• Data Setup
    • Import DGElist Data
  • Reactome
  • Export Data

Last updated: 2023-01-20

Checks: 6 1

Knit directory: SRB_2022/1_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6e0f643. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  .gitignore
    Untracked:  test plz delete me.Rmd
    Untracked:  test-plz-delete-me.html

Unstaged changes:
    Modified:   0_data/RDS_objects/enrichGO_sig.rds
    Modified:   1_analysis/_site.yml
    Modified:   1_analysis/deAnalysis.Rmd
    Modified:   1_analysis/go.Rmd
    Modified:   1_analysis/index.Rmd
    Modified:   1_analysis/kegg.Rmd
    Modified:   1_analysis/reactome.Rmd
    Modified:   1_analysis/setUp.Rmd
    Modified:   2_plots/de/ma_1.05.png
    Modified:   2_plots/de/ma_1.1.png
    Modified:   2_plots/de/ma_1.5.png
    Modified:   2_plots/go/bp_dot_1.05.svg
    Modified:   2_plots/go/bp_dot_1.1.svg
    Modified:   2_plots/go/bp_dot_1.5.svg
    Modified:   2_plots/go/cc_dot_1.05.svg
    Modified:   2_plots/go/cc_dot_1.1.svg
    Modified:   2_plots/go/cc_dot_1.5.svg
    Modified:   2_plots/go/mf_dot_1.05.svg
    Modified:   2_plots/go/mf_dot_1.1.svg
    Modified:   2_plots/go/mf_dot_1.5.svg
    Deleted:    2_plots/ipa/funct_cat_alluvial.svg
    Deleted:    2_plots/ipa/up_cat_alluvial.svg
    Deleted:    2_plots/ipa/upstream_funct_alluvial.svg
    Modified:   2_plots/kegg/kegg_dot_1.05.svg
    Modified:   2_plots/kegg/kegg_dot_1.1.svg
    Modified:   2_plots/kegg/kegg_dot_1.5.svg
    Deleted:    2_plots/reactome/combine_GO.svg
    Modified:   2_plots/reactome/react_dot_1.05.svg
    Modified:   2_plots/reactome/react_dot_1.1.svg
    Modified:   2_plots/reactome/react_dot_1.5.svg
    Deleted:    2_plots/reactome/react_dot_INT vs CONT.svg
    Deleted:    2_plots/reactome/react_dot_INT vs SVX_VAS.svg
    Deleted:    2_plots/reactome/react_dot_SVX vs SVX_VAS.svg
    Deleted:    2_plots/reactome/react_dot_VAS vs SVX_VAS.svg
    Modified:   2_plots/reactome/upset_react_1.05.svg
    Modified:   2_plots/reactome/upset_react_1.1.svg
    Modified:   2_plots/reactome/upset_react_1.5.svg
    Deleted:    2_plots/reactome/upset_react_INT vs CONT.svg
    Deleted:    2_plots/reactome/upset_react_INT vs SVX_VAS.svg
    Deleted:    2_plots/reactome/upset_react_SVX vs SVX_VAS.svg
    Deleted:    2_plots/reactome/upset_react_VAS vs SVX_VAS.svg
    Modified:   3_output/enrichGO_sig.xlsx
    Modified:   3_output/enrichKEGG_all.xlsx
    Modified:   3_output/enrichKEGG_sig.xlsx
    Modified:   3_output/lmTreat_all.xlsx
    Modified:   3_output/lmTreat_fc1.5_voom2_all_fdr.xlsx
    Modified:   3_output/lmTreat_sig.xlsx

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (1_analysis/reactome.Rmd) and HTML (docs/reactome.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 691cf34 Ha Manh Tran 2023-01-20 Build site.
Rmd 7f6bab2 Ha Manh Tran 2023-01-20 workflowr::wflow_publish(here::here("1_analysis/*.Rmd"))
Rmd b6cf190 tranmanhha135 2023-01-19 quick commit
Rmd 3119fad tranmanhha135 2022-11-05 build website
html 3119fad tranmanhha135 2022-11-05 build website

Data Setup

# working with data
library(dplyr)
library(magrittr)
library(readr)
library(tibble)
library(reshape2)
library(tidyverse)

# Visualisation:
library(kableExtra)
library(ggplot2)
library(grid)
library(pander)
library(cowplot)
library(pheatmap)

# Custom ggplot
library(ggbiplot)
library(ggrepel)
theme_set(theme_light())

pub <- readRDS(here::here("0_data/RDS_objects/pub.rds"))

# Bioconductor packages:
library(edgeR)
library(limma)
library(Glimma)
library(clusterProfiler)
library(org.Mm.eg.db)
library(enrichplot)
library(ReactomePA)

Import DGElist Data

DGElist object containing the raw feature count, sample metadata, and gene metadata, created in the Set Up stage.

# load DGElist previously created in the set up
dge <- readRDS(here::here("0_data/RDS_objects/dge.rds"))
fc <- readRDS(here::here("0_data/RDS_objects/fc.rds"))
lfc <- readRDS(here::here("0_data/RDS_objects/lfc.rds"))
lmTreat <- readRDS(here::here("0_data/RDS_objects/lmTreat.rds"))
lmTreat_sig <- readRDS(here::here("0_data/RDS_objects/lmTreat_sig.rds"))

Reactome

p=1
reactome=list()
reactome_all=list()
reactome_sig=list()
for (i in 1:length(fc)) {
  x <- fc[i] %>% as.character()
  
  reactome[[x]] <- enrichPathway(gene = lmTreat_sig[[x]]$entrezid, organism = "mouse", pvalueCutoff = 0.05, pAdjustMethod = "fdr", readable = T)

reactome_all[[x]] <- reactome[[x]]@result
reactome_sig[[x]] <- reactome_all[[x]] %>% dplyr::filter(p.adjust <= 0.05) %>% 
  separate(col = BgRatio, sep = "/", into = c("Total", "Universe")) %>%
  dplyr::mutate(
    logFDR = -log(p.adjust, 10),
    GeneRatio = Count / as.numeric(Total))%>%
    dplyr::select(c("Description", "GeneRatio", "pvalue", "p.adjust", "logFDR", "qvalue", "geneID", "Count"))

 # at the beginnning of a word (after 35 characters), add a newline. shorten the y axis for dot plot 
  reactome_sig[[x]]$Description <- sub(pattern = "(.{1,55})(?:$| )", 
                                       replacement = "\\1\n", 
                                       x = reactome_sig[[x]]$Description)
  
  # remove the additional newline at the end of the string
  reactome_sig[[x]]$Description <- sub(pattern = "\n$", 
                                       replacement = "", 
                                       x = reactome_sig[[x]]$Description)
}
 
kable(x = reactome_sig[[p]]) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>% 
scroll_box(height = "600px")
Description GeneRatio pvalue p.adjust logFDR qvalue geneID Count
R-MMU-112316 Neuronal System 0.1744548 0.0000000 0.0000023 5.646701 0.0000019 Kcnk3/Kcnb2/Syn2/Slc1a3/Kcnj3/Gria4/Kcna6/Kcnd2/Ptprd/Kcnd3/Nlgn1/Epb41l3/Abat/Lrrc7/Gnai1/Lrrc4b/Kcnq5/Grin2b/Adcy3/Shank2/Maoa/Gngt2/Plcb1/Ppfia2/Slitrk3/Rps6ka2/Glrb/Ppfia4/Adcy4/Adcy7/Gabra4/Dlg2/Gng11/Lin7a/Nlgn3/Tspan7/Kcnma1/Gjc1/Gng2/Kcnc4/Plcb2/Slc38a1/Lrfn2/Dlg4/Kcng4/Gnb5/Arhgef9/Gnb4/Gabbr1/Kcnq4/Cacna1a/Cacnb4/Prkar1b/Kcnh1/Camk1/Nlgn2 56
R-MMU-1474244 Extracellular matrix organization 0.1904762 0.0000000 0.0000040 5.400249 0.0000034 Col11a1/Mmp16/Col26a1/Itga4/P3h3/Col14a1/Capn6/Ddr2/Col4a6/Cd44/Lama4/Col16a1/Itgb7/Fn1/Mmp2/Icam1/Nid1/Jam3/Itga1/Col13a1/Loxl3/Itgal/Emilin1/Pecam1/Col5a2/Ltbp3/Mmp19/Bgn/Col15a1/P3h1/Adam19/Efemp2/Crtap/Col23a1/Col18a1/Itga8/Itgb4/Tmprss6/Lum/Nid2/Bmp7/Jam2/Fbln5/Col4a5 44
R-MMU-109582 Hemostasis 0.1451943 0.0000001 0.0000176 4.754163 0.0000150 Apob/Hgf/Angpt1/Itga4/Cd109/Igf1/Tfpi/Slc8a1/Nos3/Cd44/Pcdh7/P2rx2/Gnai1/Fn1/Pde1b/Serpine2/Jam3/Tek/Gngt2/Pik3r6/Dock2/Rasgrp2/Slc8a3/Trpc6/Sh2b2/Kif26a/Dock10/Maged2/Islr/Procr/Gng11/Itgal/Esam/Dgkb/Tubb4a/Vegfc/Pde1a/Sele/Pecam1/Kif6/Igf2/Gng2/Pros1/Arrb1/Sccpdh/Arrb2/Fyn/Pde5a/Cd84/Tor4a/Fgr/Habp4/Atp2b4/Gnb5/Fam3c/Selenop/Gnb4/Apbb1ip/Sri/Lat/Vps45/Kif16b/Spn/Lcp2/Pafah2/Lhfpl2/F2r/Prkar1b/Kif5a/Plek/Jam2 71
R-MMU-418346 Platelet homeostasis 0.2676056 0.0000010 0.0001715 3.765660 0.0001464 Apob/Slc8a1/Nos3/P2rx2/Pde1b/Gngt2/Slc8a3/Trpc6/Gng11/Pde1a/Pecam1/Gng2/Pde5a/Fgr/Atp2b4/Gnb5/Gnb4/Sri/Pafah2 19
R-MMU-216083 Integrin cell surface interactions 0.2727273 0.0000014 0.0001956 3.708584 0.0001670 Itga4/Col4a6/Cd44/Col16a1/Itgb7/Fn1/Icam1/Jam3/Itga1/Col13a1/Itgal/Pecam1/Col5a2/Col18a1/Itga8/Lum/Jam2/Col4a5 18
R-MMU-112315 Transmission across Chemical Synapses 0.1758794 0.0000026 0.0002986 3.524891 0.0002549 Syn2/Slc1a3/Kcnj3/Gria4/Abat/Lrrc7/Gnai1/Grin2b/Adcy3/Maoa/Gngt2/Plcb1/Ppfia2/Rps6ka2/Glrb/Ppfia4/Adcy4/Adcy7/Gabra4/Dlg2/Gng11/Lin7a/Tspan7/Gng2/Plcb2/Slc38a1/Dlg4/Gnb5/Arhgef9/Gnb4/Gabbr1/Cacna1a/Cacnb4/Prkar1b/Camk1 35
R-MMU-5173214 O-glycosylation of TSR domain-containing proteins 0.3636364 0.0000030 0.0002986 3.524891 0.0002549 Adamts20/Sema5b/Adamts16/Adamts19/Thsd7b/Thsd1/Adamts1/Adamts10/Adamts7/Adamtsl1/Sbspon/Adamts17 12
R-MMU-5173105 O-linked glycosylation 0.2187500 0.0000090 0.0007894 3.102709 0.0006737 Adamts20/Sema5b/Adamts16/Adamts19/Thsd7b/Thsd1/Adamts1/Galnt16/St3gal2/St6galnac4/Adamts10/Adamts7/Galntl6/Adamtsl1/Pomt2/Large1/B3gnt5/St3gal4/Sbspon/Adamts17/Galnt18 21
R-MMU-112314 Neurotransmitter receptors and postsynaptic signal transmission 0.1838235 0.0000325 0.0025359 2.595874 0.0021643 Kcnj3/Gria4/Lrrc7/Gnai1/Grin2b/Adcy3/Gngt2/Plcb1/Rps6ka2/Glrb/Adcy4/Adcy7/Gabra4/Dlg2/Gng11/Tspan7/Gng2/Plcb2/Dlg4/Gnb5/Arhgef9/Gnb4/Gabbr1/Prkar1b/Camk1 25
R-MMU-416482 G alpha (12/13) signalling events 0.2285714 0.0000592 0.0041624 2.380653 0.0035526 Plxnb1/Adra1a/Arhgef25/Gngt2/Gng11/Arhgef15/Gng2/Arhgef26/Net1/Fgd1/Gnb5/Ngef/Arhgef9/Gnb4/Fgd2/Plekhg5 16
R-MMU-418597 G alpha (z) signalling events 0.3225806 0.0000665 0.0042502 2.371590 0.0036275 Rgs16/Adcy3/Gngt2/Adcy4/Adcy7/Gng11/Gng2/Gnaz/Gnb5/Gnb4 10
R-MMU-6794362 Protein-protein interactions at synapses 0.2272727 0.0001074 0.0062930 2.201141 0.0053710 Gria4/Ptprd/Nlgn1/Epb41l3/Lrrc4b/Grin2b/Shank2/Ppfia2/Slitrk3/Ppfia4/Dlg2/Nlgn3/Lrfn2/Dlg4/Nlgn2 15
R-MMU-1650814 Collagen biosynthesis and modifying enzymes 0.2333333 0.0001343 0.0068857 2.162050 0.0058769 Col11a1/Col26a1/P3h3/Col14a1/Col4a6/Col16a1/Col13a1/Col5a2/Col15a1/P3h1/Crtap/Col23a1/Col18a1/Col4a5 14
R-MMU-977444 GABA B receptor activation 0.2750000 0.0001469 0.0068857 2.162050 0.0058769 Kcnj3/Gnai1/Adcy3/Gngt2/Adcy4/Adcy7/Gng11/Gng2/Gnb5/Gnb4/Gabbr1 11
R-MMU-991365 Activation of GABAB receptors 0.2750000 0.0001469 0.0068857 2.162050 0.0058769 Kcnj3/Gnai1/Adcy3/Gngt2/Adcy4/Adcy7/Gng11/Gng2/Gnb5/Gnb4/Gabbr1 11
R-MMU-76002 Platelet activation, signaling and aggregation 0.1440329 0.0002003 0.0087992 2.055556 0.0075100 Hgf/Cd109/Igf1/Pcdh7/Gnai1/Fn1/Gngt2/Pik3r6/Rasgrp2/Trpc6/Maged2/Islr/Gng11/Dgkb/Vegfc/Pecam1/Igf2/Gng2/Pros1/Arrb1/Sccpdh/Arrb2/Fyn/Tor4a/Habp4/Gnb5/Fam3c/Selenop/Gnb4/Apbb1ip/Lat/Lcp2/Lhfpl2/F2r/Plek 35
R-MMU-977443 GABA receptor activation 0.2321429 0.0002447 0.0101197 1.994832 0.0086370 Kcnj3/Gnai1/Adcy3/Gngt2/Adcy4/Adcy7/Gabra4/Gng11/Gng2/Gnb5/Arhgef9/Gnb4/Gabbr1 13
R-MMU-397795 G-protein beta:gamma signalling 0.3000000 0.0002876 0.0111282 1.953575 0.0094978 Gngt2/Pik3r6/Plcb1/Gng11/Gng2/Plcb2/Akt3/Gnb5/Gnb4 9
R-MMU-1296071 Potassium Channels 0.1875000 0.0003137 0.0111282 1.953575 0.0094978 Kcnk3/Kcnb2/Kcnj3/Kcna6/Kcnd2/Kcnd3/Kcnq5/Gngt2/Gng11/Kcnma1/Gng2/Kcnc4/Kcng4/Gnb5/Gnb4/Gabbr1/Kcnq4/Kcnh1 18
R-MMU-202433 Generation of second messenger molecules 0.3684211 0.0003372 0.0111282 1.953575 0.0094978 Itk/Cd3g/Zap70/Lat/Lcp2/Grap2/Cd4 7
R-MMU-418217 G beta:gamma signalling through PLC beta 0.3684211 0.0003372 0.0111282 1.953575 0.0094978 Gngt2/Plcb1/Gng11/Gng2/Plcb2/Gnb5/Gnb4 7
R-MMU-1474290 Collagen formation 0.2054795 0.0003519 0.0111282 1.953575 0.0094978 Col11a1/Col26a1/P3h3/Col14a1/Col4a6/Col16a1/Col13a1/Loxl3/Col5a2/Col15a1/P3h1/Crtap/Col23a1/Col18a1/Col4a5 15
R-MMU-202733 Cell surface interactions at the vascular wall 0.1910112 0.0003641 0.0111282 1.953575 0.0094978 Apob/Angpt1/Itga4/Cd44/Fn1/Jam3/Tek/Procr/Itgal/Esam/Sele/Pecam1/Pros1/Fyn/Cd84/Spn/Jam2 17
R-MMU-3000157 Laminin interactions 0.5000000 0.0004767 0.0136328 1.865417 0.0116353 Col4a6/Lama4/Nid1/Nid2/Col4a5 5
R-MMU-500657 Presynaptic function of Kainate receptors 0.3500000 0.0004848 0.0136328 1.865417 0.0116353 Gngt2/Plcb1/Gng11/Gng2/Plcb2/Gnb5/Gnb4 7
R-MMU-111885 Opioid Signalling 0.2028986 0.0006283 0.0163874 1.785490 0.0139864 Gnai1/Pde1b/Adcy3/Gngt2/Plcb1/Adcy4/Adcy7/Gng11/Pde1a/Gng2/Plcb2/Gnb5/Gnb4/Prkar1b 14
R-MMU-4085001 Sialic acid metabolism 0.2727273 0.0006294 0.0163874 1.785490 0.0139864 St6gal2/St8sia2/St8sia4/Npl/St3gal2/St6galnac4/St8sia6/St6galnac6/St3gal4 9
R-MMU-8948216 Collagen chain trimerization 0.2571429 0.0010032 0.0251865 1.598832 0.0214963 Col11a1/Col26a1/Col14a1/Col16a1/Col13a1/Col5a2/Col15a1/Col23a1/Col18a1 9
R-MMU-451326 Activation of kainate receptors upon glutamate binding 0.2758621 0.0011595 0.0281070 1.551185 0.0239889 Gngt2/Plcb1/Gng11/Gng2/Plcb2/Dlg4/Gnb5/Gnb4 8
R-MMU-4086398 Ca2+ pathway 0.2325581 0.0012401 0.0290608 1.536692 0.0248030 Lef1/Wnt11/Gngt2/Plcb1/Gng11/Gng2/Plcb2/Fzd2/Gnb5/Gnb4 10
R-MMU-9013149 RAC1 GTPase cycle 0.1481481 0.0013126 0.0290804 1.536399 0.0248197 Nhs/Mcam/Fermt2/Wasf3/Arhgap45/Arhgef25/Arhgap25/Dock2/Dock10/Abi2/Sh3bp1/Arhgef15/Nckap1l/Arap3/Prex2/Arhgap10/Dlc1/Arhgap31/Ngef/Fgd5/Arhgap15/Cav1/Cyfip2/Pld2 24
R-MMU-9012999 RHO GTPase cycle 0.1198980 0.0013237 0.0290804 1.536399 0.0248197 Nhs/Mcam/Plxnb1/Ccdc88a/Pcdh7/Fermt2/Wasf3/Arhgap45/Arhgef25/Akap12/Arhgap25/Dock2/Slitrk3/Myo9a/Plxnd1/Dock10/Abi2/Sh3bp1/Arhgap6/Arhgef15/Nckap1l/Arap3/Prex2/Arhgap10/Dlc1/Arhgef26/Arhgap28/Net1/Pde5a/Fgd1/Dlg5/Arhgap31/Arfgap3/Zap70/Cep97/Ngef/Arhgef9/Fgd5/Arhgap15/Elmo2/Cav1/Cyfip2/Pld2/Wdr6/Fmnl3/Fgd2/Plekhg5 47
R-MMU-1630316 Glycosaminoglycan metabolism 0.1623932 0.0013730 0.0292500 1.533874 0.0249644 Gpc6/Chst2/Cd44/Cspg4/Gpc3/B4galt2/Has2/St3gal2/Chst1/Glb1l/Bgn/Dse/Xylt1/St3gal4/Arsb/Abcc5/Gpc2/Lum/Papss2 19
R-MMU-9013148 CDC42 GTPase cycle 0.1807229 0.0014375 0.0297233 1.526903 0.0253684 Arhgap45/Arhgef25/Dock10/Arhgef15/Arap3/Prex2/Arhgap10/Dlc1/Arhgef26/Fgd1/Arhgap31/Ngef/Arhgef9/Cav1/Fgd2 15
R-MMU-392451 G beta:gamma signalling through PI3Kgamma 0.2916667 0.0016515 0.0331723 1.479225 0.0283120 Gngt2/Pik3r6/Gng11/Gng2/Akt3/Gnb5/Gnb4 7
R-MMU-456926 Thrombin signalling through proteinase activated receptors (PARs) 0.2580645 0.0018586 0.0362946 1.440157 0.0309769 Gngt2/Gng11/Gng2/Arrb1/Arrb2/Gnb5/Gnb4/F2r 8
react_dot=list()
upset=list()
for (i in 1:length(fc)) {
  x <- fc[i] %>% as.character()
  react_dot[[x]] <- ggplot(reactome_sig[[x]][1:12, ]) +
  geom_point(aes(x = GeneRatio, y = reorder(Description, GeneRatio), colour = logFDR, size = Count)) +
  scale_color_gradient(low = "dodgerblue3", high = "firebrick3", limits = c(0, NA)) +
  scale_size(range = c(1.5,5)) +
  ggtitle("Reactome Pathways") +
  ylab(label = "") +
  xlab(label = "Gene Ratio") +
  labs(color = expression("-log"[10] * "FDR"), size = "Gene Counts")
  ggsave(filename = paste0("react_dot_", x, ".svg"), plot = react_dot[[x]] + pub, path = here::here("2_plots/reactome/"), 
       width = 250, height = 130, units = "mm")
  
  upset[[x]] <- upsetplot(x = reactome[[x]], 9)
  ggsave(filename = paste0("upset_react_", fc[i], ".svg"), plot = upset[[x]], path = here::here("2_plots/reactome/"))
}

react_dot[[p]]

upset[[p]]

p=p+1
kable(x = reactome_sig[[p]]) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>% 
scroll_box(height = "600px")
Description GeneRatio pvalue p.adjust logFDR qvalue geneID Count
R-MMU-112316 Neuronal System 0.1619938 0.0000000 0.0000009 6.027692 0.0000008 Kcnk3/Kcnb2/Syn2/Kcnj3/Slc1a3/Gria4/Kcna6/Kcnd2/Ptprd/Kcnd3/Nlgn1/Epb41l3/Lrrc7/Abat/Gnai1/Lrrc4b/Kcnq5/Grin2b/Adcy3/Maoa/Shank2/Gngt2/Ppfia2/Plcb1/Slitrk3/Rps6ka2/Glrb/Gabra4/Dlg2/Adcy4/Ppfia4/Gng11/Nlgn3/Lin7a/Adcy7/Tspan7/Kcnma1/Kcnc4/Gjc1/Gng2/Plcb2/Lrfn2/Kcng4/Slc38a1/Dlg4/Gnb5/Arhgef9/Gnb4/Kcnq4/Gabbr1/Cacna1a/Cacnb4 52
R-MMU-1474244 Extracellular matrix organization 0.1645022 0.0000002 0.0000561 4.251364 0.0000474 Col11a1/Mmp16/Col26a1/Itga4/P3h3/Col14a1/Capn6/Col4a6/Ddr2/Cd44/Lama4/Itgb7/Fn1/Mmp2/Col16a1/Icam1/Nid1/Jam3/Itga1/Col13a1/Loxl3/Itgal/Emilin1/Pecam1/Col5a2/Col15a1/Ltbp3/Mmp19/Bgn/P3h1/Adam19/Crtap/Efemp2/Col23a1/Col18a1/Itga8/Tmprss6/Itgb4 38
R-MMU-5173214 O-glycosylation of TSR domain-containing proteins 0.3636364 0.0000007 0.0001520 3.818039 0.0001285 Adamts20/Sema5b/Adamts16/Adamts19/Thsd7b/Thsd1/Adamts1/Adamts10/Adamts7/Adamtsl1/Sbspon/Adamts17 12
R-MMU-112315 Transmission across Chemical Synapses 0.1658291 0.0000009 0.0001533 3.814372 0.0001296 Syn2/Kcnj3/Slc1a3/Gria4/Lrrc7/Abat/Gnai1/Grin2b/Adcy3/Maoa/Gngt2/Ppfia2/Plcb1/Rps6ka2/Glrb/Gabra4/Dlg2/Adcy4/Ppfia4/Gng11/Lin7a/Adcy7/Tspan7/Gng2/Plcb2/Slc38a1/Dlg4/Gnb5/Arhgef9/Gnb4/Gabbr1/Cacna1a/Cacnb4 33
R-MMU-109582 Hemostasis 0.1226994 0.0000024 0.0003200 3.494859 0.0002705 Apob/Hgf/Angpt1/Itga4/Cd109/Igf1/Tfpi/Nos3/Slc8a1/Cd44/Pcdh7/P2rx2/Gnai1/Fn1/Serpine2/Tek/Pde1b/Jam3/Gngt2/Pik3r6/Slc8a3/Rasgrp2/Dock2/Sh2b2/Kif26a/Dock10/Trpc6/Procr/Gng11/Islr/Esam/Itgal/Dgkb/Vegfc/Tubb4a/Pde1a/Maged2/Sele/Kif6/Igf2/Pecam1/Pros1/Gng2/Arrb1/Sccpdh/Pde5a/Cd84/Arrb2/Fyn/Fgr/Atp2b4/Tor4a/Selenop/Gnb5/Lat/Fam3c/Habp4/Apbb1ip/Gnb4/Kif16b 60
R-MMU-418346 Platelet homeostasis 0.2394366 0.0000029 0.0003220 3.492147 0.0002722 Apob/Nos3/Slc8a1/P2rx2/Pde1b/Gngt2/Slc8a3/Trpc6/Gng11/Pde1a/Pecam1/Gng2/Pde5a/Fgr/Atp2b4/Gnb5/Gnb4 17
R-MMU-5173105 O-linked glycosylation 0.1979167 0.0000153 0.0014582 2.836168 0.0012326 Adamts20/Sema5b/Adamts16/Adamts19/Thsd7b/Thsd1/Adamts1/Galnt16/St6galnac4/St3gal2/Adamts10/Adamts7/Galntl6/Adamtsl1/B3gnt5/Sbspon/St3gal4/Large1/Adamts17 19
R-MMU-418597 G alpha (z) signalling events 0.3225806 0.0000202 0.0016123 2.792544 0.0013629 Rgs16/Adcy3/Gngt2/Adcy4/Gng11/Adcy7/Gng2/Gnaz/Gnb5/Gnb4 10
R-MMU-216083 Integrin cell surface interactions 0.2272727 0.0000218 0.0016123 2.792544 0.0013629 Itga4/Col4a6/Cd44/Itgb7/Fn1/Col16a1/Icam1/Jam3/Itga1/Col13a1/Itgal/Pecam1/Col5a2/Col18a1/Itga8 15
R-MMU-112314 Neurotransmitter receptors and postsynaptic signal transmission 0.1691176 0.0000302 0.0020055 2.697778 0.0016952 Kcnj3/Gria4/Lrrc7/Gnai1/Grin2b/Adcy3/Gngt2/Plcb1/Rps6ka2/Glrb/Gabra4/Dlg2/Adcy4/Gng11/Adcy7/Tspan7/Gng2/Plcb2/Dlg4/Gnb5/Arhgef9/Gnb4/Gabbr1 23
R-MMU-977444 GABA B receptor activation 0.2750000 0.0000420 0.0023266 2.633279 0.0019666 Kcnj3/Gnai1/Adcy3/Gngt2/Adcy4/Gng11/Adcy7/Gng2/Gnb5/Gnb4/Gabbr1 11
R-MMU-991365 Activation of GABAB receptors 0.2750000 0.0000420 0.0023266 2.633279 0.0019666 Kcnj3/Gnai1/Adcy3/Gngt2/Adcy4/Gng11/Adcy7/Gng2/Gnb5/Gnb4/Gabbr1 11
R-MMU-977443 GABA receptor activation 0.2321429 0.0000606 0.0031021 2.508347 0.0026221 Kcnj3/Gnai1/Adcy3/Gngt2/Gabra4/Adcy4/Gng11/Adcy7/Gng2/Gnb5/Arhgef9/Gnb4/Gabbr1 13
R-MMU-6794362 Protein-protein interactions at synapses 0.2121212 0.0000917 0.0043570 2.360809 0.0036829 Gria4/Ptprd/Nlgn1/Epb41l3/Lrrc4b/Grin2b/Shank2/Ppfia2/Slitrk3/Dlg2/Ppfia4/Nlgn3/Lrfn2/Dlg4 14
R-MMU-397795 G-protein beta:gamma signalling 0.3000000 0.0001003 0.0044487 2.351765 0.0037604 Gngt2/Pik3r6/Plcb1/Gng11/Gng2/Plcb2/Akt3/Gnb5/Gnb4 9
R-MMU-1650814 Collagen biosynthesis and modifying enzymes 0.2166667 0.0001295 0.0053807 2.269160 0.0045482 Col11a1/Col26a1/P3h3/Col14a1/Col4a6/Col16a1/Col13a1/Col5a2/Col15a1/P3h1/Crtap/Col23a1/Col18a1 13
R-MMU-418217 G beta:gamma signalling through PLC beta 0.3684211 0.0001426 0.0055776 2.253554 0.0047146 Gngt2/Plcb1/Gng11/Gng2/Plcb2/Gnb5/Gnb4 7
R-MMU-416482 G alpha (12/13) signalling events 0.2000000 0.0001787 0.0063804 2.195151 0.0053932 Plxnb1/Adra1a/Arhgef25/Gngt2/Gng11/Arhgef15/Gng2/Arhgef26/Net1/Fgd1/Gnb5/Ngef/Arhgef9/Gnb4 14
R-MMU-1296071 Potassium Channels 0.1770833 0.0001823 0.0063804 2.195151 0.0053932 Kcnk3/Kcnb2/Kcnj3/Kcna6/Kcnd2/Kcnd3/Kcnq5/Gngt2/Gng11/Kcnma1/Kcnc4/Gng2/Kcng4/Gnb5/Gnb4/Kcnq4/Gabbr1 17
R-MMU-500657 Presynaptic function of Kainate receptors 0.3500000 0.0002068 0.0068768 2.162615 0.0058127 Gngt2/Plcb1/Gng11/Gng2/Plcb2/Gnb5/Gnb4 7
R-MMU-4085001 Sialic acid metabolism 0.2727273 0.0002258 0.0071491 2.145752 0.0060429 St6gal2/St8sia2/St8sia4/Npl/St6galnac4/St3gal2/St8sia6/St6galnac6/St3gal4 9
R-MMU-1474290 Collagen formation 0.1917808 0.0002839 0.0085803 2.066500 0.0072526 Col11a1/Col26a1/P3h3/Col14a1/Col4a6/Col16a1/Col13a1/Loxl3/Col5a2/Col15a1/P3h1/Crtap/Col23a1/Col18a1 14
R-MMU-76002 Platelet activation, signaling and aggregation 0.1275720 0.0003594 0.0101540 1.993364 0.0085829 Hgf/Cd109/Igf1/Pcdh7/Gnai1/Fn1/Gngt2/Pik3r6/Rasgrp2/Trpc6/Gng11/Islr/Dgkb/Vegfc/Maged2/Igf2/Pecam1/Pros1/Gng2/Arrb1/Sccpdh/Arrb2/Fyn/Tor4a/Selenop/Gnb5/Lat/Fam3c/Habp4/Apbb1ip/Gnb4 31
R-MMU-8948216 Collagen chain trimerization 0.2571429 0.0003665 0.0101540 1.993364 0.0085829 Col11a1/Col26a1/Col14a1/Col16a1/Col13a1/Col5a2/Col15a1/Col23a1/Col18a1 9
R-MMU-4086398 Ca2+ pathway 0.2325581 0.0004216 0.0112147 1.950213 0.0094794 Lef1/Wnt11/Gngt2/Plcb1/Gng11/Gng2/Plcb2/Fzd2/Gnb5/Gnb4 10
R-MMU-9013149 RAC1 GTPase cycle 0.1419753 0.0004551 0.0114220 1.942257 0.0096547 Nhs/Mcam/Fermt2/Wasf3/Arhgap45/Arhgef25/Arhgap25/Dock2/Dock10/Abi2/Sh3bp1/Arhgef15/Nckap1l/Arap3/Prex2/Arhgap10/Dlc1/Arhgap31/Ngef/Fgd5/Arhgap15/Cav1/Cyfip2 23
R-MMU-451326 Activation of kainate receptors upon glutamate binding 0.2758621 0.0004638 0.0114220 1.942257 0.0096547 Gngt2/Plcb1/Gng11/Gng2/Plcb2/Dlg4/Gnb5/Gnb4 8
R-MMU-111885 Opioid Signalling 0.1884058 0.0005559 0.0132027 1.879337 0.0111599 Gnai1/Pde1b/Adcy3/Gngt2/Plcb1/Adcy4/Gng11/Adcy7/Pde1a/Gng2/Plcb2/Gnb5/Gnb4 13
R-MMU-392451 G beta:gamma signalling through PI3Kgamma 0.2916667 0.0007301 0.0164497 1.783841 0.0139045 Gngt2/Pik3r6/Gng11/Gng2/Akt3/Gnb5/Gnb4 7
R-MMU-202733 Cell surface interactions at the vascular wall 0.1685393 0.0007421 0.0164497 1.783841 0.0139045 Apob/Angpt1/Itga4/Cd44/Fn1/Tek/Jam3/Procr/Esam/Itgal/Sele/Pecam1/Pros1/Cd84/Fyn 15
R-MMU-446728 Cell junction organization 0.1875000 0.0009405 0.0201758 1.695169 0.0170540 Sdk2/Fermt2/Cdh2/Cdh6/Cdh13/Cdh10/Cdh5/Cdh11/Pard6g/Parvb/Flnc/Itgb4 12
R-MMU-9013148 CDC42 GTPase cycle 0.1686747 0.0010945 0.0227450 1.643114 0.0192257 Arhgap45/Arhgef25/Dock10/Arhgef15/Arap3/Prex2/Arhgef26/Arhgap10/Dlc1/Fgd1/Arhgap31/Ngef/Arhgef9/Cav1 14
R-MMU-397014 Muscle contraction 0.1372549 0.0012365 0.0249183 1.603481 0.0210627 Kcnk3/Cacna1c/Kcnd2/Ryr1/Kcnd3/Slc8a1/Tmod2/Gucy1a2/Slc8a3/Itga1/Gucy1b1/Mme/Gucy1a1/Myl3/Cacng7/Kcnip3/Asph/Ryr3/Pde5a/Atp2b4/Atp1a2 21
R-MMU-1296041 Activation of G protein gated Potassium channels 0.2592593 0.0015718 0.0290350 1.537078 0.0245425 Kcnj3/Gngt2/Gng11/Gng2/Gnb5/Gnb4/Gabbr1 7
R-MMU-1296059 G protein gated Potassium channels 0.2592593 0.0015718 0.0290350 1.537078 0.0245425 Kcnj3/Gngt2/Gng11/Gng2/Gnb5/Gnb4/Gabbr1 7
R-MMU-997272 Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits 0.2592593 0.0015718 0.0290350 1.537078 0.0245425 Kcnj3/Gngt2/Gng11/Gng2/Gnb5/Gnb4/Gabbr1 7
R-MMU-1630316 Glycosaminoglycan metabolism 0.1452991 0.0018891 0.0339521 1.469134 0.0286987 Gpc6/Chst2/Cd44/Cspg4/Gpc3/B4galt2/Has2/St3gal2/Chst1/Glb1l/Bgn/Xylt1/Dse/St3gal4/Arsb/Gpc2/Abcc5 17
R-MMU-392170 ADP signalling through P2Y purinoceptor 12 0.2857143 0.0019821 0.0346868 1.459836 0.0293197 Gnai1/Gngt2/Gng11/Gng2/Gnb5/Gnb4 6
R-MMU-400042 Adrenaline,noradrenaline inhibits insulin secretion 0.2727273 0.0025737 0.0437866 1.358659 0.0370115 Gnai1/Gngt2/Gng11/Gng2/Gnb5/Gnb4 6
R-MMU-9012999 RHO GTPase cycle 0.1045918 0.0026338 0.0437866 1.358659 0.0370115 Nhs/Mcam/Plxnb1/Ccdc88a/Pcdh7/Fermt2/Wasf3/Arhgap45/Arhgef25/Akap12/Arhgap25/Dock2/Slitrk3/Plxnd1/Dock10/Abi2/Myo9a/Sh3bp1/Arhgef15/Arhgap6/Nckap1l/Arap3/Prex2/Arhgef26/Arhgap10/Arhgap28/Pde5a/Dlc1/Net1/Fgd1/Zap70/Dlg5/Arhgap31/Ngef/Fgd5/Arhgef9/Cep97/Arhgap15/Arfgap3/Cav1/Cyfip2 41
R-MMU-416476 G alpha (q) signalling events 0.1218274 0.0030033 0.0485967 1.313393 0.0410774 Adra1a/Rgs16/Ednrb/Lpar4/Arhgef25/Gngt2/Ptgfr/Edn3/Plcb1/Rps6ka2/Trpc6/Gng11/Dgkb/Rgs5/Agtr1a/Ednra/Bdkrb2/Xcl1/Htr2a/Gng2/Plcb2/Gnb5/Prokr1/Gnb4 24
R-MMU-373080 Class B/2 (Secretin family receptors) 0.1818182 0.0031179 0.0485967 1.313393 0.0410774 Vipr2/Gngt2/Calca/Pth1r/Gng11/Adcyap1r1/Gng2/Calcrl/Gnb5/Gnb4 10
R-MMU-1500931 Cell-Cell communication 0.1566265 0.0032224 0.0485967 1.313393 0.0410774 Sdk2/Fermt2/Cdh2/Cdh6/Cdh13/Cdh10/Cdh5/Cdh11/Pard6g/Parvb/Flnc/Fyn/Itgb4 13
R-MMU-1971475 A tetrasaccharide linker sequence is required for GAG synthesis 0.2608696 0.0032885 0.0485967 1.313393 0.0410774 Gpc6/Cspg4/Gpc3/Bgn/Xylt1/Gpc2 6
R-MMU-975576 N-glycan antennae elongation in the medial/trans-Golgi 0.2608696 0.0032885 0.0485967 1.313393 0.0410774 St8sia2/Man2a2/Chst10/B4galt2/St8sia6/St3gal4 6
react_dot[[p]]

upset[[p]]

p=p+1
kable(x = reactome_sig[[p]]) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>% 
scroll_box(height = "600px")
Description GeneRatio pvalue p.adjust logFDR qvalue geneID Count
R-MMU-112316 Neuronal System 0.0623053 0.0000008 0.0002601 3.584822 0.0002228 Kcnk3/Kcnb2/Syn2/Kcnj3/Slc1a3/Kcnd2/Gria4/Kcna6/Kcnd3/Lrrc7/Nlgn1/Ptprd/Abat/Epb41l3/Lrrc4b/Gnai1/Kcnq5/Ppfia2/Grin2b/Gabra4 20
R-MMU-6794362 Protein-protein interactions at synapses 0.1060606 0.0001513 0.0243552 1.613409 0.0208599 Gria4/Nlgn1/Ptprd/Epb41l3/Lrrc4b/Ppfia2/Grin2b 7
R-MMU-5173214 O-glycosylation of TSR domain-containing proteins 0.1515152 0.0002554 0.0258090 1.588229 0.0221051 Adamts20/Sema5b/Adamts16/Thsd7b/Adamts19 5
R-MMU-422475 Axon guidance 0.0522088 0.0004433 0.0258090 1.588229 0.0221051 Gap43/Epha8/Efnb3/Dcc/St8sia2/Plxnb1/St8sia4/Dab1/Evl/Grin2b/Sema7a/Mmp2/Cxcl12 13
R-MMU-9675108 Nervous system development 0.0520000 0.0004606 0.0258090 1.588229 0.0221051 Gap43/Epha8/Efnb3/Dcc/St8sia2/Plxnb1/St8sia4/Dab1/Evl/Grin2b/Sema7a/Mmp2/Cxcl12 13
R-MMU-1474228 Degradation of the extracellular matrix 0.0747664 0.0005833 0.0258090 1.588229 0.0221051 Col11a1/Mmp16/Col26a1/Capn6/Col4a6/Cd44/Mmp2/Nid1 8
R-MMU-3000157 Laminin interactions 0.3000000 0.0005908 0.0258090 1.588229 0.0221051 Col4a6/Lama4/Nid1 3
R-MMU-1296072 Voltage gated Potassium channels 0.1250000 0.0006412 0.0258090 1.588229 0.0221051 Kcnb2/Kcnd2/Kcna6/Kcnd3/Kcnq5 5
R-MMU-1474244 Extracellular matrix organization 0.0519481 0.0007709 0.0259472 1.585909 0.0222235 Col11a1/Mmp16/Col26a1/Col14a1/Capn6/Col4a6/Itga4/P3h3/Cd44/Mmp2/Lama4/Nid1 12
R-MMU-975634 Retinoid metabolism and transport 0.1190476 0.0008058 0.0259472 1.585909 0.0222235 Gpc6/Apob/Ttr/Gpc3/Lrp2 5
R-MMU-6806667 Metabolism of fat-soluble vitamins 0.1086957 0.0012271 0.0359194 1.444671 0.0307646 Gpc6/Apob/Ttr/Gpc3/Lrp2 5
R-MMU-1296071 Potassium Channels 0.0729167 0.0014909 0.0400069 1.397865 0.0342655 Kcnk3/Kcnb2/Kcnj3/Kcnd2/Kcna6/Kcnd3/Kcnq5 7
react_dot[[p]]

upset[[p]]

Export Data

# save to csv
writexl::write_xlsx(x = reactome_all, here::here("3_output/reactome_all.xlsx"))
writexl::write_xlsx(x = reactome_sig, here::here("3_output/reactome_sig.xlsx"))

sessionInfo()
R version 4.2.1 (2022-06-23 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:
[1] LC_COLLATE=English_Australia.utf8  LC_CTYPE=English_Australia.utf8   
[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C                      
[5] LC_TIME=English_Australia.utf8    

attached base packages:
[1] stats4    grid      stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ReactomePA_1.40.0     enrichplot_1.16.2     org.Mm.eg.db_3.15.0  
 [4] AnnotationDbi_1.58.0  IRanges_2.30.1        S4Vectors_0.34.0     
 [7] Biobase_2.56.0        BiocGenerics_0.42.0   clusterProfiler_4.4.4
[10] Glimma_2.6.0          edgeR_3.38.4          limma_3.52.4         
[13] ggrepel_0.9.1         ggbiplot_0.55         scales_1.2.1         
[16] plyr_1.8.7            pheatmap_1.0.12       cowplot_1.1.1        
[19] pander_0.6.5          kableExtra_1.3.4      forcats_0.5.2        
[22] stringr_1.4.1         purrr_0.3.5           tidyr_1.2.1          
[25] ggplot2_3.3.6         tidyverse_1.3.2       reshape2_1.4.4       
[28] tibble_3.1.8          readr_2.1.3           magrittr_2.0.3       
[31] dplyr_1.0.10         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2                  tidyselect_1.2.0           
  [3] RSQLite_2.2.18              htmlwidgets_1.5.4          
  [5] BiocParallel_1.30.3         scatterpie_0.1.8           
  [7] munsell_0.5.0               ragg_1.2.3                 
  [9] codetools_0.2-18            withr_2.5.0                
 [11] colorspace_2.0-3            GOSemSim_2.22.0            
 [13] highr_0.9                   knitr_1.40                 
 [15] rstudioapi_0.14             DOSE_3.22.1                
 [17] labeling_0.4.2              MatrixGenerics_1.8.1       
 [19] git2r_0.30.1                GenomeInfoDbData_1.2.8     
 [21] polyclip_1.10-0             bit64_4.0.5                
 [23] farver_2.1.1                rprojroot_2.0.3            
 [25] downloader_0.4              treeio_1.20.2              
 [27] vctrs_0.4.2                 generics_0.1.3             
 [29] xfun_0.33                   R6_2.5.1                   
 [31] GenomeInfoDb_1.32.4         graphlayouts_0.8.2         
 [33] locfit_1.5-9.6              bitops_1.0-7               
 [35] cachem_1.0.6                fgsea_1.22.0               
 [37] gridGraphics_0.5-1          DelayedArray_0.22.0        
 [39] assertthat_0.2.1            promises_1.2.0.1           
 [41] ggraph_2.1.0                googlesheets4_1.0.1        
 [43] gtable_0.3.1                tidygraph_1.2.2            
 [45] workflowr_1.7.0             rlang_1.0.6                
 [47] genefilter_1.78.0           systemfonts_1.0.4          
 [49] splines_4.2.1               lazyeval_0.2.2             
 [51] gargle_1.2.1                broom_1.0.1                
 [53] yaml_2.3.5                  modelr_0.1.9               
 [55] backports_1.4.1             httpuv_1.6.6               
 [57] qvalue_2.28.0               tools_4.2.1                
 [59] ggplotify_0.1.0             ellipsis_0.3.2             
 [61] jquerylib_0.1.4             RColorBrewer_1.1-3         
 [63] Rcpp_1.0.9                  zlibbioc_1.42.0            
 [65] RCurl_1.98-1.9              viridis_0.6.2              
 [67] SummarizedExperiment_1.26.1 haven_2.5.1                
 [69] fs_1.5.2                    here_1.0.1                 
 [71] data.table_1.14.2           DO.db_2.9                  
 [73] reactome.db_1.81.0          reprex_2.0.2               
 [75] googledrive_2.0.0           whisker_0.4                
 [77] matrixStats_0.62.0          hms_1.1.2                  
 [79] patchwork_1.1.2             evaluate_0.17              
 [81] xtable_1.8-4                XML_3.99-0.11              
 [83] readxl_1.4.1                gridExtra_2.3              
 [85] ggupset_0.3.0               compiler_4.2.1             
 [87] writexl_1.4.0               shadowtext_0.1.2           
 [89] crayon_1.5.2                htmltools_0.5.3            
 [91] ggfun_0.0.7                 later_1.3.0                
 [93] tzdb_0.3.0                  geneplotter_1.74.0         
 [95] aplot_0.1.8                 lubridate_1.8.0            
 [97] DBI_1.1.3                   tweenr_2.0.2               
 [99] dbplyr_2.2.1                rappdirs_0.3.3             
[101] MASS_7.3-57                 Matrix_1.5-1               
[103] cli_3.4.1                   parallel_4.2.1             
[105] igraph_1.3.5                GenomicRanges_1.48.0       
[107] pkgconfig_2.0.3             xml2_1.3.3                 
[109] ggtree_3.4.4                svglite_2.1.0              
[111] annotate_1.74.0             bslib_0.4.0                
[113] webshot_0.5.4               XVector_0.36.0             
[115] rvest_1.0.3                 yulab.utils_0.0.5          
[117] digest_0.6.29               graph_1.74.0               
[119] Biostrings_2.64.1           rmarkdown_2.17             
[121] cellranger_1.1.0            fastmatch_1.1-3            
[123] tidytree_0.4.1              graphite_1.42.0            
[125] lifecycle_1.0.3             nlme_3.1-157               
[127] jsonlite_1.8.2              viridisLite_0.4.1          
[129] fansi_1.0.3                 pillar_1.8.1               
[131] lattice_0.20-45             KEGGREST_1.36.3            
[133] fastmap_1.1.0               httr_1.4.4                 
[135] survival_3.3-1              GO.db_3.15.0               
[137] glue_1.6.2                  png_0.1-7                  
[139] bit_4.0.4                   ggforce_0.4.1              
[141] stringi_1.7.8               sass_0.4.2                 
[143] blob_1.2.3                  textshaping_0.3.6          
[145] DESeq2_1.36.0               memoise_2.0.1              
[147] ape_5.6-2