Last updated: 2022-09-06

Checks: 7 0

Knit directory: rare-mutation-detection/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210916) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5cbe59d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rapp.history
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/figure/
    Ignored:    scripts/

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  DOCNAME
    Untracked:  analysis/._.DS_Store
    Untracked:  analysis/cache/
    Untracked:  analysis/calc_nanoseq_metrics.Rmd
    Untracked:  data/._metrics.rds
    Untracked:  data/ecoli/
    Untracked:  data/ecoli_k12_metrics.rds
    Untracked:  data/metadata/
    Untracked:  data/metrics_efficiency_nossc.rds
    Untracked:  data/mixtures
    Untracked:  data/ref/
    Untracked:  prototype_code/

Unstaged changes:
    Modified:   code/efficiency_nanoseq_functions.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ecoli_K12.Rmd) and HTML (docs/ecoli_K12.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5cbe59d Marek Cmero 2022-09-06 Plot fixes; added more family metrics
html f90d40a Marek Cmero 2022-08-18 Build site.
Rmd 7ff227e Marek Cmero 2022-08-18 Added downsampling experiments and some presentation-only plots.
html 22d32ef Marek Cmero 2022-05-31 Build site.
Rmd e722dc0 Marek Cmero 2022-05-31 Fix typo, minor code update
html b524238 Marek Cmero 2022-05-26 Build site.
Rmd afd79e5 Marek Cmero 2022-05-26 Added revised model, in silico mixtures redone with 1 supporting read, added input cell estimates
html 491e97d Marek Cmero 2022-05-19 Build site.
Rmd 434e8b9 Marek Cmero 2022-05-19 Added in silico mixtures to navigation
html faf9130 Marek Cmero 2022-05-18 Build site.
Rmd aacf423 Marek Cmero 2022-05-18 Add coverage & variant results without requiring SSC
html 4da2244 Marek Cmero 2022-05-11 Build site.
Rmd 71e857b Marek Cmero 2022-05-11 Summary plot with all experimental factors
html cc380cc Marek Cmero 2022-05-11 Build site.
Rmd 48b6d2e Marek Cmero 2022-05-11 Added statistical tests with xGen rep 1 outlier removed
html 7c4f403 Marek Cmero 2022-04-25 Build site.
Rmd 30f532f Marek Cmero 2022-04-25 Include all samples in variant upset plot
html fcb6578 Marek Cmero 2022-04-11 Build site.
Rmd 6f2c2bb Marek Cmero 2022-04-11 Add family stats, boxplot fixes
html a2f0a4a Marek Cmero 2022-04-08 Build site.
Rmd bffbb7e Marek Cmero 2022-04-08 Repeat variant analysis without filtering strand bias
html c246dc2 Marek Cmero 2022-04-07 Build site.
Rmd e10a166 Marek Cmero 2022-04-07 Added variant call upset plot
html a860101 Marek Cmero 2022-04-06 Build site.
Rmd 5dcf0e9 Marek Cmero 2022-04-06 Added relationship plots
html 81272b2 Marek Cmero 2022-04-05 Build site.
Rmd 43c95e3 Marek Cmero 2022-04-05 Fix figures
html f13e13a Marek Cmero 2022-04-05 Build site.
Rmd db75aa7 Marek Cmero 2022-04-05 Added statistical tests
html def2130 Marek Cmero 2022-04-05 Build site.
Rmd 1e5e696 Marek Cmero 2022-04-05 Added descriptions for metrics. General plot improvements.
html 953b83e Marek Cmero 2022-03-31 Build site.
html 05412f6 Marek Cmero 2022-03-28 Build site.
Rmd ea0ad82 Marek Cmero 2022-03-28 Added singleton comparison + facet summary plots
html 51aba0e Marek Cmero 2022-03-25 Build site.
Rmd a3895f7 Marek Cmero 2022-03-25 Bug fix
html ea4faf4 Marek Cmero 2022-03-25 Build site.
Rmd 5964f14 Marek Cmero 2022-03-25 Added more comparison plots for ecoli K12 data
html e5b39ad Marek Cmero 2022-03-25 Build site.
Rmd 1926d3d Marek Cmero 2022-03-25 added K12 ecoli metrics

Metrics for E. coli K12 data

MultiQC reports:

library(ggplot2)
library(data.table)
library(dplyr)
library(here)
library(tibble)
library(stringr)
library(Rsamtools)
library(GenomicRanges)
library(seqinr)
library(parallel)
library(readxl)
library(patchwork)
library(RColorBrewer)
library(UpSetR)
library(vcfR)
source(here('code/load_data.R'))
source(here('code/plot.R'))
source(here('code/efficiency_nanoseq_functions.R'))
# Ecoli genome max size
# genome_max <- 4528118
genome_max <- c('2e914854fabb46b9_1' = 4661751,
                '2e914854fabb46b9_2' = 67365)
cores = 8
genomeFile <- here('data/ref/Escherichia_coli_ATCC_10798.fasta')
rinfo_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/QC/read_info')
markdup_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/QC/mark_duplicates')
qualimap_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/QC/qualimap')
qualimap_cons_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/QC/consensus/qualimap')
qualimap_cons_nossc_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/QC/consensus/qualimap_nossc')
metadata_file <- here('data/metadata/NovaSeq data E coli.xlsx')
variant_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/variants')
variant_nossc_dir <- here('data/ecoli/AGRF_CAGRF22029764_HJK2GDSX3/variants_nossc')
sample_names <- list.files(rinfo_dir) %>%
                str_split('\\.txt.gz') %>%
                lapply(., dplyr::first) %>%
                unlist() %>%
                str_split('_') %>%
                lapply(., head, 2) %>%
                lapply(., paste, collapse='-') %>%
                unlist()

# load variant data
var_df <- load_variants(variant_dir, sample_names)
var_df_nossc <- load_variants(variant_nossc_dir, sample_names[-9])

# load and fetch duplicate rate from MarkDuplicates output
mdup <- load_markdup_data(markdup_dir, sample_names)

# get mean coverage for pre and post-consensus reads
qmap_cov <- get_qmap_coverage(qualimap_dir, sample_names)
qmap_cons_cov <- get_qmap_coverage(qualimap_cons_dir, sample_names)
qmap_cons_cov_nossc <- get_qmap_coverage(qualimap_cons_nossc_dir, sample_names[-9])

# # uncomment below to calculate metrics
# # calculate metrics for nanoseq
# rlen <- 151; skips <- 5
# metrics_nano <- calc_metrics_new_rbs(rinfo_dir, pattern = 'Nano', cores = cores)
# 
# # calculate metrics for xGen
# rlen <- 151; skips <- 8
# metrics_xgen <- calc_metrics_new_rbs(rinfo_dir, pattern = 'xGEN', cores = cores)
# 
# metrics <- c(metrics_nano, metrics_xgen) %>% bind_rows()
# metrics$duplicate_rate <- as.numeric(mdup)
# metrics$duplex_coverage_ratio <- qmap_cov$coverage / qmap_cons_cov$coverage
# metrics$duplex_coverage_ratio[qmap_cons_cov$coverage < 1] <- 0 # fix when < 1 duplex cov
# metrics$sample <- gsub('-HJK2GDSX3', '', sample_names)

# cache metrics object
# saveRDS(metrics, file = here('data/ecoli_k12_metrics.rds'))
metrics <- readRDS(here('data/ecoli_k12_metrics.rds'))
metrics$single_family_fraction <- metrics$single_families / metrics$total_families

# load metadata
metadata <- read_excel(metadata_file)
metadata$`sample name` <- gsub('_', '-', metadata$`sample name`)

# prepare for plotting
mm <- data.frame(melt(metrics))
mm$protocol <- 'NanoSeq'
mm$protocol[grep('xGEN', mm$sample)] <- 'xGen'

mm <- inner_join(mm, metadata, by=c('sample' = 'sample name'))
colnames(mm)[2] <- 'metric'
mm$nuclease <- paste(mm$`Mung bean unit`, mm$`S1 unit`, sep='+')

Metric comparison plots

Duplicate rate

Fraction of duplicate reads calculated by Picard’s MarkDuplicates. This is based on barcode-aware aligned duplicates mapping to the same 5’ positions for both read pairs. The NanoSeq Analysis pipeline states the optimal empirical duplicate rate is 75-76% (marked in the plot).

metric <- 'duplicate_rate'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = 0.81, alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
f90d40a Marek Cmero 2022-08-18
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Fraction of singleton reads

Shows the number of single-read families divided by the total number of reads. As suggested by Stoler et al. 2016, this metric can server as a proxy for error rate, as (uncorrected) barcode mismatches will manifest as single-read families. The lower the fraction of singletons, the better.

metric <- 'frac_singletons'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        ggtitle(metric)

Version Author Date
a860101 Marek Cmero 2022-04-06
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Single family fraction

Similar to traction of singletons, this is the number of single read families, divided by the total families.

metric <- 'single_family_fraction'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        ggtitle(metric)

Version Author Date
22d32ef Marek Cmero 2022-05-31
b524238 Marek Cmero 2022-05-26
cc380cc Marek Cmero 2022-05-11
7c4f403 Marek Cmero 2022-04-25
fcb6578 Marek Cmero 2022-04-11
a2f0a4a Marek Cmero 2022-04-08
c246dc2 Marek Cmero 2022-04-07
a860101 Marek Cmero 2022-04-06
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
953b83e Marek Cmero 2022-03-31
05412f6 Marek Cmero 2022-03-28

Drop-out rate

This is the same calculation as F-EFF in the NanoSeq Analysis pipeline:

“This shows the fraction of read bundles missing one of the two original strands beyond what would be expected under random sampling (assuming a binomial process). Good values are between 0.10-0.30, and larger values are likely due to DNA damage such as modified bases or internal nicks that prevent amplification of one of the two strands. Larger values do not impact the quality of the results, just reduce the efficiency of the protocol.”

This is similar to the singleton fraction, but taking into account loss of pairs due to sampling. The optimal range is shown by the lines.

metric <- 'drop_out_rate'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = c(0.1, 0.3), alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Efficiency

Efficiency is the number of duplex bases divided by the number of sequenced bases. According the NanoSeq Analysis pipeline, this value is maximised at ~0.07 when duplicate rates and strand drop-outs are optimal.

metric <- 'efficiency'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = c(0.07), alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

GC deviation

GC deviation is the absolute difference between GC_BOTH and GC_SINGLE calculated by the NanoSeq Analysis pipeline. The lower this deviation, the better.

“GC_BOTH and GC_SINGLE: the GC content of RBs with both strands and with just one strand. The two values should be similar between them and similar to the genome average. If there are large deviations that is possibly due to biases during PCR amplification. If GC_BOTH is substantially larger than GC_SINGLE, DNA denaturation before dilution may have taken place.”

metric <- 'gc_deviation'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        ggtitle(metric)

Version Author Date
faf9130 Marek Cmero 2022-05-18
4da2244 Marek Cmero 2022-05-11
cc380cc Marek Cmero 2022-05-11
7c4f403 Marek Cmero 2022-04-25
fcb6578 Marek Cmero 2022-04-11
a2f0a4a Marek Cmero 2022-04-08
c246dc2 Marek Cmero 2022-04-07
a860101 Marek Cmero 2022-04-06
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Duplex Coverage ratio

The mean sequence (pre-duplex) coverage divided by mean duplex coverage. Indicates the yield of how much duplex coverage we get at each sample’s sequence coverage. Abascal et al. report that their yield was approximately 30x (marked on the plot).

metric <- 'duplex_coverage_ratio'
ggplot(mm[mm$metric == metric,], aes(sample, value)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = 30, alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05

Family statistics

Comparison of family pair sizes between samples (these are calculated from total reads of paired AB and BA families).

ggplot(mm[mm$metric %like% 'family', ], aes(value, sample, colour = metric)) +
        geom_point() +
        coord_trans(x='log2') +
        scale_x_continuous(breaks=seq(0, 94, 8)) +
        theme(axis.text.x = element_text(size=5)) +
        theme_bw() +
        ggtitle('Family pair sizes')

Version Author Date
fcb6578 Marek Cmero 2022-04-11

The following plot shows:

  • families_gt1: number of family pairs where at least one family (AB or BA) has > 1 reads.
  • paired_families: number of family pairs where both families (AB and BA) have > 0 reads.
  • paired_and_gt1: number of family pairs where both families (AB and BA) have > 1 reads.
ggplot(mm[mm$metric %like% 'pair|gt1', ], aes(value, sample, fill = metric)) +
        geom_bar(stat='identity', position='dodge') +
        theme_bw() +
        ggtitle('Family statistics')

Version Author Date
fcb6578 Marek Cmero 2022-04-11

Compare metrics side-by-side

Compare protocols and nucleases directly.

gg_prot <- list(geom_boxplot(outlier.shape = NA),
               geom_jitter(width = 0.1, size = 2, aes(colour = nuclease, shape = nuclease)),
               theme_bw(),
               theme(legend.position = 'left'))
gg_nuc <- list(geom_boxplot(outlier.shape = NA),
               geom_jitter(width = 0.1, size = 2, aes(colour = protocol, shape = protocol)),
               theme_bw(),
               theme(legend.position = 'right'))

# duplicate rate
metric <- 'duplicate_rate'
p1 <- ggplot(mm[mm$metric == metric,], aes(protocol, value)) +
        gg_prot + geom_hline(yintercept = 0.81) +
        ggtitle('Duplicate rate (line = optimal)')

p2 <- ggplot(mm[mm$metric == metric,], aes(nuclease, value)) +
        gg_nuc + geom_hline(yintercept = 0.81) +
        ggtitle('Duplicate rate (line = optimal)')
show(p1 + p2)

Version Author Date
fcb6578 Marek Cmero 2022-04-11
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# singletons
metric <- 'frac_singletons'
p1 <- ggplot(mm[mm$metric == metric,], aes(protocol, value)) +
        gg_prot +
        ggtitle('Fraction of singleton reads')

p2 <- ggplot(mm[mm$metric == metric,], aes(nuclease, value)) +
        gg_nuc + 
        ggtitle('Fraction of singleton reads')
show(p1 + p2)

Version Author Date
fcb6578 Marek Cmero 2022-04-11
a860101 Marek Cmero 2022-04-06
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# single family frac
metric <- 'single_family_fraction'
p1 <- ggplot(mm[mm$metric == metric,], aes(protocol, value)) +
        gg_prot +
        ggtitle('Fraction of singleton families')

p2 <- ggplot(mm[mm$metric == metric,], aes(nuclease, value)) +
        gg_nuc + 
        ggtitle('Fraction of singleton families')
show(p1 + p2)

Version Author Date
fcb6578 Marek Cmero 2022-04-11
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# drop-out rate
metric <- 'drop_out_rate'
p1 <- ggplot(mm[mm$metric == metric,], aes(protocol, value)) +
        gg_prot + geom_hline(yintercept = c(0.1, 0.3)) + ylim(c(0,1)) +
        ggtitle('Drop-out fraction\n(lines = optimal range)')

p2 <- ggplot(mm[mm$metric == metric,], aes(nuclease, value)) +
        gg_nuc + geom_hline(yintercept = c(0.1, 0.3)) + ylim(c(0,1)) +
        ggtitle('Drop-out fraction\n(lines = optimal range)')
show(p1 + p2)

Version Author Date
cc380cc Marek Cmero 2022-05-11
fcb6578 Marek Cmero 2022-04-11
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# efficiency
metric <- 'efficiency'
p1 <- ggplot(mm[mm$metric == metric,], aes(protocol, value)) +
        gg_prot + geom_hline(yintercept = 0.07) +
        ggtitle('Efficiency\n(line = optimal)')

p2 <- ggplot(mm[mm$metric == metric,], aes(nuclease, value)) +
        gg_nuc + geom_hline(yintercept = 0.07) +
        ggtitle('Efficiency\n(line = optomal)')
show(p1 + p2)

Version Author Date
faf9130 Marek Cmero 2022-05-18
4da2244 Marek Cmero 2022-05-11
cc380cc Marek Cmero 2022-05-11
7c4f403 Marek Cmero 2022-04-25
fcb6578 Marek Cmero 2022-04-11
a2f0a4a Marek Cmero 2022-04-08
c246dc2 Marek Cmero 2022-04-07
a860101 Marek Cmero 2022-04-06
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# GC deviation
metric <- 'gc_deviation'
p1 <- ggplot(mm[mm$metric == metric,], aes(protocol, value)) +
        gg_prot +
        ggtitle('GC deviation\n(both strands vs. one)')

p2 <- ggplot(mm[mm$metric == metric,], aes(nuclease, value)) +
        gg_nuc + 
        ggtitle('GC deviation\n(both strands vs. one)')
show(p1 + p2)

Version Author Date
fcb6578 Marek Cmero 2022-04-11
81272b2 Marek Cmero 2022-04-05
f13e13a Marek Cmero 2022-04-05
def2130 Marek Cmero 2022-04-05
# duplex coverage ratio
metric <- 'duplex_coverage_ratio'
p1 <- ggplot(mm[mm$metric == metric,], aes(protocol, value)) +
        gg_prot + geom_hline(yintercept = 30) +
        ggtitle('Duplex coverage ratio\n(total cov / duplex cov)')

p2 <- ggplot(mm[mm$metric == metric,], aes(nuclease, value)) +
        gg_nuc + geom_hline(yintercept = 30) +
        ggtitle('Duplex coverage ratio\n(total cov / duplex cov)')
show(p1 + p2)

metric_optimals <- list('duplicate_rate' = 0.81,
                        'frac_singletons' = 0,
                        'drop_out_rate' = c(0.1, 0.3),
                        'efficiency' = 0.07,
                        'gc_deviation' = 0,
                        'duplex_coverage_ratio' = 30)
                       
gg_prot <- list(geom_boxplot(outlier.shape = NA),
                geom_jitter(width = 0.1, size = 2, aes(colour = nuclease, shape = nuclease)),
                theme_bw(),
                theme(legend.position = 'bottom'))
gg_nuc <- list(geom_boxplot(outlier.shape = NA),
               geom_jitter(width = 0.1, size = 2, aes(colour = protocol, shape = protocol)),
               theme_bw(),
               theme(legend.position = 'bottom'))

mmt <- mm
mmt$replicate <- str_split(mmt$sample, 'Rep') %>% lapply(., dplyr::last) %>% unlist() %>% as.numeric()
mmt$sample <- str_split(mmt$sample, 'Rep') %>% lapply(., dplyr::first) %>% unlist()

for(metric in names(metric_optimals)) {
    threshold <- metric_optimals[metric][[1]]
    tmp <- mmt[mmt$metric == metric & !(mmt$sample == 'xGEN-xGEN' & mmt$replicate == 1),]
    p1 <- ggplot(tmp, aes(sample, value)) +
        geom_point() +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = threshold, alpha = 0.4) 
    
    p2 <- ggplot(tmp, aes(protocol, value)) +
        gg_prot + geom_hline(yintercept = threshold, alpha = 0.4) 
    
    p3 <- ggplot(tmp, aes(nuclease, value)) +
        gg_nuc + geom_hline(yintercept = threshold, alpha = 0.4) 
    
    show(p1 + p2 + p3)
}
tmp <- data.table(mm)[,list(meanval = mean(value), minval = min(value), maxval= max(value)), by=c('sample', 'metric')] %>% data.frame()
tmp <- left_join(mm, tmp, by = c('sample', 'metric'))

ggplot(tmp[tmp$metric %like% 'pair|gt1|single_families', ], aes(sample, meanval, fill = metric)) +
        geom_bar(stat='identity', position='dodge') +
        geom_errorbar( aes(x = sample, ymin = minval, ymax = maxval), position = 'dodge', colour = 'grey') +
        theme_bw() +
        coord_flip() +
        scale_fill_brewer(palette = 'Dark2') +
        theme(legend.position = 'right')
mt <- mm
mt$replicate <- str_split(mt$sample, 'Rep') %>% lapply(., dplyr::last) %>% unlist() %>% as.numeric()
mt$sample <- str_split(mt$sample, 'Rep') %>% lapply(., dplyr::first) %>% unlist()

mt <- mt[,c('sample', 'metric', 'value', 'protocol', 'nuclease', 'replicate')]
dm <- reshape2::dcast(mt, sample + protocol + nuclease + replicate ~ metric)

p1 <- ggplot(dm, aes(duplicate_rate, efficiency, colour=protocol, shape=nuclease)) +
    geom_point(size = 3) +
    theme_bw() +
    scale_colour_brewer(palette = 'Dark2') +
    ggtitle('Efficiency vs. duplicate rate')

p2 <- ggplot(dm, aes(drop_out_rate, efficiency, colour=protocol, shape=nuclease)) +
    geom_point(size = 3) +
    theme_bw() +
    scale_colour_brewer(palette = 'Dark2') +
    ggtitle('Efficiency vs. drop-out rate')
show(p1 + p2)

Facet summary plots

Facet boxplots by nuclease and protocol to show overall results.

ggplot(mm, aes(protocol, value)) + 
    geom_boxplot() +
    theme_bw() +
    facet_wrap(~metric, scales = 'free') +
    ggtitle('by protocol')

Version Author Date
faf9130 Marek Cmero 2022-05-18
4da2244 Marek Cmero 2022-05-11
cc380cc Marek Cmero 2022-05-11
ggplot(mm, aes(nuclease, value)) + 
    geom_boxplot() +
    theme_bw() +
    facet_wrap(~metric, scales = 'free') +
    ggtitle('by nuclease')

Version Author Date
faf9130 Marek Cmero 2022-05-18
4da2244 Marek Cmero 2022-05-11
cc380cc Marek Cmero 2022-05-11

Plots again removing the outlier xGEN rep 1.

mmo <- mm[mm$sample != 'xGEN-xGENRep1',]
mmo$replicate <- str_split(mmo$sample, 'Rep') %>% lapply(., dplyr::last) %>% unlist() %>% as.numeric()
mmo$sample <- str_split(mmo$sample, 'Rep') %>% lapply(., dplyr::first) %>% unlist()

ggplot(mmo, aes(protocol, value)) + 
    geom_boxplot() +
    theme_bw() +
    facet_wrap(~metric, scales = 'free') +
    ggtitle('by protocol')

Version Author Date
faf9130 Marek Cmero 2022-05-18
4da2244 Marek Cmero 2022-05-11
cc380cc Marek Cmero 2022-05-11
ggplot(mmo, aes(nuclease, value)) + 
    geom_boxplot() +
    theme_bw() +
    facet_wrap(~metric, scales = 'free') +
    ggtitle('by nuclease')

Version Author Date
faf9130 Marek Cmero 2022-05-18
4da2244 Marek Cmero 2022-05-11
cc380cc Marek Cmero 2022-05-11

Summary plot including separated by all experimental factors.

ggplot(mmo, aes(sample, value, colour = protocol, shape = nuclease)) + 
    geom_point() +
    theme_bw() +
    theme(axis.text.x = element_text(angle = 90)) +
    facet_wrap(~metric, scales = 'free') +
    scale_colour_brewer(palette = 'Dark2') +
    ggtitle('by protocol')

Version Author Date
faf9130 Marek Cmero 2022-05-18
4da2244 Marek Cmero 2022-05-11

Statistical test results by protocol

For each metric, take the average of each replicate and perform a two-sided, unpaired T-test between protocols.

stats <- NULL
metric_names <- unique(mmo$metric) %>% as.character()
for(metric_name in metric_names) {
    nano <- mmo[mmo$metric == metric_name & mmo$protocol == 'NanoSeq',]
    xgen <- mmo[mmo$metric == metric_name & mmo$protocol == 'xGen',]
    nano_vals <- data.table(nano)[, mean(value), by = nuclease]$V1
    xgen_vals <- data.table(xgen)[, mean(value), by = nuclease]$V1
    wtest <- t.test(nano_vals, xgen_vals)
    stats <- rbind(stats,
                   data.frame(metric = metric_name, pvalue = wtest$p.value))
}
stats$significant <- stats$pvalue < 0.05
print(stats)
                   metric       pvalue significant
1         frac_singletons 8.856688e-01       FALSE
2              efficiency 1.762439e-02        TRUE
3           drop_out_rate 1.080330e-02        TRUE
4               gc_single 2.282058e-04        TRUE
5                 gc_both 6.467558e-05        TRUE
6            gc_deviation 3.656097e-04        TRUE
7          total_families 7.121985e-01       FALSE
8             family_mean 4.081459e-01       FALSE
9           family_median 6.178040e-01       FALSE
10             family_max 5.178585e-01       FALSE
11           families_gt1 9.146511e-01       FALSE
12        single_families 6.628176e-01       FALSE
13        paired_families 1.878931e-03        TRUE
14         paired_and_gt1 2.903205e-03        TRUE
15         duplicate_rate 4.691898e-01       FALSE
16  duplex_coverage_ratio 2.145076e-01       FALSE
17 single_family_fraction 7.668823e-01       FALSE

Rerun tests removing outlier (xGEN rep1). The results are similar.

stats <- NULL
for(metric_name in metric_names) {
    nano <- mmo[mmo$metric == metric_name & mmo$protocol == 'NanoSeq',]
    xgen <- mmo[mmo$metric == metric_name & mmo$protocol == 'xGen',]
    nano_vals <- data.table(nano)[, mean(value), by = nuclease]$V1
    xgen_vals <- data.table(xgen)[, mean(value), by = nuclease]$V1
    wtest <- t.test(nano_vals, xgen_vals)
    stats <- rbind(stats,
                   data.frame(metric = metric_name, pvalue = wtest$p.value))
}
stats$significant <- stats$pvalue < 0.05
print(stats)
                   metric       pvalue significant
1         frac_singletons 8.856688e-01       FALSE
2              efficiency 1.762439e-02        TRUE
3           drop_out_rate 1.080330e-02        TRUE
4               gc_single 2.282058e-04        TRUE
5                 gc_both 6.467558e-05        TRUE
6            gc_deviation 3.656097e-04        TRUE
7          total_families 7.121985e-01       FALSE
8             family_mean 4.081459e-01       FALSE
9           family_median 6.178040e-01       FALSE
10             family_max 5.178585e-01       FALSE
11           families_gt1 9.146511e-01       FALSE
12        single_families 6.628176e-01       FALSE
13        paired_families 1.878931e-03        TRUE
14         paired_and_gt1 2.903205e-03        TRUE
15         duplicate_rate 4.691898e-01       FALSE
16  duplex_coverage_ratio 2.145076e-01       FALSE
17 single_family_fraction 7.668823e-01       FALSE

Two-way ANOVA analysis

We consider a two-way ANOVA, modelling the protocol, Mung Bean Unit and S1 Unit variables, as well as the interaction effect between the units and the protocol.

stats <- NULL
metric_names <- unique(mm$metric) %>% as.character()
for(metric_name in metric_names) {
    x <- mm[mm$metric == metric_name,]
    x$MungBeanUnit <- as.factor(x$`Mung bean unit`)
    x$S1Unit <- as.factor(x$`S1 unit`)
    x <- x[,c('MungBeanUnit', 'S1Unit', 'protocol', 'nuclease', 'value')]
    x_aov <- aov(value ~ MungBeanUnit * protocol + S1Unit * protocol, data = x) %>% summary() %>% dplyr::first()
    stats <- rbind(stats,
                   data.frame(metric = metric_name,
                              variable = rownames(x_aov)[1:5],
                              pvalue = x_aov[['Pr(>F)']][1:5]))
}
stats$significant <- stats$pvalue < 0.05
print(stats)
                   metric              variable       pvalue significant
1         frac_singletons MungBeanUnit          3.179448e-01       FALSE
2         frac_singletons protocol              9.702279e-01       FALSE
3         frac_singletons S1Unit                8.553539e-01       FALSE
4         frac_singletons MungBeanUnit:protocol 9.858376e-01       FALSE
5         frac_singletons protocol:S1Unit       8.540793e-01       FALSE
6              efficiency MungBeanUnit          6.743589e-01       FALSE
7              efficiency protocol              3.377609e-03        TRUE
8              efficiency S1Unit                4.674623e-01       FALSE
9              efficiency MungBeanUnit:protocol 8.509683e-01       FALSE
10             efficiency protocol:S1Unit       2.278366e-01       FALSE
11          drop_out_rate MungBeanUnit          4.118682e-01       FALSE
12          drop_out_rate protocol              2.566346e-04        TRUE
13          drop_out_rate S1Unit                9.042622e-02       FALSE
14          drop_out_rate MungBeanUnit:protocol 8.387882e-01       FALSE
15          drop_out_rate protocol:S1Unit       3.182162e-01       FALSE
16              gc_single MungBeanUnit          2.845364e-03        TRUE
17              gc_single protocol              4.201084e-07        TRUE
18              gc_single S1Unit                2.691266e-02        TRUE
19              gc_single MungBeanUnit:protocol 9.742888e-01       FALSE
20              gc_single protocol:S1Unit       7.452944e-01       FALSE
21                gc_both MungBeanUnit          3.374303e-04        TRUE
22                gc_both protocol              3.194918e-09        TRUE
23                gc_both S1Unit                9.138191e-03        TRUE
24                gc_both MungBeanUnit:protocol 8.678217e-01       FALSE
25                gc_both protocol:S1Unit       5.614184e-01       FALSE
26           gc_deviation MungBeanUnit          6.443318e-01       FALSE
27           gc_deviation protocol              9.738905e-03        TRUE
28           gc_deviation S1Unit                5.442060e-01       FALSE
29           gc_deviation MungBeanUnit:protocol 9.592822e-01       FALSE
30           gc_deviation protocol:S1Unit       8.839586e-01       FALSE
31         total_families MungBeanUnit          4.304880e-01       FALSE
32         total_families protocol              8.735318e-01       FALSE
33         total_families S1Unit                8.883185e-01       FALSE
34         total_families MungBeanUnit:protocol 8.394811e-01       FALSE
35         total_families protocol:S1Unit       2.211659e-01       FALSE
36            family_mean MungBeanUnit          3.721341e-01       FALSE
37            family_mean protocol              2.541551e-01       FALSE
38            family_mean S1Unit                2.914712e-01       FALSE
39            family_mean MungBeanUnit:protocol 2.723545e-01       FALSE
40            family_mean protocol:S1Unit       1.501251e-01       FALSE
41          family_median MungBeanUnit          6.347858e-01       FALSE
42          family_median protocol              4.810155e-01       FALSE
43          family_median S1Unit                3.250056e-01       FALSE
44          family_median MungBeanUnit:protocol 4.997581e-01       FALSE
45          family_median protocol:S1Unit       3.250056e-01       FALSE
46             family_max MungBeanUnit          3.849415e-01       FALSE
47             family_max protocol              5.270992e-01       FALSE
48             family_max S1Unit                1.424842e-01       FALSE
49             family_max MungBeanUnit:protocol 9.819906e-01       FALSE
50             family_max protocol:S1Unit       6.056582e-02       FALSE
51           families_gt1 MungBeanUnit          1.793349e-01       FALSE
52           families_gt1 protocol              9.876271e-01       FALSE
53           families_gt1 S1Unit                6.881757e-01       FALSE
54           families_gt1 MungBeanUnit:protocol 6.170001e-01       FALSE
55           families_gt1 protocol:S1Unit       3.016320e-02        TRUE
56        single_families MungBeanUnit          3.440723e-01       FALSE
57        single_families protocol              9.487606e-01       FALSE
58        single_families S1Unit                8.838445e-01       FALSE
59        single_families MungBeanUnit:protocol 9.818450e-01       FALSE
60        single_families protocol:S1Unit       7.210495e-01       FALSE
61        paired_families MungBeanUnit          3.217762e-01       FALSE
62        paired_families protocol              2.319573e-04        TRUE
63        paired_families S1Unit                1.990511e-01       FALSE
64        paired_families MungBeanUnit:protocol 9.226482e-01       FALSE
65        paired_families protocol:S1Unit       8.092464e-01       FALSE
66         paired_and_gt1 MungBeanUnit          6.527043e-01       FALSE
67         paired_and_gt1 protocol              7.082361e-04        TRUE
68         paired_and_gt1 S1Unit                8.872835e-01       FALSE
69         paired_and_gt1 MungBeanUnit:protocol 5.304734e-01       FALSE
70         paired_and_gt1 protocol:S1Unit       2.688706e-01       FALSE
71         duplicate_rate MungBeanUnit          3.209744e-01       FALSE
72         duplicate_rate protocol              6.617113e-01       FALSE
73         duplicate_rate S1Unit                4.855983e-01       FALSE
74         duplicate_rate MungBeanUnit:protocol 8.160371e-01       FALSE
75         duplicate_rate protocol:S1Unit       5.516726e-01       FALSE
76  duplex_coverage_ratio MungBeanUnit          5.159691e-02       FALSE
77  duplex_coverage_ratio protocol              5.999337e-03        TRUE
78  duplex_coverage_ratio S1Unit                4.875101e-01       FALSE
79  duplex_coverage_ratio MungBeanUnit:protocol 6.215584e-02       FALSE
80  duplex_coverage_ratio protocol:S1Unit       4.129184e-03        TRUE
81 single_family_fraction MungBeanUnit          3.655666e-01       FALSE
82 single_family_fraction protocol              9.875561e-01       FALSE
83 single_family_fraction S1Unit                7.565118e-01       FALSE
84 single_family_fraction MungBeanUnit:protocol 9.917902e-01       FALSE
85 single_family_fraction protocol:S1Unit       8.631941e-01       FALSE

We remove the outlier xGEN rep 1 and test again.

stats <- NULL
metric_names <- unique(mmo$metric) %>% as.character()
for(metric_name in metric_names) {
    x <- mmo[mmo$metric == metric_name,]
    x$MungBeanUnit <- as.factor(x$`Mung bean unit`)
    x$S1Unit <- as.factor(x$`S1 unit`)
    x <- x[,c('MungBeanUnit', 'S1Unit', 'protocol', 'nuclease', 'value')]
    x_aov <- aov(value ~ MungBeanUnit * protocol + S1Unit * protocol, data = x) %>% summary() %>% dplyr::first()
    stats <- rbind(stats,
                   data.frame(metric = metric_name,
                              variable = rownames(x_aov)[1:5],
                              pvalue = x_aov[['Pr(>F)']][1:5]))
}
stats$significant <- stats$pvalue < 0.05
print(stats)
                   metric              variable       pvalue significant
1         frac_singletons MungBeanUnit          3.747242e-01       FALSE
2         frac_singletons protocol              6.061218e-01       FALSE
3         frac_singletons S1Unit                2.820185e-02        TRUE
4         frac_singletons MungBeanUnit:protocol 1.145001e-01       FALSE
5         frac_singletons protocol:S1Unit       2.714409e-02        TRUE
6              efficiency MungBeanUnit          2.943575e-02        TRUE
7              efficiency protocol              8.567087e-07        TRUE
8              efficiency S1Unit                4.375525e-02        TRUE
9              efficiency MungBeanUnit:protocol 2.583454e-01       FALSE
10             efficiency protocol:S1Unit       3.175014e-03        TRUE
11          drop_out_rate MungBeanUnit          4.996962e-04        TRUE
12          drop_out_rate protocol              2.459532e-09        TRUE
13          drop_out_rate S1Unit                2.501322e-05        TRUE
14          drop_out_rate MungBeanUnit:protocol 9.115253e-02       FALSE
15          drop_out_rate protocol:S1Unit       1.679681e-03        TRUE
16              gc_single MungBeanUnit          1.711519e-03        TRUE
17              gc_single protocol              9.159550e-09        TRUE
18              gc_single S1Unit                1.523577e-03        TRUE
19              gc_single MungBeanUnit:protocol 9.253752e-01       FALSE
20              gc_single protocol:S1Unit       5.774184e-01       FALSE
21                gc_both MungBeanUnit          1.770799e-03        TRUE
22                gc_both protocol              3.727562e-09        TRUE
23                gc_both S1Unit                4.828938e-03        TRUE
24                gc_both MungBeanUnit:protocol 8.295304e-01       FALSE
25                gc_both protocol:S1Unit       5.064090e-01       FALSE
26           gc_deviation MungBeanUnit          1.765974e-01       FALSE
27           gc_deviation protocol              7.986248e-04        TRUE
28           gc_deviation S1Unit                3.553090e-01       FALSE
29           gc_deviation MungBeanUnit:protocol 9.053297e-01       FALSE
30           gc_deviation protocol:S1Unit       8.214325e-01       FALSE
31         total_families MungBeanUnit          2.929023e-01       FALSE
32         total_families protocol              5.053171e-01       FALSE
33         total_families S1Unit                5.556673e-01       FALSE
34         total_families MungBeanUnit:protocol 8.844339e-02       FALSE
35         total_families protocol:S1Unit       3.593070e-04        TRUE
36            family_mean MungBeanUnit          4.646379e-01       FALSE
37            family_mean protocol              8.429941e-02       FALSE
38            family_mean S1Unit                1.077790e-01       FALSE
39            family_mean MungBeanUnit:protocol 6.294463e-02       FALSE
40            family_mean protocol:S1Unit       3.389191e-02        TRUE
41          family_median MungBeanUnit          4.629868e-01       FALSE
42          family_median protocol              3.164774e-01       FALSE
43          family_median S1Unit                1.678507e-01       FALSE
44          family_median MungBeanUnit:protocol 2.615312e-01       FALSE
45          family_median protocol:S1Unit       1.678507e-01       FALSE
46             family_max MungBeanUnit          8.985047e-01       FALSE
47             family_max protocol              4.901973e-01       FALSE
48             family_max S1Unit                1.144701e-01       FALSE
49             family_max MungBeanUnit:protocol 9.783491e-01       FALSE
50             family_max protocol:S1Unit       4.537604e-02        TRUE
51           families_gt1 MungBeanUnit          4.921202e-01       FALSE
52           families_gt1 protocol              9.709211e-01       FALSE
53           families_gt1 S1Unit                3.554965e-01       FALSE
54           families_gt1 MungBeanUnit:protocol 1.121914e-01       FALSE
55           families_gt1 protocol:S1Unit       2.152397e-04        TRUE
56        single_families MungBeanUnit          3.561851e-01       FALSE
57        single_families protocol              5.002377e-01       FALSE
58        single_families S1Unit                1.446431e-01       FALSE
59        single_families MungBeanUnit:protocol 1.802640e-01       FALSE
60        single_families protocol:S1Unit       3.538918e-03        TRUE
61        paired_families MungBeanUnit          1.158679e-02        TRUE
62        paired_families protocol              2.650844e-08        TRUE
63        paired_families S1Unit                1.825979e-03        TRUE
64        paired_families MungBeanUnit:protocol 4.727076e-01       FALSE
65        paired_families protocol:S1Unit       4.522724e-01       FALSE
66         paired_and_gt1 MungBeanUnit          3.715875e-01       FALSE
67         paired_and_gt1 protocol              4.877137e-07        TRUE
68         paired_and_gt1 S1Unit                7.110938e-01       FALSE
69         paired_and_gt1 MungBeanUnit:protocol 4.055773e-02        TRUE
70         paired_and_gt1 protocol:S1Unit       1.317773e-02        TRUE
71         duplicate_rate MungBeanUnit          2.028567e-01       FALSE
72         duplicate_rate protocol              9.553308e-02       FALSE
73         duplicate_rate S1Unit                1.519542e-02        TRUE
74         duplicate_rate MungBeanUnit:protocol 7.348826e-02       FALSE
75         duplicate_rate protocol:S1Unit       3.151836e-02        TRUE
76  duplex_coverage_ratio MungBeanUnit          2.480884e-01       FALSE
77  duplex_coverage_ratio protocol              6.668694e-04        TRUE
78  duplex_coverage_ratio S1Unit                3.194763e-01       FALSE
79  duplex_coverage_ratio MungBeanUnit:protocol 1.030421e-02        TRUE
80  duplex_coverage_ratio protocol:S1Unit       4.306854e-04        TRUE
81 single_family_fraction MungBeanUnit          5.636520e-01       FALSE
82 single_family_fraction protocol              9.106823e-01       FALSE
83 single_family_fraction S1Unit                4.704794e-02        TRUE
84 single_family_fraction MungBeanUnit:protocol 6.635184e-01       FALSE
85 single_family_fraction protocol:S1Unit       2.340365e-01       FALSE

Relationships between variables

mm$replicate <- str_split(mm$sample, 'Rep') %>% lapply(., dplyr::last) %>% unlist() %>% as.numeric()
mm$sample <- str_split(mm$sample, 'Rep') %>% lapply(., dplyr::first) %>% unlist()

mm <- mm[,c('sample', 'metric', 'value', 'protocol', 'nuclease', 'replicate')]
dm <- reshape2::dcast(mm, sample + protocol + nuclease + replicate ~ metric)

cols <- c(brewer.pal(5, 'Greens')[2:5],
          brewer.pal(6, 'Blues')[2:6])
names(cols) <- as.factor(dm$sample) %>% levels()

ggplot(dm, aes(frac_singletons, drop_out_rate, colour=sample)) +
    geom_point() +
    theme_bw() +
    scale_colour_manual(values = cols) +
    ggtitle('Singletons vs. drop-out rate')

Version Author Date
a860101 Marek Cmero 2022-04-06
ggplot(dm, aes(efficiency, duplicate_rate, colour=sample)) +
    geom_point() +
    theme_bw() +
    scale_colour_manual(values = cols) +
    ggtitle('Efficiency vs. duplicate rate')

Version Author Date
a860101 Marek Cmero 2022-04-06
ggplot(dm, aes(efficiency, drop_out_rate, colour=sample)) +
    geom_point() +
    theme_bw() +
    scale_colour_manual(values = cols) +
    ggtitle('Efficiency vs. drop-out rate')

Version Author Date
a860101 Marek Cmero 2022-04-06
ggplot(dm, aes(efficiency, duplex_coverage_ratio, colour=sample)) +
    geom_point() +
    theme_bw() +
    scale_colour_manual(values = cols) +
    ggtitle('Efficiency vs. duplex coverage ratio')

Version Author Date
a860101 Marek Cmero 2022-04-06
ggplot(dm, aes(duplicate_rate, duplex_coverage_ratio, colour=sample)) +
    geom_point() +
    theme_bw() +
    scale_colour_manual(values = cols) +
    ggtitle('Duplicate rate vs. duplex coverage ratio')

Version Author Date
a860101 Marek Cmero 2022-04-06

Variant calls

Upset plot showing duplex variant calls. Variants were called in areas with at least 4x coverage with at least 2 supporting reads and a VAF of \(\geq2\).

ulist <- NULL
for(sample in sample_names) {
    ids <- var_df[var_df$sample %in% sample,]$id
    if (length(ids) > 0) {
        ulist[[gsub(pattern = '-HJK2GDSX3', replacement = '', sample)]] <- ids
    }
}

upset(fromList(ulist), order.by='freq', nsets=length(sample_names))

Version Author Date
f90d40a Marek Cmero 2022-08-18
7c4f403 Marek Cmero 2022-04-25
a2f0a4a Marek Cmero 2022-04-08
c246dc2 Marek Cmero 2022-04-07

Duplex coverage without requiring SSC

The pipeline was run only requiring a single read on each strand. Here we plot the difference in mean coverage. As we would expect, skipping SSC step increases duplex coverage. For some samples with disproportionately higher single-read families (NanoMB-S1), this increases duplex coverage significantly more.

ccov <- inner_join(qmap_cons_cov,
                   qmap_cons_cov_nossc,
                   by = 'Sample',
                   suffix = c('_ssc', '_nossc')) %>%
          inner_join(., qmap_cov, by = 'Sample')
ccov$sample <- str_split(ccov$Sample, 'Rep') %>% lapply(., dplyr::first) %>% unlist()
ccov$duplex_cov_ratio <- ccov$coverage / ccov$coverage_ssc
ccov$duplex_cov_ratio_noscc <- ccov$coverage / ccov$coverage_nossc
ccov <- left_join(ccov, distinct(mmo[,c('sample', 'protocol', 'nuclease')]), by = 'sample')

p1 <- ggplot(ccov, aes(coverage_ssc, coverage_nossc, colour = protocol, shape = nuclease)) +
  geom_point() +
  theme_bw() +
  xlim(0, 550) +
  ylim(0, 550) +
  xlab('with SSC') +
  ylab('without SSC') +
  geom_abline(slope = 1) +
  theme(legend.position = 'left') +
  scale_colour_brewer(palette = 'Dark2') +
  ggtitle('Mean duplex coverage')

p2 <- ggplot(ccov, aes(duplex_cov_ratio, duplex_cov_ratio_noscc, colour = protocol, shape = nuclease)) +
  geom_point() +
  theme_bw() +
  xlim(0, 100) +
  ylim(0, 100) +
  xlab('with SSC') +
  ylab('without SSC') +
  geom_abline(slope = 1) +
  theme(legend.position = 'right') +
  scale_colour_brewer(palette = 'Dark2') +
  ggtitle('Duplex coverage ratio')

p1 + p2

Version Author Date
faf9130 Marek Cmero 2022-05-18

Variant calls without SSC

Here we show the variant calls from the duplex sequences without SSC in the same Upset plot format.

for(sample in sample_names) {
    ids <- var_df_nossc[var_df_nossc$sample %in% sample,]$id
    if (length(ids) > 0) {
        ulist[[sample]] <- ids
    }
}

upset(fromList(ulist), order.by='freq', nsets=length(sample_names))

Version Author Date
f90d40a Marek Cmero 2022-08-18
faf9130 Marek Cmero 2022-05-18

Input cells

Estimate the number of input cells using formula \(d / e / c = n\) where d = mean duplex coverage, e = duplex efficiency, c = coverage per genome equivalent and n = number of cells.

coverage_per_genome <- 10
qmap_cons_cov$Sample <- gsub('-HJK2GDSX3', '', qmap_cons_cov$Sample)
metrics <- inner_join(metrics, qmap_cons_cov, by = c('sample' = 'Sample'))
metrics$estimated_cells <- metrics$coverage / metrics$efficiency / coverage_per_genome

ggplot(metrics[!metrics$sample %in% 'xGEN-xGENRep1',], aes(sample, estimated_cells)) +
    geom_bar(stat = 'identity') + 
    theme_minimal() +
    coord_flip()


sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /stornext/System/data/apps/R/R-4.0.5/lib64/R/lib/libRblas.so
LAPACK: /stornext/System/data/apps/R/R-4.0.5/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] vcfR_1.12.0          UpSetR_1.4.0         RColorBrewer_1.1-3  
 [4] patchwork_1.1.1      readxl_1.3.1         seqinr_4.2-8        
 [7] Rsamtools_2.6.0      Biostrings_2.58.0    XVector_0.30.0      
[10] GenomicRanges_1.42.0 GenomeInfoDb_1.26.7  IRanges_2.24.1      
[13] S4Vectors_0.28.1     BiocGenerics_0.36.1  stringr_1.4.0       
[16] tibble_3.1.7         here_1.0.1           dplyr_1.0.7         
[19] data.table_1.14.0    ggplot2_3.3.6        workflowr_1.6.2     

loaded via a namespace (and not attached):
 [1] nlme_3.1-152           bitops_1.0-7           fs_1.5.0              
 [4] rprojroot_2.0.2        tools_4.0.5            bslib_0.3.0           
 [7] utf8_1.2.2             R6_2.5.1               vegan_2.5-7           
[10] DBI_1.1.1              mgcv_1.8-35            colorspace_2.0-3      
[13] permute_0.9-5          ade4_1.7-18            withr_2.5.0           
[16] tidyselect_1.1.1       gridExtra_2.3          compiler_4.0.5        
[19] git2r_0.28.0           cli_3.3.0              labeling_0.4.2        
[22] sass_0.4.0             scales_1.2.0           digest_0.6.29         
[25] rmarkdown_2.11         pkgconfig_2.0.3        htmltools_0.5.2       
[28] highr_0.9              fastmap_1.1.0          rlang_1.0.2           
[31] rstudioapi_0.13        jquerylib_0.1.4        generics_0.1.1        
[34] farver_2.1.0           jsonlite_1.7.2         BiocParallel_1.24.1   
[37] RCurl_1.98-1.3         magrittr_2.0.3         GenomeInfoDbData_1.2.4
[40] Matrix_1.3-2           Rcpp_1.0.7             munsell_0.5.0         
[43] fansi_1.0.3            ape_5.5                lifecycle_1.0.1       
[46] stringi_1.7.5          whisker_0.4            yaml_2.2.1            
[49] MASS_7.3-53.1          zlibbioc_1.36.0        plyr_1.8.6            
[52] pinfsc50_1.2.0         grid_4.0.5             promises_1.2.0.1      
[55] crayon_1.5.1           lattice_0.20-44        splines_4.0.5         
[58] knitr_1.33             pillar_1.7.0           reshape2_1.4.4        
[61] glue_1.6.2             evaluate_0.14          memuse_4.2-1          
[64] vctrs_0.4.1            httpuv_1.6.3           cellranger_1.1.0      
[67] gtable_0.3.0           purrr_0.3.4            assertthat_0.2.1      
[70] xfun_0.22              later_1.3.0            viridisLite_0.4.0     
[73] cluster_2.1.2          ellipsis_0.3.2