Last updated: 2024-07-24

Checks: 7 0

Knit directory: KODAMA-Analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240618) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b422e43. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Untracked files:
    Untracked:  output/DLFPC-All.RData
    Untracked:  output/DLFPC-Br5292.RData
    Untracked:  output/DLFPC-Br5595.RData
    Untracked:  output/DLFPC-Br8100.RData
    Untracked:  output/VisiumHD.RData

Unstaged changes:
    Deleted:    analysis/STARmap.Rmd
    Deleted:    analysis/figure/DLPFC-12.Rmd/unnamed-chunk-10-1.png

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/DLPFC-4.Rmd) and HTML (docs/DLPFC-4.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b422e43 Stefano Cacciatore 2024-07-24 Start my new project
Rmd 9c3ae60 Stefano Cacciatore 2024-07-20 Start my new project
html 6f7daac Stefano Cacciatore 2024-07-19 Build site.
Rmd 7719e6f GitHub 2024-07-16 Update DLPFC-4.Rmd
Rmd 7be8f59 tkcaccia 2024-07-15 updates
html 7be8f59 tkcaccia 2024-07-15 updates

Introduction

Here, we apply KODAMA to analyze the human dorsolateral prefrontal cortex (DLPFC) data by 10x Visium from Maynard et al., 2021. The links to download the raw data and H&E full resolution images can be found in the LieberInstitute/spatialLIBD github page.

Loading the required libraries

library("nnSVG")
library("scater")
library("scran")
library("scry")
library("SPARK")
library("harmony")
library("Seurat")
library("spatialLIBD")
library("KODAMA")
library("KODAMAextra")
library("mclust")

Download the dataset

spe <- fetch_data(type = 'spe')

Extract the metadata information

sample_names=c("151507",
               "151508",
               "151509",
               "151510",
               "151669",
               "151670",
               "151671",
               "151672",
               "151673",
               "151674",
               "151675",
               "151676")
subject_names= c("Br5292","Br5595", "Br8100")
metaData = SingleCellExperiment::colData(spe)
expr = SingleCellExperiment::counts(spe)
sample_names <- paste0("sample_", unique(colData(spe)$sample_id))
sample_names <-  unique(colData(spe)$sample_id)
dim(spe)
[1] 33538 47681

Preprocessing

Quality control

We identified mitochondrial genes, calculated per-spot QC metrix and select the QC threshoulds. Low quality spots are discarded.

is_mito <- grepl("(^MT-)|(^mt-)", rowData(spe)$gene_name)
table(is_mito)
is_mito
FALSE  TRUE 
33525    13 
spe <- addPerCellQC(spe, subsets = list(mito = is_mito))

# select QC thresholds
qc_lib_size <- colData(spe)$sum < 500
qc_detected <- colData(spe)$detected < 250
qc_mito <- colData(spe)$subsets_mito_percent > 30
qc_cell_count <- colData(spe)$cell_count > 12

discard <- qc_lib_size | qc_detected | qc_mito | qc_cell_count
table(discard)
discard
FALSE  TRUE 
46653  1028 
colData(spe)$discard <- discard

spe <- spe[, !colData(spe)$discard]
dim(spe)
[1] 33538 46653

Horizontalization

The position of spots is corrected to allow to set the slides in the same XY plane.

xy=spatialCoords(spe)
samples=unique(colData(spe)$sample_id)
for(j in 1:length(samples)){
  sel=samples[j]==colData(spe)$sample_id
  xy[sel,1]=spatialCoords(spe)[sel,1]+12000*(j-1)
}
spatialCoords(spe)=xy

Gene filtering

spe <- filter_genes(
  spe,
  filter_genes_ncounts = 2,   #ncounts
  filter_genes_pcspots = 0.5,
  filter_mito = TRUE
)

dim(spe)
[1]  6623 46653

Spots that are not assigned to any tissue regions are removed from the analysis.

sel= !is.na(colData(spe)$layer_guess_reordered)
spe = spe[,sel]
dim(spe)
[1]  6623 46318

Normalization

spe <- computeLibraryFactors(spe)
spe <- logNormCounts(spe)

Gene selection

The identification of genes that display spatial expression patterns is performed using the SPARKX method (Zhu et al. (2021)). The genes are ranked based on the median value of the logarithm value of the p-value obtained in each slide individually.

gene_i=NULL
pvalue_i=NULL
pvalue_mat=matrix(nrow=nrow(spe),ncol=length(sample_names))
for(i in 1:length(sample_names)){
  sel=colData(spe)$sample_id==sample_names[i]
  spe_sub= spe[,sel]

  sparkX <- sparkx(logcounts(spe_sub),spatialCoords(spe_sub),numCores=1,option="mixture")

  gene_i=c(gene_i,rowData(spe)$gene_id)
  pvalue_i=c(pvalue_i,sparkX$res_mtest$combinedPval)
  pvalue_mat[,i]=sparkX$res_mtest$combinedPval
  print(sample_names[i])
}
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
oo=order(pvalue_i)
top_genes=gene_i[oo]
n=ave(1:length(top_genes), top_genes, FUN = seq_along)
top_genes=top_genes[n==1]

oo=order(apply(pvalue_mat,1,function(x) median(-log(x))),decreasing = TRUE)
top=gene_i[oo]

Patient Br5595

subject_names= c(“Br5292”,“Br5595”, “Br8100”)

subject_names="Br5595"

  spe_sub <- spe[, colData(spe)$subject ==  subject_names]
  subjects=colData(spe_sub)$subject
  dim(spe_sub)
[1]  6623 14646
  spe_sub <- runPCA(spe_sub, 50,subset_row = top[1:2000], scale=TRUE)

  pca=reducedDim(spe_sub,type = "PCA")[,1:50]
  labels=as.factor(colData(spe_sub)$layer_guess_reordered)
  xy=as.matrix(spatialCoords(spe_sub))
  samples=colData(spe_sub)$sample_id
  data=t(logcounts(spe_sub)[top[1:2000],])
  
  plot(pca, col=as.factor(colData(spe_sub)$sample_id))

Version Author Date
6f7daac Stefano Cacciatore 2024-07-19
7be8f59 tkcaccia 2024-07-15

KODAMA analysis

kk=KODAMA.matrix.parallel(pca,
                            spatial = xy,
                            FUN= "PLS" ,
                            landmarks = 100000,
                            splitting = 300,
                            f.par.pls = 50,
                            spatial.resolution = 0.4,
                            n.cores=4)
socket cluster with 4 nodes on host 'localhost'
================================================================================[1] "Finished parallel computation"

[1] "Calculation of dissimilarity matrix..."
================================================================================
  print("KODAMA finished")
[1] "KODAMA finished"
     config=umap.defaults
     config$n_threads = 4
     config$n_sgd_threads = "auto"
     kk_UMAP=KODAMA.visualization(kk,method="UMAP",config=config)

     plot(kk_UMAP,col=as.factor(labels))

Version Author Date
6f7daac Stefano Cacciatore 2024-07-19
7be8f59 tkcaccia 2024-07-15

Kmeans clustering

 clu=kmeans(kk_UMAP,5,nstart = 100)$cluster
  plot(kk_UMAP,col=labels,pch=20)

  plot(kk_UMAP,col=clu,pch=20)

plot(xy,col=clu,pch=20)

u=unique(samples)
for(i in 1:length(u)){
  sel=samples==u[i]
  print(adjustedRandIndex(labels[sel],clu[sel]))
}
[1] 0.5085475
[1] 0.5006403
[1] 0.5789879
[1] 0.5842352
ref=refine_SVM(xy,clu,samples,cost=100)
[1] "151669"
[1] "151670"
[1] "151671"
[1] "151672"
u=unique(samples)
for(i in 1:length(u)){
  sel=samples==u[i]
  print(adjustedRandIndex(labels[sel],ref[sel]))
}
[1] 0.5161352
[1] 0.5097184
[1] 0.5967635
[1] 0.6015693
plot(xy,col=ref,pch=20)

Graph-based clustering

    # Graph-based clustering
    g <- bluster::makeSNNGraph(as.matrix(kk_UMAP), k = 20)
    g_walk <- igraph::cluster_walktrap(g)
    clu <- as.character(igraph::cut_at(g_walk, no = 2))
    plot(kk_UMAP,col=clu,pch=20)

    selclu=clu==1
    
    g <- bluster::makeSNNGraph(as.matrix(kk_UMAP[selclu,]), k = 50)
    g_walk <- igraph::cluster_walktrap(g)
    clu <- as.character(igraph::cut_at(g_walk, no = 5))
    plot(kk_UMAP[selclu,],col=clu,pch=20)

    ref=refine_SVM(xy[selclu,],clu,samples[selclu],cost=100)
[1] "151669"
[1] "151670"
[1] "151671"
[1] "151672"
    u=unique(samples)
    for(i in 1:length(u)){
      sel=samples==u[i]
      print(adjustedRandIndex(labels[selclu][sel],ref[sel]))
    }
[1] 0.7747514
[1] 0.7628342
[1] 0.8235015
[1] 0.7731132
    plot(xy[selclu,],col=ref,pch=20)

Patient Br5292

subject_names="Br5292"

  spe_sub <- spe[, colData(spe)$subject ==  subject_names]
  subjects=colData(spe_sub)$subject
  dim(spe_sub)
[1]  6623 17734
  spe_sub <- runPCA(spe_sub, 50,subset_row = top[1:2000], scale=TRUE)

  pca=reducedDim(spe_sub,type = "PCA")[,1:50]
  labels=as.factor(colData(spe_sub)$layer_guess_reordered)
  xy=as.matrix(spatialCoords(spe_sub))
  samples=colData(spe_sub)$sample_id
  data=t(logcounts(spe_sub)[top[1:2000],])
  
  plot(pca, col=as.factor(colData(spe_sub)$sample_id))

KODAMA analysis

kk=KODAMA.matrix.parallel(pca,
                            spatial = xy,
                            FUN= "PLS" ,
                            landmarks = 100000,
                            splitting = 300,
                            f.par.pls = 50,
                            spatial.resolution = 0.4,
                            n.cores=4)
socket cluster with 4 nodes on host 'localhost'
================================================================================[1] "Finished parallel computation"

[1] "Calculation of dissimilarity matrix..."
================================================================================
  print("KODAMA finished")
[1] "KODAMA finished"
     config=umap.defaults
     config$n_threads = 4
     config$n_sgd_threads = "auto"
     kk_UMAP=KODAMA.visualization(kk,method="UMAP",config=config)

     plot(kk_UMAP,col=as.factor(labels))

Kmeans clustering

 clu=kmeans(kk_UMAP,7,nstart = 100)$cluster
  plot(kk_UMAP,col=labels,pch=20)

  plot(kk_UMAP,col=clu,pch=20)

plot(xy,col=clu,pch=20)

u=unique(samples)
for(i in 1:length(u)){
  sel=samples==u[i]
  print(adjustedRandIndex(labels[sel],clu[sel]))
}
[1] 0.4743533
[1] 0.4647374
[1] 0.4878686
[1] 0.4684217
ref=refine_SVM(xy,clu,samples,cost=100)
[1] "151507"
[1] "151508"
[1] "151509"
[1] "151510"
u=unique(samples)
for(i in 1:length(u)){
  sel=samples==u[i]
  print(adjustedRandIndex(labels[sel],ref[sel]))
}
[1] 0.494272
[1] 0.5032222
[1] 0.5145486
[1] 0.4971106
plot(xy,col=ref,pch=20)

Graph-based clustering

    g <- bluster::makeSNNGraph(as.matrix(kk_UMAP), k = 50)
    g_walk <- igraph::cluster_walktrap(g)
    clu <- as.character(igraph::cut_at(g_walk, no = 7))
    plot(kk_UMAP,col=clu,pch=20)

    ref=refine_SVM(xy,clu,samples,cost=100)
[1] "151507"
[1] "151508"
[1] "151509"
[1] "151510"
    u=unique(samples)
    for(i in 1:length(u)){
      sel=samples==u[i]
      print(adjustedRandIndex(labels[sel],ref[sel]))
    }
[1] 0.4673114
[1] 0.5060554
[1] 0.4781229
[1] 0.4863682
    plot(xy,col=ref,pch=20)

Patient Br8100

subject_names="Br8100"

  spe_sub <- spe[, colData(spe)$subject ==  subject_names]
  subjects=colData(spe_sub)$subject
  dim(spe_sub)
[1]  6623 13938
  spe_sub <- runPCA(spe_sub, 50,subset_row = top[1:2000], scale=TRUE)

  pca=reducedDim(spe_sub,type = "PCA")[,1:50]
  labels=as.factor(colData(spe_sub)$layer_guess_reordered)
  xy=as.matrix(spatialCoords(spe_sub))
  samples=colData(spe_sub)$sample_id
  data=t(logcounts(spe_sub)[top[1:2000],])
  
  plot(pca, col=as.factor(colData(spe_sub)$sample_id))

KODAMA analysis

kk=KODAMA.matrix.parallel(pca,
                            spatial = xy,
                            FUN= "PLS" ,
                            landmarks = 100000,
                            splitting = 300,
                            f.par.pls = 50,
                            spatial.resolution = 0.4,
                            n.cores=4)
socket cluster with 4 nodes on host 'localhost'
================================================================================[1] "Finished parallel computation"

[1] "Calculation of dissimilarity matrix..."
================================================================================
  print("KODAMA finished")
[1] "KODAMA finished"
     config=umap.defaults
     config$n_threads = 4
     config$n_sgd_threads = "auto"
     kk_UMAP=KODAMA.visualization(kk,method="UMAP",config=config)

     plot(kk_UMAP,col=as.factor(labels))

Kmeans clustering

 clu=kmeans(kk_UMAP,7,nstart = 100)$cluster
  plot(kk_UMAP,col=labels,pch=20)

  plot(kk_UMAP,col=clu,pch=20)

plot(xy,col=clu,pch=20)

u=unique(samples)
for(i in 1:length(u)){
  sel=samples==u[i]
  print(adjustedRandIndex(labels[sel],clu[sel]))
}
[1] 0.5203169
[1] 0.6383681
[1] 0.6068429
[1] 0.5642385
ref=refine_SVM(xy,clu,samples,cost=100)
[1] "151673"
[1] "151674"
[1] "151675"
[1] "151676"
u=unique(samples)
for(i in 1:length(u)){
  sel=samples==u[i]
  print(adjustedRandIndex(labels[sel],ref[sel]))
}
[1] 0.5495335
[1] 0.6649312
[1] 0.6386721
[1] 0.5980092
plot(xy,col=ref,pch=20)

#############################

Graph-based clustering

    # Graph-based clustering
    g <- bluster::makeSNNGraph(as.matrix(kk_UMAP), k = 20)
    g_walk <- igraph::cluster_walktrap(g)
    clu <- as.character(igraph::cut_at(g_walk, no = 7))
    plot(kk_UMAP,col=clu,pch=20)

    ref=refine_SVM(xy,clu,samples,cost=100)
[1] "151673"
[1] "151674"
[1] "151675"
[1] "151676"
    u=unique(samples)
    for(i in 1:length(u)){
      sel=samples==u[i]
      print(adjustedRandIndex(labels[sel],ref[sel]))
    }
[1] 0.6747921
[1] 0.6978782
[1] 0.6486554
[1] 0.6523782
    plot(xy,col=ref,pch=20)


sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 20.04.6 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] mclust_6.1.1                KODAMAextra_1.0            
 [3] e1071_1.7-14                doParallel_1.0.17          
 [5] iterators_1.0.14            foreach_1.5.2              
 [7] KODAMA_3.1                  umap_0.2.10.0              
 [9] Rtsne_0.17                  minerva_1.5.10             
[11] spatialLIBD_1.16.2          SpatialExperiment_1.14.0   
[13] Seurat_5.1.0                SeuratObject_5.0.2         
[15] sp_2.1-4                    harmony_1.2.0              
[17] Rcpp_1.0.12                 SPARK_1.1.1                
[19] scry_1.16.0                 scran_1.32.0               
[21] scater_1.32.0               ggplot2_3.5.1              
[23] scuttle_1.14.0              SingleCellExperiment_1.26.0
[25] SummarizedExperiment_1.34.0 Biobase_2.64.0             
[27] GenomicRanges_1.56.1        GenomeInfoDb_1.40.1        
[29] IRanges_2.38.1              S4Vectors_0.42.1           
[31] BiocGenerics_0.50.0         MatrixGenerics_1.16.0      
[33] matrixStats_1.3.0           nnSVG_1.8.0                
[35] workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] goftest_1.2-3             DT_0.33                  
  [3] Biostrings_2.72.1         vctrs_0.6.5              
  [5] spatstat.random_3.3-1     digest_0.6.36            
  [7] png_0.1-8                 proxy_0.4-27             
  [9] git2r_0.33.0              ggrepel_0.9.5            
 [11] deldir_2.0-4              parallelly_1.37.1        
 [13] magick_2.8.4              MASS_7.3-61              
 [15] reshape2_1.4.4            httpuv_1.6.15            
 [17] withr_3.0.0               xfun_0.45                
 [19] survival_3.7-0            memoise_2.0.1            
 [21] benchmarkme_1.0.8         ggbeeswarm_0.7.2         
 [23] zoo_1.8-12                pbapply_1.7-2            
 [25] rematch2_2.1.2            KEGGREST_1.44.1          
 [27] promises_1.3.0            httr_1.4.7               
 [29] restfulr_0.0.15           globals_0.16.3           
 [31] fitdistrplus_1.2-1        ps_1.7.7                 
 [33] rstudioapi_0.16.0         UCSC.utils_1.0.0         
 [35] miniUI_0.1.1.1            generics_0.1.3           
 [37] processx_3.8.4            curl_5.2.1               
 [39] fields_16.2               zlibbioc_1.50.0          
 [41] ScaledMatrix_1.12.0       polyclip_1.10-6          
 [43] doSNOW_1.0.20             GenomeInfoDbData_1.2.12  
 [45] ExperimentHub_2.12.0      SparseArray_1.4.8        
 [47] golem_0.4.1               xtable_1.8-4             
 [49] stringr_1.5.1             pracma_2.4.4             
 [51] evaluate_0.24.0           S4Arrays_1.4.1           
 [53] BiocFileCache_2.12.0      irlba_2.3.5.1            
 [55] colorspace_2.1-0          filelock_1.0.3           
 [57] ROCR_1.0-11               reticulate_1.38.0        
 [59] spatstat.data_3.1-2       shinyWidgets_0.8.6       
 [61] magrittr_2.0.3            lmtest_0.9-40            
 [63] later_1.3.2               viridis_0.6.5            
 [65] lattice_0.22-6            spatstat.geom_3.3-2      
 [67] future.apply_1.11.2       getPass_0.2-4            
 [69] scattermore_1.2           XML_3.99-0.17            
 [71] cowplot_1.1.3             RcppAnnoy_0.0.22         
 [73] class_7.3-22              pillar_1.9.0             
 [75] nlme_3.1-165              compiler_4.4.1           
 [77] beachmat_2.20.0           RSpectra_0.16-1          
 [79] stringi_1.8.4             tensor_1.5               
 [81] GenomicAlignments_1.40.0  plyr_1.8.9               
 [83] crayon_1.5.3              abind_1.4-5              
 [85] BiocIO_1.14.0             locfit_1.5-9.10          
 [87] bit_4.0.5                 dplyr_1.1.4              
 [89] whisker_0.4.1             codetools_0.2-20         
 [91] BiocSingular_1.20.0       openssl_2.2.0            
 [93] bslib_0.7.0               paletteer_1.6.0          
 [95] plotly_4.10.4             mime_0.12                
 [97] splines_4.4.1             fastDummies_1.7.3        
 [99] dbplyr_2.5.0              sparseMatrixStats_1.16.0 
[101] attempt_0.3.1             knitr_1.48               
[103] blob_1.2.4                utf8_1.2.4               
[105] BiocVersion_3.19.1        fs_1.6.4                 
[107] listenv_0.9.1             DelayedMatrixStats_1.26.0
[109] rdist_0.0.5               tibble_3.2.1             
[111] Matrix_1.7-0              callr_3.7.6              
[113] statmod_1.5.0             pkgconfig_2.0.3          
[115] tools_4.4.1               BRISC_1.0.5              
[117] cachem_1.1.0              RSQLite_2.3.7            
[119] viridisLite_0.4.2         DBI_1.2.3                
[121] fastmap_1.2.0             rmarkdown_2.27           
[123] scales_1.3.0              grid_4.4.1               
[125] ica_1.0-3                 Rsamtools_2.20.0         
[127] AnnotationHub_3.12.0      sass_0.4.9               
[129] patchwork_1.2.0           BiocManager_1.30.23      
[131] dotCall64_1.1-1           RANN_2.6.1               
[133] snow_0.4-4                yaml_2.3.9               
[135] rtracklayer_1.64.0        cli_3.6.3                
[137] purrr_1.0.2               leiden_0.4.3.1           
[139] lifecycle_1.0.4           askpass_1.2.0            
[141] uwot_0.2.2                bluster_1.14.0           
[143] sessioninfo_1.2.2         BiocParallel_1.38.0      
[145] gtable_0.3.5              rjson_0.2.21             
[147] ggridges_0.5.6            progressr_0.14.0         
[149] limma_3.60.3              jsonlite_1.8.8           
[151] edgeR_4.2.1               RcppHNSW_0.6.0           
[153] bitops_1.0-7              benchmarkmeData_1.0.4    
[155] bit64_4.0.5               spatstat.utils_3.0-5     
[157] BiocNeighbors_1.22.0      matlab_1.0.4.1           
[159] jquerylib_0.1.4           highr_0.11               
[161] metapod_1.12.0            config_0.3.2             
[163] dqrng_0.4.1               spatstat.univar_3.0-0    
[165] lazyeval_0.2.2            shiny_1.8.1.1            
[167] htmltools_0.5.8.1         sctransform_0.4.1        
[169] rappdirs_0.3.3            glue_1.7.0               
[171] spam_2.10-0               XVector_0.44.0           
[173] RCurl_1.98-1.16           rprojroot_2.0.4          
[175] gridExtra_2.3             igraph_2.0.3             
[177] R6_2.5.1                  tidyr_1.3.1              
[179] CompQuadForm_1.4.3        cluster_2.1.6            
[181] DelayedArray_0.30.1       tidyselect_1.2.1         
[183] vipor_0.4.7               maps_3.4.2               
[185] AnnotationDbi_1.66.0      future_1.33.2            
[187] rsvd_1.0.5                munsell_0.5.1            
[189] KernSmooth_2.23-24        data.table_1.15.4        
[191] htmlwidgets_1.6.4         RColorBrewer_1.1-3       
[193] rlang_1.1.4               spatstat.sparse_3.1-0    
[195] spatstat.explore_3.3-1    fansi_1.0.6              
[197] beeswarm_0.4.0