Last updated: 2020-01-10

Checks: 7 0

Knit directory: 2019-feature-selection/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190522) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .Ruserdata/
    Ignored:    .drake/
    Ignored:    .vscode/
    Ignored:    analysis/rosm.cache/
    Ignored:    data/
    Ignored:    inst/Benchmark for Filter Methods for Feature Selection in High-Dimensional  Classification Data.pdf
    Ignored:    inst/study-area-map/study-area.qgs~
    Ignored:    log/
    Ignored:    renv/library/
    Ignored:    renv/staging/
    Ignored:    reviews/
    Ignored:    rosm.cache/

Untracked files:
    Untracked:  code/05-modeling/paper/01-eda.R
    Untracked:  code/05-modeling/paper/02-param-sets.R
    Untracked:  code/05-modeling/paper/03-learner.R
    Untracked:  code/05-modeling/paper/04-filter-wrapper.R
    Untracked:  code/05-modeling/paper/05-pca-wrapper.R
    Untracked:  code/05-modeling/paper/06-resampling.R
    Untracked:  code/05-modeling/paper/07-tune-ctrl.R
    Untracked:  code/05-modeling/paper/08-tune-wrapper-mbo.R
    Untracked:  code/05-modeling/paper/09-tune-wrapper.R
    Untracked:  code/05-modeling/paper/10-train.R
    Untracked:  code/98-paper/ieee/._IEEEtran.cls
    Untracked:  code/98-paper/ieee/IEEEtran.cls
    Untracked:  code/98-paper/ieee/ieee-manuscript.dvi

Unstaged changes:
    Modified:   .Rprofile
    Modified:   _drake.R
    Modified:   analysis/report-defoliation.Rmd
    Deleted:    code/05-modeling/paper/eda.R
    Modified:   code/05-modeling/paper/feature-importance.R
    Deleted:    code/05-modeling/paper/filter-wrapper.R
    Deleted:    code/05-modeling/paper/learner.R
    Deleted:    code/05-modeling/paper/param-sets.R
    Deleted:    code/05-modeling/paper/pca-wrapper.R
    Deleted:    code/05-modeling/paper/resampling.R
    Deleted:    code/05-modeling/paper/tune-ctrl.R
    Deleted:    code/05-modeling/paper/tune-wrapper-mbo.R
    Deleted:    code/05-modeling/paper/tune-wrapper.R
    Modified:   code/98-paper/ieee/pdf/correlation-filter-nri-1.pdf
    Modified:   code/98-paper/ieee/pdf/correlation-nbins-1.pdf
    Modified:   code/98-paper/ieee/pdf/defoliation-distribution-plot-1.pdf
    Modified:   code/98-paper/ieee/pdf/spectral-signatures-1.pdf
    Modified:   code/98-paper/journal/defoliation-distribution-plot-1.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd db0baaa pat-s 2020-01-10 wflow_publish(knitr_in(“analysis/eval-performance.Rmd”), view = FALSE,
html 7f9507f pat-s 2019-12-10 Build site.
Rmd 951e98c pat-s 2019-12-10 wflow_publish(knitr_in(“analysis/eval-performance.Rmd”), view = FALSE, verbose =
Rmd b27c623 pat-s 2019-12-09 Standard Error -> SE
Rmd 559a59d pat-s 2019-12-09 add scatterplots to vis BM perf
html 482a158 pat-s 2019-11-01 Build site.
html becf5ea pat-s 2019-11-01 Build site.
html bd7c7f5 pat-s 2019-10-31 Build site.
html 62ff96f pat-s 2019-10-07 Build site.
html a947654 pat-s 2019-10-02 Build site.
html 49da171 pat-s 2019-09-22 Build site.
html c6317a8 pat-s 2019-09-19 Build site.
Rmd d7c72a8 pat-s 2019-09-19 wflow_publish(knitr_in(“analysis/eval-performance.Rmd”), view = FALSE,
html 7fd40ca pat-s 2019-09-18 Build site.
Rmd 44ff84b pat-s 2019-09-18 wflow_publish(knitr_in(“analysis/eval-performance.Rmd”), view = FALSE,
html 41aae14 pat-s 2019-09-12 Build site.
html ff340b8 pat-s 2019-09-03 Build site.
Rmd a524819 pat-s 2019-09-03 wflow_publish(knitr_in(“analysis/eval-performance.Rmd”), view = FALSE,
html b181c52 pat-s 2019-09-02 Build site.
Rmd cf6e820 pat-s 2019-09-02 wflow_publish(“analysis/eval-performance.Rmd”)
Rmd 1bec10d pat-s 2019-09-01 no timestamps in latex tables
html 4e363ac pat-s 2019-09-01 Build site.
Rmd 518d0cb pat-s 2019-09-01 style files using tidyverse style
html 8e7e4fe pat-s 2019-09-01 Build site.
Rmd 8941bca pat-s 2019-09-01 wflow_publish(knitr_in(“analysis/eval-performance.Rmd”), view = FALSE,
Rmd 297ed93 pat-s 2019-08-31 add filter vs no filter comparison plot
html 7582c67 pat-s 2019-08-31 Build site.
html abd531f pat-s 2019-08-31 Build site.
Rmd 9117eee pat-s 2019-08-31 wflow_publish(knitr_in(“analysis/eval-performance.Rmd”), view = FALSE,
Rmd 5b629cb pat-s 2019-08-19 add new tasks to performance eval report
html 1ec8768 pat-s 2019-08-17 Build site.
html df85aba pat-s 2019-07-12 Build site.
html 3a44a95 pat-s 2019-07-10 Build site.
html c238ce4 pat-s 2019-07-10 Build site.
Rmd e98cb01 pat-s 2019-07-10 wflow_publish(knitr_in(“analysis/eval-performance.Rmd”), view = FALSE,
Rmd 24e318f pat-s 2019-07-01 update reports
Rmd ca5c5bc pat-s 2019-06-28 add eval-performance report

Warning: Expected 2 pieces. Additional pieces discarded in 72 rows [21, 22,
23, 24, 57, 58, 59, 60, 93, 94, 95, 96, 145, 146, 147, 148, 181, 182, 183,
184, ...].
Warning: Expected 2 pieces. Missing pieces filled with `NA` in 168 rows [1,
2, 3, 4, 37, 38, 39, 40, 73, 74, 75, 76, 109, 110, 111, 112, 113, 114, 115,
116, ...].

Aggregate performances and add standard error column.

(Table) All leaner/filter/task combinations ordered by performance.

Overall leaderboard across all settings, sorted descending by performance.

Task

Model

Filter

RMSE

SE

HR

RF

Relief

30.658

13.569

HR

RF

MRMR

30.678

13.608

HR

XGBoost

Borda

30.752

13.749

HR

XGBoost

CMIM

31.042

14.310

HR

XGBoost

Relief

31.332

14.870

HR

XGBoost

MRMR

31.438

15.076

NRI

XGBoost

MRMR

31.472

15.767

HR-NRI

SVM

Borda

31.704

15.621

HR-NRI

XGBoost

Pearson

31.713

15.905

NRI

SVM

Info

31.779

15.390

VI

SVM

Info

31.817

15.398

VI

SVM

CMIM

31.817

15.496

HR-NRI

SVM

Pearson

31.819

14.766

HR-NRI-VI

SVM

Borda

31.833

15.269

VI

SVM

Pearson

31.860

15.301

HR

SVM

Pearson

31.866

15.312

HR

SVM

Info

31.866

15.312

HR-VI

SVM

MRMR

31.866

15.312

HR

SVM

Relief

31.876

15.310

HR

SVM

MRMR

31.876

15.310

HR

SVM

CMIM

31.876

15.310

HR-VI

SVM

CMIM

31.876

15.310

NRI

SVM

Borda

31.895

15.309

HR-VI

SVM

Car

31.896

15.372

HR-VI

SVM

Borda

31.905

15.367

HR-VI

SVM

Pearson

31.905

15.390

HR-VI

SVM

Info

31.913

15.382

HR-NRI-VI

SVM

Car

31.915

15.283

NRI

SVM

Pearson

31.964

15.323

NRI

SVM

Relief

31.973

15.229

HR

SVM

PCA

32.007

15.200

HR-NRI

SVM

CMIM

32.016

15.193

HR-NRI-VI

SVM

MRMR

32.020

15.187

VI

SVM

PCA

32.027

15.178

HR-NRI

SVM

PCA

32.027

15.179

HR-VI

SVM

PCA

32.027

15.181

HR-NRI-VI

SVM

PCA

32.027

15.179

HR

SVM

No Filter

32.030

15.178

VI

SVM

No Filter

32.030

15.178

HR-NRI

SVM

No Filter

32.030

15.178

HR-VI

SVM

No Filter

32.030

15.178

HR-NRI-VI

SVM

No Filter

32.030

15.178

HR-NRI

SVM

MRMR

32.030

15.178

NRI

SVM

PCA

32.032

15.178

VI

SVM

Borda

32.037

15.244

HR

SVM

Borda

32.040

15.175

VI

SVM

Car

32.049

15.164

HR

SVM

Car

32.062

15.239

HR-NRI-VI

SVM

Pearson

32.080

15.283

HR-VI

SVM

Relief

32.089

15.131

VI

SVM

MRMR

32.111

15.154

NRI

XGBoost

Car

32.264

13.565

HR-NRI-VI

SVM

Info

32.457

16.012

HR-NRI

XGBoost

Info

32.721

15.749

HR-NRI

SVM

Relief

32.744

14.658

NRI

XGBoost

Info

32.839

14.900

HR-NRI-VI

XGBoost

MRMR

32.847

13.396

HR-NRI-VI

XGBoost

Borda

32.852

14.629

HR-NRI

XGBoost

Relief

33.020

13.009

NRI

Ridge-CV

No Filter

33.307

8.168

HR-NRI

XGBoost

CMIM

33.314

12.784

HR-NRI-VI

XGBoost

No Filter

33.358

12.592

NRI

XGBoost

Borda

33.408

12.942

HR-NRI-VI

XGBoost

Relief

33.437

13.963

HR-NRI

XGBoost

MRMR

33.562

13.663

HR-NRI-VI

XGBoost

Car

33.664

13.301

NRI

XGBoost

Pearson

33.749

13.621

HR-NRI

SVM

Car

33.793

14.153

HR-NRI

XGBoost

Borda

33.861

13.192

HR-NRI-VI

XGBoost

Pearson

34.353

10.355

NRI

RF

Car

34.431

10.726

NRI

XGBoost

CMIM

34.509

12.991

HR-NRI

XGBoost

Car

34.529

10.303

HR-NRI

RF

Car

34.605

10.621

HR

XGBoost

Car

34.790

13.327

NRI

SVM

Car

34.929

13.575

NRI

XGBoost

No Filter

34.942

11.297

VI

RF

Info

35.051

13.476

NRI

XGBoost

Relief

35.088

10.167

HR-VI

RF

Borda

35.164

13.705

HR-NRI

RF

PCA

35.243

12.554

HR-NRI-VI

RF

PCA

35.258

13.089

NRI

RF

CMIM

35.352

12.648

HR-NRI-VI

RF

CMIM

35.671

12.484

HR-NRI

SVM

Info

35.770

13.568

HR-NRI

XGBoost

No Filter

35.771

10.446

HR-NRI-VI

XGBoost

CMIM

35.870

12.558

HR-NRI-VI

XGBoost

Info

36.016

11.549

HR

RF

Borda

36.018

12.671

HR-NRI

RF

MRMR

36.090

13.063

HR-NRI

RF

Pearson

36.138

12.723

HR-NRI

RF

CMIM

36.176

12.371

HR-NRI-VI

RF

No Filter

36.359

12.324

HR-NRI-VI

RF

Info

36.382

12.684

NRI

RF

Info

36.427

12.660

NRI

RF

No Filter

36.458

12.062

HR-NRI

RF

No Filter

36.467

12.385

HR

RF

Info

36.529

12.362

NRI

RF

MRMR

36.623

13.247

NRI

RF

Pearson

36.634

12.710

HR

XGBoost

Info

36.673

13.344

HR

RF

Pearson

36.695

13.139

NRI

RF

Borda

36.730

12.756

VI

RF

Car

36.731

13.243

HR-NRI-VI

RF

Pearson

36.733

12.798

HR-NRI

RF

Info

36.740

12.427

HR-NRI-VI

RF

Borda

36.789

12.546

VI

XGBoost

Borda

36.801

13.089

HR-NRI

RF

Borda

36.815

12.864

VI

XGBoost

MRMR

36.839

13.174

VI

XGBoost

Info

36.851

13.201

VI

XGBoost

Car

36.979

13.389

HR-NRI-VI

SVM

CMIM

37.035

14.466

VI

XGBoost

Relief

37.100

13.451

VI

XGBoost

Pearson

37.160

13.561

VI

XGBoost

CMIM

37.255

13.707

HR-NRI-VI

RF

Relief

37.266

8.763

HR

XGBoost

Pearson

37.373

13.912

HR

RF

CMIM

37.538

14.282

HR

RF

Car

37.623

14.344

HR-VI

XGBoost

PCA

37.794

10.142

HR-NRI-VI

RF

MRMR

37.828

14.074

NRI

RF

PCA

38.147

12.111

HR-NRI-VI

RF

Car

38.241

8.252

VI

RF

No Filter

38.432

11.170

HR-NRI

XGBoost

PCA

38.851

12.264

NRI

SVM

MRMR

38.854

15.516

NRI

SVM

No Filter

38.893

15.169

VI

SVM

Relief

38.935

16.191

VI

RF

Relief

39.020

8.772

NRI

SVM

CMIM

39.068

15.701

HR-VI

RF

MRMR

39.193

10.676

HR-NRI

RF

Relief

39.401

6.609

HR-NRI-VI

SVM

Relief

39.469

15.723

NRI

RF

Relief

39.470

10.648

HR-NRI

Ridge-CV

No Filter

39.701

11.270

NRI

XGBoost

PCA

39.716

13.821

HR-VI

RF

Info

39.741

9.577

HR-VI

RF

No Filter

39.904

9.508

VI

RF

MRMR

39.957

8.447

HR

Ridge-CV

No Filter

39.996

11.509

VI

RF

CMIM

39.999

8.595

VI

RF

Pearson

40.082

8.747

VI

RF

Borda

40.210

8.681

HR-VI

RF

CMIM

40.254

8.465

HR-VI

RF

Car

40.310

9.469

HR-VI

RF

Relief

40.389

8.557

HR-VI

RF

Pearson

40.442

8.545

HR-VI

XGBoost

MRMR

40.464

10.139

VI

RF

PCA

40.932

8.304

HR-VI

XGBoost

CMIM

41.443

8.947

HR

RF

No Filter

41.738

7.618

HR-VI

XGBoost

Car

42.406

13.494

HR-VI

XGBoost

Pearson

42.530

9.193

HR-VI

RF

PCA

42.784

6.164

HR

RF

PCA

43.533

4.596

HR-NRI-VI

XGBoost

PCA

43.731

9.297

VI

XGBoost

No Filter

44.670

7.928

VI

XGBoost

PCA

45.104

5.893

HR

XGBoost

PCA

45.343

7.067

HR-VI

XGBoost

Info

45.584

3.944

HR-VI

XGBoost

Borda

45.722

5.301

HR-VI

XGBoost

No Filter

46.547

3.413

HR-VI

XGBoost

Relief

47.051

2.893

HR

Lasso-CV

No Filter

47.220

20.520

HR-NRI

Lasso-CV

No Filter

47.533

20.878

NRI

Lasso-CV

No Filter

47.946

20.686

HR

XGBoost

No Filter

49.263

4.485

HR-NRI-VI

Lasso-CV

No Filter

54.259

24.509

VI

Lasso-CV

No Filter

54.465

24.107

HR-VI

Lasso-CV

No Filter

54.465

24.107

HR

Lasso-MBO

No Filter

55.113

22.839

VI

Lasso-MBO

No Filter

55.113

22.839

NRI

Lasso-MBO

No Filter

55.113

22.839

HR-NRI

Lasso-MBO

No Filter

55.113

22.839

HR-VI

Lasso-MBO

No Filter

55.113

22.839

HR-NRI-VI

Lasso-MBO

No Filter

55.113

22.839

HR

Ridge-MBO

No Filter

55.113

22.839

VI

Ridge-MBO

No Filter

55.113

22.839

NRI

Ridge-MBO

No Filter

55.113

22.839

HR-NRI

Ridge-MBO

No Filter

55.113

22.839

HR-VI

Ridge-MBO

No Filter

55.113

22.839

HR-NRI-VI

Ridge-MBO

No Filter

55.113

22.839

HR-NRI-VI

Ridge-CV

No Filter

25199281.276

50398430.025

HR-VI

Ridge-CV

No Filter

27460680.793

54921229.059

VI

Ridge-CV

No Filter

27777883.484

55555634.441

(Table) Best learner/filter/task combination

Learners: On which task and using which filter did every learner score their best result on?

*CV: L2 penalized regression using the internal 10-fold CV tuning of the glmnet package

*MBO: L2 penalized regression using using MBO for hyperparameter optimization.

Task

Model

Filter

RMSE

SE

HR

RF

Relief

30.658

13.569

HR

XGBoost

Borda

30.752

13.749

HR-NRI

SVM

Borda

31.704

15.621

NRI

Ridge-CV

No Filter

33.307

8.168

HR

Lasso-CV

No Filter

47.220

20.520

HR

Lasso-MBO

No Filter

55.113

22.839

HR

Ridge-MBO

No Filter

55.113

22.839

(Plot) Best learner/filter combs for all tasks

Version Author Date
7f9507f pat-s 2019-12-10
482a158 pat-s 2019-11-01
becf5ea pat-s 2019-11-01
bd7c7f5 pat-s 2019-10-31
62ff96f pat-s 2019-10-07
a947654 pat-s 2019-10-02
49da171 pat-s 2019-09-22
41aae14 pat-s 2019-09-12
b181c52 pat-s 2019-09-02
8e7e4fe pat-s 2019-09-01
7582c67 pat-s 2019-08-31
abd531f pat-s 2019-08-31

(Plot) Best filter combination of each learner vs. no filter per task vs. Borda

Showing the final effect of applying feature selection to a learner for each task. The more left a certain filter appears for a given task compared to the purple dot (No Filter), the higher the effectivity of applying feature selection for that given learner on the given task.

Version Author Date
7f9507f pat-s 2019-12-10

(Plot) Best filter combination of each learner vs. Borda filter

Showing the final effect of the ensemble Borda filter vs the best scoring simple filter.

Version Author Date
7f9507f pat-s 2019-12-10
482a158 pat-s 2019-11-01
becf5ea pat-s 2019-11-01
bd7c7f5 pat-s 2019-10-31
62ff96f pat-s 2019-10-07
a947654 pat-s 2019-10-02
49da171 pat-s 2019-09-22
7fd40ca pat-s 2019-09-18
41aae14 pat-s 2019-09-12
ff340b8 pat-s 2019-09-03
b181c52 pat-s 2019-09-02

(Plot) Performances of all filter methods

(Plot) Scatterplots of filter methods vs. no filter for each learner and task

Showing the final effect of applying feature selection to a learner for each task. All filters are colored in the same way whereas using “no filter” appears in a different color.

Version Author Date
7f9507f pat-s 2019-12-10

(Plot) Scatterplots of filter methods vs. Borda for each learner and task

Showing the final effect of applying feature selection to a learner for each task. All filters are summarized into a a single color whereas the “Borda” filter appears in its own color.

Version Author Date
7f9507f pat-s 2019-12-10

R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /opt/spack/opt/spack/linux-centos7-x86_64/gcc-9.2.0/r-3.6.1-j25wr6zcofibs2zfjwg37357rjj26lqb/rlib/R/lib/libRblas.so
LAPACK: /opt/spack/opt/spack/linux-centos7-x86_64/gcc-9.2.0/r-3.6.1-j25wr6zcofibs2zfjwg37357rjj26lqb/rlib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] xtable_1.8-3      flextable_0.5.6   ggbeeswarm_0.7.0 
 [4] ggpubr_0.1.6      ggsci_2.9         ggrepel_0.8.0    
 [7] ggplot2_3.2.1     dplyr_0.8.0.1     magrittr_1.5     
[10] mlr_2.16.0.9000   ParamHelpers_1.12 tidyselect_0.2.5 

loaded via a namespace (and not attached):
 [1] httr_1.4.0         tidyr_0.8.2        jsonlite_1.6      
 [4] viridisLite_0.3.0  splines_3.6.1      R.utils_2.8.0     
 [7] assertthat_0.2.0   base64url_1.4      vipor_0.4.5       
[10] yaml_2.2.0         gdtools_0.2.1      mlrMBO_1.1.2      
[13] pillar_1.3.1       backports_1.1.5    lattice_0.20-38   
[16] glue_1.3.0         uuid_0.1-2         digest_0.6.22     
[19] RColorBrewer_1.1-2 promises_1.0.1     checkmate_1.9.1   
[22] colorspace_1.4-0   htmltools_0.3.6    httpuv_1.4.5.1    
[25] Matrix_1.2-15      R.oo_1.23.0        pkgconfig_2.0.3   
[28] lhs_1.0.1          misc3d_0.8-4       drake_7.8.0       
[31] purrr_0.3.0        scales_1.0.0       parallelMap_1.4   
[34] whisker_0.3-2      later_0.8.0        officer_0.3.5     
[37] mco_1.0-15.1       git2r_0.26.1       tibble_2.0.1      
[40] txtq_0.1.4         withr_2.1.2        lazyeval_0.2.1    
[43] survival_2.43-3    RJSONIO_1.3-1.1    crayon_1.3.4      
[46] evaluate_0.13      storr_1.2.1        R.methodsS3_1.7.1 
[49] fs_1.3.1           xml2_1.2.0         beeswarm_0.2.3    
[52] tools_3.6.1        data.table_1.12.6  BBmisc_1.11       
[55] stringr_1.4.0      plotly_4.8.0       munsell_0.5.0     
[58] zip_2.0.0          compiler_3.6.1     systemfonts_0.1.1 
[61] rlang_0.4.1        plot3D_1.1.1       grid_3.6.1        
[64] htmlwidgets_1.3    igraph_1.2.4.1     labeling_0.3      
[67] base64enc_0.1-3    rmarkdown_1.13     gtable_0.2.0      
[70] smoof_1.5.1        R6_2.4.1           knitr_1.23        
[73] fastmatch_1.1-0    filelock_1.0.2     workflowr_1.6.0   
[76] rprojroot_1.3-2    stringi_1.3.1      parallel_3.6.1    
[79] Rcpp_1.0.0         xfun_0.5