with details on the birth years of the relevant children to visualize the distribution of the number of siblings across generations.
df2 <- df %>%
dplyr::select(RACE, YEAR, AGE_RANGE, chborn_num)
df2 <- df2 %>%
mutate(n_siblings = chborn_num - 1)
df2 <- df2 %>%
mutate(sibling_freq = ifelse(chborn_num != 1, n_siblings * 1, 1)) # Assuming each mother represents 1 in frequency
# Group the data and calculate sibling frequencies
df_siblings <- df2 %>%
group_by(YEAR, RACE, AGE_RANGE, n_siblings) %>%
summarise(
sibling_count = sum(sibling_freq),
.groups = "drop"
)
# Calculate proportions within each group
df_sibling_proportions <- df_siblings %>%
group_by(YEAR, RACE, AGE_RANGE) %>%
mutate(proportion = sibling_count / sum(sibling_count)) %>%
ungroup()
normalization_check <- df_sibling_proportions %>%
group_by(YEAR, RACE, AGE_RANGE) %>%
summarise(total_proportion = sum(proportion), .groups = "drop") %>%
arrange(YEAR, RACE, AGE_RANGE)
print(normalization_check)
# A tibble: 32 × 4
YEAR RACE AGE_RANGE total_proportion
<int> <fct> <chr> <dbl>
1 1960 White 40-49 1
2 1960 White 50-59 1
3 1960 White 60-69 1
4 1960 White 70+ 1
5 1960 Black/African American 40-49 1
6 1960 Black/African American 50-59 1
7 1960 Black/African American 60-69 1
8 1960 Black/African American 70+ 1
9 1970 White 40-49 1
10 1970 White 50-59 1
# ℹ 22 more rows
df_sibling_mirror <- df_sibling_proportions %>%
mutate(proportion = if_else(RACE == "White", -proportion, proportion))
my_colors <- colorRampPalette(c("#FFB000", "#F77A2E", "#DE3A8A", "#7253FF", "#5E8BFF"))(13)
ggplot(data = df_sibling_mirror %>% filter(n_siblings != "-1"), aes(x = n_siblings, y = proportion, fill = as.factor(n_siblings))) +
geom_col(aes(alpha = RACE)) +
geom_hline(yintercept = 0, color = "black", size = 0.5) +
facet_grid(AGE_RANGE ~ YEAR, scales = "free_y") +
coord_flip() +
scale_y_continuous(
labels = function(x) abs(x),
limits = function(x) c(-max(abs(x)), max(abs(x)))
) +
scale_x_continuous(breaks = 0:11, labels = c(0:10, "11+")) +
scale_fill_manual(values = my_colors) +
scale_alpha_manual(values = c("White" = 0.7, "Black/African American" = 1)) +
labs(
title = "Distribution of Number of Siblings by Census Year, Race, and Age Range",
x = "Number of Siblings",
y = "Proportion",
fill = "Number of Siblings",
caption = "White population shown on left (negative values), Black/African American on right (positive values)\nProportions normalized within each age range, race, and census year\nFootnote: The category '11+' includes individuals with 11 or more siblings."
) +
theme_minimal() +
theme(
plot.title = element_text(size = 14, hjust = 0.5),
axis.text.y = element_text(size = 8),
strip.text = element_text(size = 10),
legend.position = "none",
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank()
)
# Mean Number of Sibling By race only
df2 %>% filter(RACE == "Black/African American" & n_siblings >= 0) %>% summarise(Mean = mean(n_siblings))
Mean
1 2.970941
df2 %>% filter(RACE == "White" & n_siblings >= 0) %>% summarise(Mean = mean(n_siblings))
Mean
1 2.049651
RESULT:
-By Census Year: In 1960 and 1970, individuals are more likely to have higher number of siblings, especially in the 5-10 range. This trend diminishes over time.
By 1980 and 1990, the distribution shifts toward smaller family sizes, with a growing proportion of individuals having fewer siblings.
-By age range:
40-49 Age Group: For this group, the number of individuals with 0-2 siblings increases across census years, especially in 1980 and 1990, while the proportion of individuals with larger sibling counts decreases.
50-59 and 60-69 Age Groups: These groups show a similar shift toward smaller family sizes, but the trend is slightly more gradual compared to the younger age group.
70+ Age Group: The shift to fewer siblings is noticeable, although the trend is less pronounced. The distribution remains relatively stable across the census years, with a significant portion of individuals still coming from large families in 1960 and 1970.
RESULT: -Black/African American Populations (right side of each pair) consistently show a higher proportion of individuals with larger sibling counts (5-10 siblings) compared to White populations. However, similar to the White population, the number of individuals with fewer siblings increases over time.
RESULT: -White Populations: (left side of each pair) have a more marked shift toward smaller families by 1990, with a larger proportion of individuals having 0-2 siblings compared to the Black/African American population. The decline in larger family sizes (5+ siblings) is more pronounced among Whites, particularly by 1980 and 1990.
RESULT: While both distributions show a trend toward smaller families, the sibling distribution is more spread out across different sibling counts, suggesting potential difference in the distribution.
We repeat the model fitting process we performed for the children distribution, this time using the sibling distribution data.
combinations2 <- df2 %>%
# treat number of sib = -1 as NA
filter(n_siblings != -1) %>%
group_by(YEAR, RACE, AGE_RANGE) %>%
group_split()
# Initialize the data frame to store results
best_models_sib <- data.frame(
Race = character(),
Census_Year = numeric(),
AGE_RANGE = character(),
AIC_poisson = numeric(),
AIC_nb = numeric(),
AIC_zip = numeric(),
AIC_zinb = numeric(),
stringsAsFactors = FALSE
)
# Loop through each subset of data
for (i in seq_along(combinations2)) {
subset_data <- combinations2[[i]]
# Fit Poisson model
poisson_model <- glm(n_siblings ~ 1, family = poisson, data = subset_data)
# Fit Negative Binomial model
nb_model <- glm.nb(n_siblings ~ 1, data = subset_data)
# Fit Zero-Inflated Poisson model
zip_model <- zeroinfl(n_siblings ~ 1 | 1, data = subset_data, dist = "poisson",control = zeroinfl.control(maxit = 100))
# Fit Zero-Inflated Negative Binomial model with increased max iterations
zinb_model <- zeroinfl(n_siblings ~ 1 | 1, data = subset_data, dist = "negbin",control = zeroinfl.control(maxit = 100))
# Append the result to the best_models data frame
best_models_sib <- rbind(
best_models_sib,
data.frame(
Race = unique(subset_data$RACE),
Census_Year = unique(subset_data$YEAR),
AGE_RANGE = unique(subset_data$AGE_RANGE),
AIC_poisson = AIC(poisson_model),
AIC_nb = AIC(nb_model),
AIC_zip = AIC(zip_model),
AIC_zinb = AIC(zinb_model),
stringsAsFactors = FALSE
)
)
}
# Add a Best_Model column to store the best model based on minimum AIC
best_models_sib$Best_Model <- apply(best_models_sib, 1, function(row) {
# Get AIC values for Poisson, NB, ZIP, and ZINB models
aic_values <- c(Poisson = as.numeric(row['AIC_poisson']),
Negative_Binomial = as.numeric(row['AIC_nb']),
Zero_Inflated_Poisson = as.numeric(row['AIC_zip']),
Zero_Inflated_NB= as.numeric(row['AIC_zinb']))
# Find the name of the model with the minimum AIC value
best_models_sib <- names(which.min(aic_values))
return(best_models_sib)
})
best_models_sib <- best_models_sib %>% dplyr::select(Race, Census_Year, AGE_RANGE, Best_Model)
# View the updated table with the Best_Model column
print(best_models_sib)
Race Census_Year AGE_RANGE Best_Model
1 White 1960 40-49 Negative_Binomial
2 White 1960 50-59 Negative_Binomial
3 White 1960 60-69 Negative_Binomial
4 White 1960 70+ Negative_Binomial
5 Black/African American 1960 40-49 Zero_Inflated_NB
6 Black/African American 1960 50-59 Zero_Inflated_NB
7 Black/African American 1960 60-69 Zero_Inflated_NB
8 Black/African American 1960 70+ Zero_Inflated_NB
9 White 1970 40-49 Negative_Binomial
10 White 1970 50-59 Negative_Binomial
11 White 1970 60-69 Negative_Binomial
12 White 1970 70+ Negative_Binomial
13 Black/African American 1970 40-49 Zero_Inflated_NB
14 Black/African American 1970 50-59 Zero_Inflated_NB
15 Black/African American 1970 60-69 Zero_Inflated_NB
16 Black/African American 1970 70+ Zero_Inflated_NB
17 White 1980 40-49 Negative_Binomial
18 White 1980 50-59 Negative_Binomial
19 White 1980 60-69 Negative_Binomial
20 White 1980 70+ Negative_Binomial
21 Black/African American 1980 40-49 Zero_Inflated_NB
22 Black/African American 1980 50-59 Zero_Inflated_NB
23 Black/African American 1980 60-69 Zero_Inflated_NB
24 Black/African American 1980 70+ Zero_Inflated_NB
25 White 1990 40-49 Poisson
26 White 1990 50-59 Negative_Binomial
27 White 1990 60-69 Negative_Binomial
28 White 1990 70+ Negative_Binomial
29 Black/African American 1990 40-49 Negative_Binomial
30 Black/African American 1990 50-59 Zero_Inflated_NB
31 Black/African American 1990 60-69 Zero_Inflated_NB
32 Black/African American 1990 70+ Zero_Inflated_NB
ggplot(best_models_sib, aes(x = Census_Year, y = AGE_RANGE, fill = Best_Model)) +
geom_tile(color = "white", lwd = 0.5, linetype = 1) + # Create the tiles
facet_wrap(~Race, nrow = 2) + # Facet by Race
scale_fill_manual(values = c("Poisson" = "#0072B2", "Zero_Inflated_NB" = "#F0E442", "Negative_Binomial" = "grey")) +
labs(
title = "Best Model(siblings) by Race, Census Year, and Birth Range",
x = "Census Year",
y = "Age Range",
fill = "Best Model"
) +
theme_minimal() +
theme(
axis.text.x = element_text(angle = 45, hjust = 1), # Rotate x-axis labels for readability
plot.title = element_text(size = 14, face = "bold"),
legend.position = "bottom"
)
RESULT: By comparing the pattern of best-fitting models between the sibling and children distributions, we observe that the best model for black population has the same best model(zero-inlfated NB) across year and age range except on one subset(age 40-49 in 1990) in siblings distribution. However, there is a large difference in best model for white population. A large portion of best model in children distribution for white population is zero-inlfated NB, while negative-binomial is the best model fitted for siblings distribution except for one subset(age 40-49 in 1990).
Analyze the stability of sibling distributions across cohorts, similar to the analysis performed for children.
best_models_sib <- best_models_sib %>%
mutate(Cohort = mapply(calculate_cohort, Census_Year, AGE_RANGE)) %>%
dplyr::select(Race, Census_Year, AGE_RANGE, Best_Model, Cohort)
df_merg2 <- df2 %>%
rename(Census_Year = YEAR, Race = RACE)
# Perform a left join to merge the data frames
merged_data_sib <- left_join(df_merg2, best_models_sib, by = c("Race", "Census_Year", "AGE_RANGE"))
## divided the corhort by race
merged_df_black2 <- merged_data_sib %>% filter(Race == "Black/African American")
merged_df_white2 <- merged_data_sib %>% filter(Race == "White")
# Filter cohorts with more than one census year
cohort_counts <- merged_df_black2 %>%
group_by(Cohort) %>%
summarise(Unique_Census_Years = n_distinct(Census_Year)) %>%
filter(Unique_Census_Years > 1)
# Get the list of cohorts for testing
cohorts_for_test <- cohort_counts$Cohort
# Initialize results data frame
results_black2 <- data.frame(RACE = character(), Cohort = character(), Chi_Square = numeric(), p_value = numeric(), stringsAsFactors = FALSE)
# Loop through each cohort and run the chi-square test
for (cohort in cohorts_for_test) {
cohort_data <- merged_df_black2 %>% filter(Cohort == cohort)
# Create contingency table
contingency_table <- table(cohort_data$Census_Year, cohort_data$n_siblings == "0")
# Perform the chi-square test only if more than one row is in the table
if (nrow(contingency_table) > 1) {
test_result <- chisq.test(contingency_table)
# Append results to the results data frame
results_black2 <- rbind(results_black2, data.frame(
RACE = "Black/African American",
Cohort = cohort,
Chi_Square = test_result$statistic,
p_value = test_result$p.value
))
}
}
results_black2 <- results_black2 %>%
mutate(Significance = ifelse(p_value > 0.05, "No", "Yes"))
print(results_black2)
RACE Cohort Chi_Square p_value Significance
X-squared Black/African American 1901-1910 2.7595148 0.09667755 No
X-squared1 Black/African American 1911-1920 3.1588986 0.20608856 No
X-squared2 Black/African American 1921-1930 6.4474388 0.03980673 Yes
X-squared3 Black/African American 1931-1940 0.8166152 0.36617166 No
RESULT: The table shows that only the cohort 1921-1930 has significant change in probability of individuals with zero siblings in black population.
# Filter cohorts with more than one census year
cohort_counts <- merged_df_white2 %>%
group_by(Cohort) %>%
summarise(Unique_Census_Years = n_distinct(Census_Year)) %>%
filter(Unique_Census_Years > 1)
# Get the list of cohorts for testing
cohorts_for_test <- cohort_counts$Cohort
# Initialize results data frame
results_white2 <- data.frame(RACE = character(), Cohort = character(), Chi_Square = numeric(), p_value = numeric(), stringsAsFactors = FALSE)
# Loop through each cohort and run the chi-square test
for (cohort in cohorts_for_test) {
cohort_data <- merged_df_white2 %>% filter(Cohort == cohort)
# Create contingency table
contingency_table <- table(cohort_data$Census_Year, cohort_data$n_siblings == "0")
# Perform the chi-square test only if more than one row is in the table
if (nrow(contingency_table) > 1) {
test_result <- chisq.test(contingency_table)
# Append results to the results data frame
results_white2 <- rbind(results_white2, data.frame(
RACE = "White",
Cohort = cohort,
Chi_Square = test_result$statistic,
p_value = test_result$p.value
))
}
}
results_white2 <- results_white2 %>%
mutate(Significance = ifelse(p_value > 0.05, "No", "Yes"))
print(results_white2)
RACE Cohort Chi_Square p_value Significance
X-squared White 1901-1910 46.930953 7.353216e-12 Yes
X-squared1 White 1911-1920 120.015145 8.690450e-27 Yes
X-squared2 White 1921-1930 79.061388 6.792628e-18 Yes
X-squared3 White 1931-1940 2.776021 9.568561e-02 No
RESULT: The table shows that cohorts 1901-1910, 1911-1920, 1921-1930 have significant change in probability of individuals with zero siblings in white population.
sum_table_sib <- merged_data_sib %>% group_by(Race, Cohort, Census_Year) %>%
summarise(
Mean = mean(chborn_num),
Variance = var(chborn_num))
`summarise()` has grouped output by 'Race', 'Cohort'. You can override using
the `.groups` argument.
merged_sib <- left_join(merged_data_sib, sum_table_sib, by = c("Race","Cohort","Census_Year")) %>% dplyr::select(Race, Cohort, Census_Year, Mean, Variance)
sum_table_black = merged_sib %>% filter(Race == "Black/African American")
sum_table_white = merged_sib %>% filter(Race == "White")
##Test for Black population
cohorts1 <- unique(sum_table_black$Cohort)
# Loop through each cohort and apply ANOVA for Mean and Variance
for (cohort in cohorts1) {
# Filter data for the specific cohort
cohort_data_b <- sum_table_black[sum_table_black$Cohort == cohort, ]
# Check if there are at least two unique Census_Year values
if (length(unique(cohort_data_b$Census_Year)) < 2) {
cat("\nCohort:", cohort, "has only one Census Year. Skipping ANOVA.\n")
next
}
# Perform ANOVA for Mean
anova_mean_result <- aov(Mean ~ factor(Census_Year), data = cohort_data_b)
# Output the results
cat("\nCohort:", cohort)
cat("\nANOVA for Mean number of Siblings:\n")
print(summary(anova_mean_result))
}
Cohort: 1891-1900 has only one Census Year. Skipping ANOVA.
Cohort: 1911-1920
ANOVA for Mean number of Siblings:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 2 5.453 2.727 8.507e+23 <2e-16 ***
Residuals 38001 0.000 0.000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: 1901-1910
ANOVA for Mean number of Siblings:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 1 77.51 77.51 7.094e+25 <2e-16 ***
Residuals 22789 0.00 0.00
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: -Inf-1890 has only one Census Year. Skipping ANOVA.
Cohort: 1921-1930
ANOVA for Mean number of Siblings:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 2 417 208.5 4.477e+26 <2e-16 ***
Residuals 43042 0 0.0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: -Inf-1900 has only one Census Year. Skipping ANOVA.
Cohort: 1931-1940
ANOVA for Mean number of Siblings:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 1 0.03475 0.03475 1.223e+22 <2e-16 ***
Residuals 22555 0.00000 0.00000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: -Inf-1910 has only one Census Year. Skipping ANOVA.
Cohort: 1941-1950 has only one Census Year. Skipping ANOVA.
Cohort: -Inf-1920 has only one Census Year. Skipping ANOVA.
RESULT: The mean number of siblings change significantly in cohorts 1901-1910, 1911-1920, 1921-1930, 1931-1940 in black population.
##Test for White population
cohorts2 <- unique(sum_table_white$Cohort)
# Loop through each cohort and apply ANOVA for Mean and Variance
for (cohort in cohorts2) {
# Filter data for the specific cohort
cohort_data_w <- sum_table_white[sum_table_white$Cohort == cohort, ]
# Check if there are at least two unique Census_Year values
if (length(unique(cohort_data_w$Census_Year)) < 2) {
cat("\nCohort:", cohort, "has only one Census Year. Skipping ANOVA.\n")
next
}
# Perform ANOVA for Mean
anova_mean_result <- aov(Mean ~ factor(Census_Year), data = cohort_data_w)
# Output the results
cat("\nCohort:", cohort)
cat("\nANOVA for Mean number of Siblings:\n")
print(summary(anova_mean_result))
}
Cohort: 1891-1900 has only one Census Year. Skipping ANOVA.
Cohort: 1911-1920
ANOVA for Mean number of Siblings:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 2 535.2 267.6 4.546e+24 <2e-16 ***
Residuals 365210 0.0 0.0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: 1901-1910
ANOVA for Mean number of Siblings:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 1 1281 1281 9.604e+25 <2e-16 ***
Residuals 226142 0 0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: -Inf-1890 has only one Census Year. Skipping ANOVA.
Cohort: -Inf-1900 has only one Census Year. Skipping ANOVA.
Cohort: 1921-1930
ANOVA for Mean number of Siblings:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 2 653.9 327 8.029e+23 <2e-16 ***
Residuals 394507 0.0 0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: 1931-1940
ANOVA for Mean number of Siblings:
Df Sum Sq Mean Sq F value Pr(>F)
factor(Census_Year) 1 1.829 1.829 8.533e+22 <2e-16 ***
Residuals 179944 0.000 0.000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cohort: -Inf-1910 has only one Census Year. Skipping ANOVA.
Cohort: -Inf-1920 has only one Census Year. Skipping ANOVA.
Cohort: 1941-1950 has only one Census Year. Skipping ANOVA.
RESULT: The mean number of siblings change significantly in cohorts 1901-1910, 1911-1920, 1921-1930, 1931-1940 in white population.
ggplot(best_models_sib, aes(x = Census_Year, y = Cohort, fill = Best_Model)) +
geom_tile(color = "white", lwd = 0.5, linetype = 1) + # Create the tiles
facet_wrap(~Race, nrow = 2) + # Facet by Race
scale_fill_manual(values = c("Poisson" = "#0072B2", "Zero_Inflated_NB" = "#F0E442", "Negative_Binomial" = "grey")) +
labs(
title = "Best Model(siblings) by Race, Census Year, and Cohort(Birth Range)",
x = "Census Year",
y = "Birth Range",
fill = "Best Model"
) +
theme_minimal() +
theme(
plot.title = element_text(size = 14, face = "bold"),
legend.position = "bottom"
)
RESULT: The best model for each cohort(those
with 1+ corresponding census year) is stable over time.
We also perform additional analysis to see if the overall distribution is stable across census year for the same cohort
df_sibling_proportions <- df_sibling_proportions %>%
mutate(Cohort = mapply(calculate_cohort, YEAR, AGE_RANGE))
df_sibling_proportions %>%
filter(n_siblings >= 0, sibling_count >= 0, proportion >= 0) %>% group_by(RACE, Cohort) %>%
ggplot(aes(x = n_siblings, y = proportion, color = as.factor(YEAR))) +
geom_line() +
labs(
title = "Sibling Distribution by Census Year",
x = "Number of Siblings",
y = "Proportion",
color = "Census Year"
) +
facet_grid(RACE ~ Cohort) +
theme_minimal()
Version | Author | Date |
---|---|---|
f567c4a | linmatch | 2024-12-16 |
df_sibling_b <- df_sibling_proportions %>% filter(RACE == "Black/African American", n_siblings >= 0, sibling_count >= 0, proportion >= 0)
results_sib_b <- list()
cohort_counts2 <- df_sibling_b %>%
group_by(Cohort) %>%
summarise(Unique_Census_Years = n_distinct(YEAR)) %>%
filter(Unique_Census_Years > 1)
for (cohort in cohort_counts2$Cohort) {
cohort_data <- df_sibling_b %>% filter(Cohort == cohort)
test_result <- kruskal.test(sibling_count ~ YEAR, data = cohort_data)
results_sib_b[[cohort]] <- test_result
}
results_sib_b
$`1901-1910`
Kruskal-Wallis rank sum test
data: sibling_count by YEAR
Kruskal-Wallis chi-squared = 13.23, df = 1, p-value = 0.0002755
$`1911-1920`
Kruskal-Wallis rank sum test
data: sibling_count by YEAR
Kruskal-Wallis chi-squared = 22.761, df = 2, p-value = 1.141e-05
$`1921-1930`
Kruskal-Wallis rank sum test
data: sibling_count by YEAR
Kruskal-Wallis chi-squared = 18.893, df = 2, p-value = 7.895e-05
$`1931-1940`
Kruskal-Wallis rank sum test
data: sibling_count by YEAR
Kruskal-Wallis chi-squared = 0.21333, df = 1, p-value = 0.6442
df_sibling_w <- df_sibling_proportions %>% filter(RACE == "White", n_siblings >= 0, sibling_count >= 0, proportion >= 0)
results_sib_w <- list()
cohort_counts2 <- df_sibling_w %>%
group_by(Cohort) %>%
summarise(Unique_Census_Years = n_distinct(YEAR)) %>%
filter(Unique_Census_Years > 1)
for (cohort in cohort_counts2$Cohort) {
cohort_data <- df_sibling_w %>% filter(Cohort == cohort)
test_result <- kruskal.test(sibling_count ~ YEAR, data = cohort_data)
results_sib_w[[cohort]] <- test_result
}
results_sib_w
$`1901-1910`
Kruskal-Wallis rank sum test
data: sibling_count by YEAR
Kruskal-Wallis chi-squared = 3.8533, df = 1, p-value = 0.04965
$`1911-1920`
Kruskal-Wallis rank sum test
data: sibling_count by YEAR
Kruskal-Wallis chi-squared = 4.9189, df = 2, p-value = 0.08548
$`1921-1930`
Kruskal-Wallis rank sum test
data: sibling_count by YEAR
Kruskal-Wallis chi-squared = 2.7072, df = 2, p-value = 0.2583
$`1931-1940`
Kruskal-Wallis rank sum test
data: sibling_count by YEAR
Kruskal-Wallis chi-squared = 0.21333, df = 1, p-value = 0.6442
results_summary <- data.frame(
RACE = character(),
Cohort = character(),
Stable_Distribution = character(),
Significant_Changes = character(),
stringsAsFactors = FALSE
)
summarize_results <- function(test_results, race) {
summary_list <- list()
for (birth_range in names(test_results)) {
test_result <- test_results[[birth_range]]
stable <- ifelse(test_result$p.value >= 0.05, "Yes", "No")
significant_changes <- ifelse(test_result$p.value < 0.05, "Yes", "No")
summary_list[[birth_range]] <- data.frame(
RACE = race,
Cohort = birth_range,
Stable_Distribution = stable,
Significant_Changes = significant_changes
)
}
do.call(rbind, summary_list)
}
results_summary_black <- summarize_results(results_sib_b, "Black/African American")
results_summary_white <- summarize_results(results_sib_w, "White")
results_summary <- rbind(results_summary, results_summary_black, results_summary_white)
rownames(results_summary) <- NULL
results_summary
RACE Cohort Stable_Distribution Significant_Changes
1 Black/African American 1901-1910 No Yes
2 Black/African American 1911-1920 No Yes
3 Black/African American 1921-1930 No Yes
4 Black/African American 1931-1940 Yes No
5 White 1901-1910 No Yes
6 White 1911-1920 Yes No
7 White 1921-1930 Yes No
8 White 1931-1940 Yes No
ggplot(results_summary, aes(x = Cohort, y = RACE, fill = Significant_Changes)) +
geom_tile(color = "white") +
scale_fill_manual(values = c("Yes" = "#e93e3a", "No" = "#fdc70c")) +
labs(title = "Significant Changes in Sibling Count Distribution Across Years by Race and Birth Range",
x = "Birth Range",
y = "Race",
fill = "Significant Changes") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
Version | Author | Date |
---|---|---|
f567c4a | linmatch | 2024-12-16 |
From the plot above, we can see the distribution of sibling is stable in the following cohorts by race: -black population:1901-1919, 1911-1920, 1921-1930 -white population:1901-1910
sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/Detroit
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] rstatix_0.7.2 car_3.1-3 carData_3.0-5 nnet_7.3-19
[5] pscl_1.5.9 MASS_7.3-60 gridExtra_2.3 ggnewscale_0.5.0
[9] patchwork_1.2.0 rempsyc_0.1.8 scales_1.3.0 knitr_1.45
[13] viridis_0.6.5 viridisLite_0.4.2 lubridate_1.9.3 forcats_1.0.0
[17] stringr_1.5.1 purrr_1.0.2 readr_2.1.5 tidyr_1.3.1
[21] tibble_3.2.1 ggplot2_3.5.1 tidyverse_2.0.0 dplyr_1.1.4
[25] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] gtable_0.3.4 xfun_0.41 bslib_0.6.1 processx_3.8.3
[5] callr_3.7.3 tzdb_0.4.0 vctrs_0.6.5 tools_4.3.2
[9] ps_1.7.6 generics_0.1.3 fansi_1.0.6 highr_0.10
[13] pkgconfig_2.0.3 lifecycle_1.0.4 farver_2.1.1 compiler_4.3.2
[17] git2r_0.33.0 munsell_0.5.0 getPass_0.2-4 httpuv_1.6.14
[21] htmltools_0.5.7 sass_0.4.8 yaml_2.3.8 Formula_1.2-5
[25] later_1.3.2 pillar_1.9.0 jquerylib_0.1.4 whisker_0.4.1
[29] cachem_1.0.8 abind_1.4-8 tidyselect_1.2.1 digest_0.6.34
[33] stringi_1.8.3 labeling_0.4.3 rprojroot_2.0.4 fastmap_1.1.1
[37] grid_4.3.2 colorspace_2.1-0 cli_3.6.2 magrittr_2.0.3
[41] utf8_1.2.4 broom_1.0.6 withr_3.0.0 backports_1.5.0
[45] promises_1.2.1 timechange_0.3.0 rmarkdown_2.25 httr_1.4.7
[49] hms_1.1.3 evaluate_0.23 rlang_1.1.3 Rcpp_1.0.12
[53] glue_1.7.0 rstudioapi_0.15.0 jsonlite_1.8.9 R6_2.5.1
[57] fs_1.6.3