Last updated: 2021-01-03
Checks: 7 0
Knit directory: PredictOutbredCrossVar/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20191123)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version e7306d3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: manuscript/.DS_Store
Ignored: output/.DS_Store
Ignored: output/crossPredictions/.DS_Store
Ignored: output/crossPredictions/.gitignore
Ignored: output/crossPredictions/Icon
Ignored: output/crossPredictions/July2020/
Ignored: output/crossPredictions/defunctDirectionalDomResults/
Ignored: output/crossPredictions/mt_Repeat1_Fold1_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat1_Fold2_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat1_Fold3_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat1_Fold4_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat1_Fold5_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat2_Fold1_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat2_Fold2_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat2_Fold3_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat2_Fold4_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat2_Fold5_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat3_Fold1_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat3_Fold2_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat3_Fold3_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat3_Fold4_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat3_Fold5_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat4_Fold1_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat4_Fold2_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat4_Fold3_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat4_Fold4_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat4_Fold5_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat5_Fold1_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat5_Fold2_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat5_Fold3_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat5_Fold4_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/mt_Repeat5_Fold5_trainset_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/otherRetiredEarlyResults/
Ignored: output/crossPredictions/predUntestedCrossBVs_ReDoSelfs_A_predVarAndCovarBVs.rds
Ignored: output/crossPredictions/predUntestedCrossTGVs_ReDoSelfs_AD_predVarsAndCovars.rds
Ignored: output/crossPredictions/predictedCrossVars_chunk1_2Dec2020.rds
Ignored: output/crossPredictions/predictedCrossVars_chunk2_2Dec2020.rds
Ignored: output/crossPredictions/predictedCrossVars_chunk3_2Dec2020.rds
Ignored: output/crossPredictions/predictedCrossVars_chunk4_2Dec2020.rds
Ignored: output/crossPredictions/predictedCrossVars_chunk5_2Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk1_15Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk1_2Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk2_15Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk2_2Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk3_15Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk3_2Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk4_15Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk4_2Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk5_2Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarTGVs_chunk1_15Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarTGVs_chunk1_2Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarTGVs_chunk2_15Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarTGVs_chunk2_2Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarTGVs_chunk3_15Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarTGVs_chunk3_2Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarTGVs_chunk4_15Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarTGVs_chunk4_2Dec2020.rds
Ignored: output/crossPredictions/predictedDirectionalDomCrossVarTGVs_chunk5_2Dec2020.rds
Ignored: output/crossPredictions/retired_ReDoSelfs/
Ignored: output/crossRealizations/.DS_Store
Ignored: output/mtMarkerEffects/Icon
Untracked files:
Untracked: Abstract_EdingburghCompGenomicsTalk_2020June02.gdoc
Untracked: Icon
Untracked: ScratchSlidesAndNotes.gslides
Untracked: analysis/ICQG6.Rmd
Untracked: analysis/Icon
Untracked: archive/
Untracked: code/Icon
Untracked: data/Icon
Untracked: manuscript/Figures.gslides
Untracked: manuscript/SupplementaryTable06.csv
Untracked: manuscript/SupplementaryTable07.csv
Untracked: manuscript/SupplementaryTable08.csv
Untracked: manuscript/SupplementaryTable09.csv
Untracked: manuscript/SupplementaryTable17.csv
Untracked: manuscript/SupplementaryTable18.csv
Untracked: output/Figures/
Untracked: output/Icon
Untracked: output/Tables/
Untracked: output/crossRealizations/Icon
Untracked: predCrossVar/
Untracked: rsyncs.R
Untracked: rsyncs2.R
Untracked: setupOnServer.R
Unstaged changes:
Modified: analysis/NGCleadersCall.Rmd
Modified: data/Madd_awc.rds
Modified: data/Mdom_awc.rds
Modified: data/blups_forawcdata.rds
Modified: data/dosages_awc.rds
Modified: data/genmap_awc_May2020.rds
Modified: data/haps_awc.rds
Modified: data/iita_blupsForCrossVal_72619.rds
Modified: data/parentwise_crossVal_folds.rds
Modified: data/ped_awc.rds
Modified: data/recombFreqMat_1minus2c_awcmap_May2020.rds
Modified: manuscript/SupplementaryTables.xlsx
Modified: output/accuraciesMeans.rds
Modified: output/accuraciesUC.rds
Modified: output/accuraciesVars.rds
Modified: output/crossPredictions/TableS7_predictedCrossVars.rds
Modified: output/crossPredictions/mt_Repeat1_Fold1_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat1_Fold1_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat1_Fold1_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat1_Fold1_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat1_Fold2_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat1_Fold2_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat1_Fold2_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat1_Fold2_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat1_Fold3_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat1_Fold3_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat1_Fold3_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat1_Fold3_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat1_Fold4_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat1_Fold4_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat1_Fold4_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat1_Fold4_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat1_Fold5_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat1_Fold5_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat1_Fold5_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat1_Fold5_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat2_Fold1_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat2_Fold1_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat2_Fold1_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat2_Fold1_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat2_Fold2_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat2_Fold2_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat2_Fold2_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat2_Fold2_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat2_Fold3_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat2_Fold3_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat2_Fold3_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat2_Fold3_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat2_Fold4_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat2_Fold4_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat2_Fold4_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat2_Fold4_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat2_Fold5_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat2_Fold5_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat2_Fold5_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat2_Fold5_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat3_Fold1_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat3_Fold1_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat3_Fold1_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat3_Fold1_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat3_Fold2_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat3_Fold2_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat3_Fold2_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat3_Fold2_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat3_Fold3_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat3_Fold3_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat3_Fold3_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat3_Fold3_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat3_Fold4_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat3_Fold4_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat3_Fold4_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat3_Fold4_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat3_Fold5_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat3_Fold5_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat3_Fold5_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat3_Fold5_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat4_Fold1_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat4_Fold1_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat4_Fold1_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat4_Fold1_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat4_Fold2_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat4_Fold2_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat4_Fold2_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat4_Fold2_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat4_Fold3_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat4_Fold3_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat4_Fold3_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat4_Fold3_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat4_Fold4_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat4_Fold4_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat4_Fold4_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat4_Fold4_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat4_Fold5_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat4_Fold5_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat4_Fold5_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat4_Fold5_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat5_Fold1_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat5_Fold1_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat5_Fold1_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat5_Fold1_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat5_Fold2_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat5_Fold2_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat5_Fold2_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat5_Fold2_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat5_Fold3_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat5_Fold3_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat5_Fold3_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat5_Fold3_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat5_Fold4_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat5_Fold4_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat5_Fold4_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat5_Fold4_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat5_Fold5_trainset_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/mt_Repeat5_Fold5_trainset_A_predVarsAndCovars.rds
Modified: output/crossPredictions/mt_Repeat5_Fold5_trainset_DirectionalDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/mt_Repeat5_Fold5_trainset_DirectionalDom_predVarsAndCovars.rds
Modified: output/crossPredictions/predUntestedCrossBVs_chunk1_A_predVarAndCovarBVs.rds
Modified: output/crossPredictions/predUntestedCrossBVs_chunk1_DirDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/predUntestedCrossBVs_chunk2_A_predVarAndCovarBVs.rds
Modified: output/crossPredictions/predUntestedCrossBVs_chunk2_DirDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/predUntestedCrossBVs_chunk3_A_predVarAndCovarBVs.rds
Modified: output/crossPredictions/predUntestedCrossBVs_chunk3_DirDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/predUntestedCrossBVs_chunk4_A_predVarAndCovarBVs.rds
Modified: output/crossPredictions/predUntestedCrossBVs_chunk4_DirDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/predUntestedCrossBVs_chunk5_A_predVarAndCovarBVs.rds
Deleted: output/crossPredictions/predUntestedCrossBVs_chunk5_DirDom_predVarAndCovarBVs.rds
Modified: output/crossPredictions/predUntestedCrossTGVs_chunk1_AD_predVarsAndCovars.rds
Modified: output/crossPredictions/predUntestedCrossTGVs_chunk1_DirDom_predVarsAndCovars.rds
Modified: output/crossPredictions/predUntestedCrossTGVs_chunk2_AD_predVarsAndCovars.rds
Modified: output/crossPredictions/predUntestedCrossTGVs_chunk2_DirDom_predVarsAndCovars.rds
Modified: output/crossPredictions/predUntestedCrossTGVs_chunk3_AD_predVarsAndCovars.rds
Modified: output/crossPredictions/predUntestedCrossTGVs_chunk3_DirDom_predVarsAndCovars.rds
Modified: output/crossPredictions/predUntestedCrossTGVs_chunk4_AD_predVarsAndCovars.rds
Modified: output/crossPredictions/predUntestedCrossTGVs_chunk4_DirDom_predVarsAndCovars.rds
Modified: output/crossPredictions/predUntestedCrossTGVs_chunk5_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrossTGVs_chunk5_DirDom_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_209parents_chunk1_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_209parents_chunk1_A_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_209parents_chunk2_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_209parents_chunk2_A_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_209parents_chunk3_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_209parents_chunk3_A_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_209parents_chunk4_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_209parents_chunk4_A_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_209parents_chunk5_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_209parents_chunk5_A_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_top100stdSI_chunk1_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_top100stdSI_chunk1_A_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_top100stdSI_chunk2_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_top100stdSI_chunk2_A_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_top100stdSI_chunk3_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_top100stdSI_chunk3_A_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_top100stdSI_chunk4_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_top100stdSI_chunk4_A_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_top100stdSI_chunk5_AD_predVarsAndCovars.rds
Deleted: output/crossPredictions/predUntestedCrosses_top100stdSI_chunk5_A_predVarsAndCovars.rds
Modified: output/crossPredictions/predictedCrossMeans.rds
Modified: output/crossPredictions/predictedCrossMeans_DirectionalDom_tidy_withSelIndices.rds
Deleted: output/crossPredictions/predictedCrossMeans_GCA_SCA.rds
Modified: output/crossPredictions/predictedCrossMeans_tidy_withSelIndices.rds
Modified: output/crossPredictions/predictedCrossVars_DirectionalDom_tidy_withSelIndices.rds
Deleted: output/crossPredictions/predictedCrossVars_GCA_SCA.rds
Deleted: output/crossPredictions/predictedCrossVars_chunk1.rds
Deleted: output/crossPredictions/predictedCrossVars_chunk2.rds
Deleted: output/crossPredictions/predictedCrossVars_chunk3.rds
Deleted: output/crossPredictions/predictedCrossVars_chunk4.rds
Deleted: output/crossPredictions/predictedCrossVars_chunk5.rds
Modified: output/crossPredictions/predictedCrossVars_tidy_withSelIndices.rds
Modified: output/crossPredictions/predictedDirectionalDomCrossMeans.rds
Deleted: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk1.rds
Deleted: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk2.rds
Deleted: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk3.rds
Deleted: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk4.rds
Deleted: output/crossPredictions/predictedDirectionalDomCrossVarBVs_chunk5.rds
Deleted: output/crossPredictions/predictedDirectionalDomCrossVars_chunk1.rds
Deleted: output/crossPredictions/predictedDirectionalDomCrossVars_chunk2.rds
Deleted: output/crossPredictions/predictedDirectionalDomCrossVars_chunk3.rds
Deleted: output/crossPredictions/predictedDirectionalDomCrossVars_chunk4.rds
Deleted: output/crossPredictions/predictedDirectionalDomCrossVars_chunk5.rds
Modified: output/crossPredictions/predictedUntestedCrossMeansBV.rds
Modified: output/crossPredictions/predictedUntestedCrossMeansDirDom.rds
Modified: output/crossPredictions/predictedUntestedCrossMeansTGV.rds
Modified: output/crossPredictions/predictedUntestedCrossMeans_SelIndices.rds
Modified: output/crossPredictions/predictedUntestedCrossMeans_tidy_traits.rds
Modified: output/crossPredictions/predictedUntestedCrossVars_SelIndices.rds
Modified: output/crossPredictions/predictedUntestedCrossVars_tidy_traits.rds
Modified: output/crossRealizations/realizedCrossMeans.rds
Modified: output/crossRealizations/realizedCrossMeans_BLUPs.rds
Modified: output/crossRealizations/realizedCrossMetrics.rds
Modified: output/crossRealizations/realizedCrossVars.rds
Modified: output/crossRealizations/realizedCrossVars_BLUPs.rds
Modified: output/crossRealizations/realized_cross_means_and_covs_traits.rds
Modified: output/crossRealizations/realized_cross_means_and_vars_selindices.rds
Modified: output/gblups_DirectionalDom_parentwise_crossVal_folds.rds
Modified: output/gblups_geneticgroups.rds
Modified: output/gblups_parentwise_crossVal_folds.rds
Modified: output/gebvs_ModelA_GroupAll_stdSI.rds
Modified: output/mtMarkerEffects/mt_All_A.rds
Modified: output/mtMarkerEffects/mt_All_AD.rds
Modified: output/mtMarkerEffects/mt_All_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_GG_A.rds
Modified: output/mtMarkerEffects/mt_GG_AD.rds
Modified: output/mtMarkerEffects/mt_GG_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold1_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold1_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold1_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold1_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold1_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold1_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold2_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold2_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold2_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold2_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold2_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold2_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold3_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold3_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold3_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold3_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold3_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold3_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold4_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold4_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold4_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold4_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold4_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold4_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold5_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold5_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold5_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold5_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold5_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat1_Fold5_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold1_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold1_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold1_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold1_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold1_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold1_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold2_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold2_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold2_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold2_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold2_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold2_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold3_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold3_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold3_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold3_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold3_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold3_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold4_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold4_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold4_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold4_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold4_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold4_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold5_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold5_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold5_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold5_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold5_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat2_Fold5_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold1_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold1_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold1_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold1_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold1_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold1_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold2_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold2_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold2_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold2_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold2_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold2_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold3_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold3_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold3_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold3_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold3_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold3_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold4_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold4_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold4_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold4_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold4_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold4_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold5_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold5_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold5_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold5_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold5_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat3_Fold5_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold1_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold1_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold1_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold1_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold1_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold1_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold2_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold2_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold2_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold2_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold2_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold2_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold3_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold3_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold3_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold3_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold3_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold3_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold4_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold4_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold4_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold4_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold4_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold4_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold5_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold5_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold5_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold5_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold5_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat4_Fold5_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold1_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold1_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold1_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold1_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold1_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold1_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold2_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold2_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold2_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold2_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold2_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold2_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold3_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold3_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold3_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold3_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold3_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold3_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold4_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold4_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold4_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold4_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold4_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold4_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold5_testset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold5_testset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold5_testset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold5_trainset_A.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold5_trainset_AD.rds
Modified: output/mtMarkerEffects/mt_Repeat5_Fold5_trainset_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_TMS13_A.rds
Modified: output/mtMarkerEffects/mt_TMS13_AD.rds
Modified: output/mtMarkerEffects/mt_TMS13_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_TMS14_A.rds
Modified: output/mtMarkerEffects/mt_TMS14_AD.rds
Modified: output/mtMarkerEffects/mt_TMS14_DirectionalDom.rds
Modified: output/mtMarkerEffects/mt_TMS15_A.rds
Modified: output/mtMarkerEffects/mt_TMS15_AD.rds
Modified: output/mtMarkerEffects/mt_TMS15_DirectionalDom.rds
Modified: output/obsVSpredMeans.rds
Modified: output/obsVSpredUC.rds
Modified: output/obsVSpredVars.rds
Modified: output/pmv_DirectionalDom_varcomps_geneticgroups.rds
Modified: output/pmv_varcomps_geneticgroups.rds
Modified: output/pmv_varcomps_geneticgroups_tidy_includingSIvars.rds
Modified: workflowr_log.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/predictCrossVars.Rmd
) and HTML (docs/predictCrossVars.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 22e6c87 | wolfemd | 2021-01-03 | Build site. |
html | fb29cd8 | wolfemd | 2021-01-02 | Build site. |
Rmd | fd91cd9 | wolfemd | 2021-01-02 | Compile submission version main figures. |
Rmd | 2228d20 | wolfemd | 2020-12-15 | Work in progress. Finished re-doing predictions with both self-cross handling and PMV VarD bugs fixed. Discovered NEW bug in DirDom results. |
Rmd | e736c60 | wolfemd | 2020-12-02 | Re-predict self-crosses in the cross-val scheme using updated/corrected predCrossVar package. |
Rmd | 2e13628 | wolfemd | 2020-11-25 | Misc minor changes |
html | 3dbb1e8 | wolfemd | 2020-10-08 | Site built for first COMPLETE draft, shared with co-authors. |
html | b06eee7 | wolfemd | 2020-08-31 | Build site. |
html | 7a4e168 | wolfemd | 2020-07-31 | Build site. |
html | a5ac99f | wolfemd | 2020-07-31 | Build site. |
html | ff4fc8b | wolfemd | 2020-07-31 | Build site. |
html | e6f8fe8 | wolfemd | 2020-07-31 | Build site. |
Rmd | 07509a8 | wolfemd | 2020-07-31 | Organized and ready to be published as a workflowr HTML page. |
Rmd | a1950f7 | wolfemd | 2020-07-29 | Directional dominance fully implemented, except in prediction of untested crosses. Presentation to NGC Leader’s call included. |
Rmd | c96001f | wolfemd | 2020-06-28 | Results and organization nearly complete. Prediction of Usefulness might be wrong (NEEDS REVIEW). |
Rmd | c0b292a | wolfemd | 2020-06-23 | Most analyses coded and complete. Moved all wrapper functions to code/*.R scripts. |
Rmd | 4846c0e | wolfemd | 2020-06-14 | All analyses completed for one-rep of parent-wise cross-val. as of June 9 Edinburgh CBDG talk. |
Install package .
# devtools::install_github("wolfemd/predCrossVar", ref = 'master', force=T)
# activate multithread OpenBLAS
export OMP_NUM_THREADS=88
rm(list=ls()); gc()
library(tidyverse); library(magrittr); library(predCrossVar); library(BGLR);
# BLUPs -----------
<-readRDS(here::here("data","blups_forawcdata.rds")) %>%
blupsselect(Trait,blups) %>%
unnest(blups) %>%
select(Trait,germplasmName,drgBLUP) %>%
spread(Trait,drgBLUP) %>%
select(germplasmName,all_of(c("DM","logFYLD","MCMDS","TCHART"))) # precaution to ensure consistent column order
# Training datasets -----------
<-readRDS(file = here::here("data","parentwise_crossVal_folds.rds")) %>%
parentfoldsrename(Repeat=id,Fold=id2) %>%
select(Repeat,Fold,testparents,trainset) %>%
pivot_longer(c(trainset), # exclude the testsets
names_to = "Dataset",
values_to = "sampleIDs") %>%
crossing(Model=c("A","AD")) %>%
arrange(desc(Dataset),Repeat,Fold) %>%
mutate(blups=map(sampleIDs,~filter(blups,germplasmName %in% .)),
outName=paste0("mt_",Repeat,"_",Fold,"_",Dataset,"_",Model))
# Pedigree -----------
<-readRDS(here::here("data","ped_awc.rds")) %>%
peddistinct(sireID,damID)
# Crosses To Predict -------------
%<>%
parentfolds mutate(CrossesToPredict=map(testparents,~filter(ped,sireID %in% . | damID %in% .)))
# Recomb frequency matrix ------------
<-readRDS(here::here("data","recombFreqMat_1minus2c_awcmap_May2020.rds"))
recombFreqMat
# Haplotype Matrix ------------
<-readRDS(file=here::here("data","haps_awc.rds"))
haploMat<-sort(c(paste0(union(ped$sireID,ped$damID),"_HapA"),
parenthapspaste0(union(ped$sireID,ped$damID),"_HapB")))
<-haploMat[parenthaps,colnames(recombFreqMat)]; rm(parenthaps); dim(haploMat)
haploMat
# for consistency
%<>%
parentfolds rename(outprefix=outName)
# Parallelization specs ---------
require(furrr); options(future.globals.maxSize=50000*1024^2)
<-10;
ncores
# MCMC params ------
<-30000; burnIn<-5000; thin<-5
nIter
# Path for output ----------
<-"output/crossPredictions"
outpath
# getUntestedMtCrossVarPreds function -------------
## Function to run for each rep-fold-Model (==unique set of marker effects), predict the relevant cross variances.
source(here::here("code","getMtCrossVarPreds.R"))
<-5
nchunks%<>%
parentfolds mutate(Chunk=rep(1:nchunks, each=ceiling(nrow(.)/nchunks), length.out=nrow(.))) %>%
nest(data=c(-Chunk))
# cbsulm17 - done
<-1;
chunk# cbsulm27 - done
<-2;
chunk# cbsulm22 - done
<-3;
chunk# cbsulm09 - (cbsulm15 - done)
<-4;
chunk# cbsulm10 (cbsulm17 - done)
<-5;
chunk
# Start run on each server / chunk: Done
<-parentfolds %>%
predictedCrossVarsslice(chunk) %>%
unnest(data) %>%
mutate(crossVars=pmap(.,getMtCrossVarPreds,
outpath="output/crossPredictions",
predType="PMV",nIter=nIter,burnIn=burnIn,thin=thin,
recombFreqMat=recombFreqMat,haploMat=haploMat,ncores=ncores))
saveRDS(predictedCrossVars,
file=here::here("output/crossPredictions",paste0("predictedCrossVars_chunk",chunk,"_2Dec2020.rds")))
# activate multithread OpenBLAS
export OMP_NUM_THREADS=112
rm(list=ls()); gc()
library(tidyverse); library(magrittr); library(predCrossVar); library(BGLR);
# BLUPs -----------
<-readRDS(here::here("data","blups_forawcdata.rds")) %>%
blupsselect(Trait,blups) %>%
unnest(blups) %>%
select(Trait,germplasmName,drgBLUP) %>%
spread(Trait,drgBLUP) %>%
select(germplasmName,all_of(c("DM","logFYLD","MCMDS","TCHART"))) # precaution to ensure consistent column order
# Training datasets -----------
<-readRDS(file = here::here("data","parentwise_crossVal_folds.rds")) %>%
parentfoldsrename(Repeat=id,Fold=id2) %>%
select(Repeat,Fold,testparents,trainset) %>%
pivot_longer(c(trainset), # exclude the testsets
names_to = "Dataset",
values_to = "sampleIDs") %>%
mutate(Model="DirectionalDom") %>%
arrange(desc(Dataset),Repeat,Fold) %>%
mutate(blups=map(sampleIDs,~filter(blups,germplasmName %in% .)),
outName=paste0("mt_",Repeat,"_",Fold,"_",Dataset,"_",Model))
# Pedigree -----------
<-readRDS(here::here("data","ped_awc.rds")) %>%
peddistinct(sireID,damID)
# Crosses To Predict -------------
%<>%
parentfolds mutate(CrossesToPredict=map(testparents,~filter(ped,sireID %in% . | damID %in% .)))
# Recomb frequency matrix ------------
<-readRDS(here::here("data","recombFreqMat_1minus2c_awcmap_May2020.rds"))
recombFreqMat
# Haplotype Matrix ------------
<-readRDS(file=here::here("data","haps_awc.rds"))
haploMat<-sort(c(paste0(union(ped$sireID,ped$damID),"_HapA"),
parenthapspaste0(union(ped$sireID,ped$damID),"_HapB")))
<-haploMat[parenthaps,colnames(recombFreqMat)]; rm(parenthaps); dim(haploMat)
haploMat
# for consistency
%<>%
parentfolds rename(outprefix=outName)
# Parallelization specs ---------
require(furrr); options(future.globals.maxSize=50000*1024^2)
<-10;
ncores
# MCMC params ------
<-30000; burnIn<-5000; thin<-5
nIter
# Path for output ----------
<-"output/crossPredictions"
outpath
# Divide parentfolds into chunks for each server ------------
<-4
nchunks%<>%
parentfolds mutate(Chunk=rep(1:nchunks, each=ceiling(nrow(.)/nchunks), length.out=nrow(.))) %>%
nest(data=c(-Chunk))
# Wrapper function for runMtCrossVarPredsAD.
# For each rep-fold (==unique set of marker effects), predict the relevant cross variances.
# This version is for a directional dominance model.
# The only difference from getMtCrossVarPreds is that the inbreeding effect
# For each trait is extract from the BGLR output,
# divided by N snps and added to the vector of SNP effects
# The output predicted variances should be suitable to
# compute predVar(TGV) = predVar(A) + predVar(D)
source(here::here("code","getDirectionalDomMtCrossVarTGVpreds.R"))
# cbsulm13 - Done!
<-1;
chunk# cbsulm15 - Done!
<-2;
chunk# cbsulm17 - Done!
<-3;
chunk# cbsulm26 - Done!
<-4;
chunk
# Start run on each server / chunk: Done
<-parentfolds %>%
predictedCrossVarsslice(chunk) %>%
unnest(data) %>%
mutate(crossVars=pmap(.,getDirectionalDomMtCrossVarTGVpreds,
outpath="output/crossPredictions",
predType="PMV",nIter=nIter,burnIn=burnIn,thin=thin,
recombFreqMat=recombFreqMat,haploMat=haploMat,ncores=ncores))
saveRDS(predictedCrossVars,
file=here::here("output/crossPredictions",
paste0("predictedDirectionalDomCrossVarTGVs_chunk",chunk,"_15Dec2020.rds")))
# Wrapper function for runMtCrossVarPredsA.
# For each rep-fold (==unique set of marker effects), predict the relevant cross variances.
# This version is for a directional dominance model.
# The only difference from getMtCrossVarPreds are:
# 1. that the inbreeding effect for each trait is extract from the BGLR output,
# divided by N snps and added to the vector of SNP effects
# 2. the allele substitution effects are computed as: a+d(q-p)
# runMtCrossVarPredsA() is run and the
# output predicted variances should be the predVar(BV) for each family
source(here::here("code","getDirectionalDomMtCrossVarBVpreds.R"))
# SNP data ------------
<-readRDS(here::here("data","dosages_awc.rds")) %>%
snpsremove_invariant(.);
# cbsulm12 - Done!
<-1;
chunk# cbsulm16 - Done!
<-2;
chunk# cbsulm26 - Done!
<-3;
chunk# cbsulm15 - Done!
<-4;
chunk
# Start run on each server / chunk
<-parentfolds %>%
predictedCrossVarsslice(chunk) %>%
unnest(data) %>%
mutate(crossVars=pmap(.,getDirectionalDomMtCrossVarBVpreds,
outpath="output/crossPredictions",
predType="PMV",nIter=nIter,burnIn=burnIn,thin=thin,
recombFreqMat=recombFreqMat,haploMat=haploMat,doseMat=snps,ncores=ncores))
saveRDS(predictedCrossVars,
file=here::here("output/crossPredictions",
paste0("predictedDirectionalDomCrossVarBVs_chunk",chunk,"_15Dec2020.rds")))
# activate multithread OpenBLAS
export OMP_NUM_THREADS=88
rm(list=ls()); gc()
library(tidyverse); library(magrittr); library(predCrossVar); library(BGLR);
# BLUPs -----------
<-readRDS(here::here("data","blups_forawcdata.rds")) %>%
blupsselect(Trait,blups) %>%
unnest(blups) %>%
select(Trait,germplasmName,drgBLUP) %>%
spread(Trait,drgBLUP) %>%
select(germplasmName,all_of(c("DM","logFYLD","MCMDS","TCHART"))) # precaution to ensure consistent column order
# Training datasets -----------
<-readRDS(file = here::here("data","parentwise_crossVal_folds.rds")) %>%
parentfoldsrename(Repeat=id,Fold=id2) %>%
select(Repeat,Fold,testparents,trainset) %>%
pivot_longer(c(trainset), # exclude the testsets
names_to = "Dataset",
values_to = "sampleIDs") %>%
crossing(Model=c("A","AD")) %>%
arrange(desc(Dataset),Repeat,Fold) %>%
mutate(blups=map(sampleIDs,~filter(blups,germplasmName %in% .)),
outName=paste0("mt_",Repeat,"_",Fold,"_",Dataset,"_",Model))
# Pedigree -----------
<-readRDS(here::here("data","ped_awc.rds")) %>%
peddistinct(sireID,damID)
# Crosses To Predict -------------
%<>%
parentfolds mutate(CrossesToPredict=map(testparents,~filter(ped,sireID %in% . | damID %in% .)))
# SNP data ------------
<-readRDS(here::here("data","dosages_awc.rds")) %>%
snpsremove_invariant(.);
# Path for output ----------
<-"output/mtMarkerEffects"
outpath
# for consistency
%<>%
parentfolds rename(outprefix=outName)
# Parallelization specs ---------
require(furrr); options(mc.cores=25); plan(multiprocess)
options(future.globals.maxSize=5000*1024^2)
# MCMC params ------
<-30000; burnIn<-5000; thin<-5
nIter
# getMtCrossMeanPreds function -------------
## Function to run for each rep-fold-Model (==unique set of marker effects), predict the relevant cross means
source(here::here("code","getMtCrossMeanPreds.R"))
# cbsurobbins - Jul 08, 7pm - trivial compute time - COMPLETE
<-parentfolds %>%
predictedCrossMeansmutate(crossMeans=future_pmap(.,getMtCrossMeanPreds,doseMat=snps))
saveRDS(predictedCrossMeans,file=here::here("output/crossPredictions","predictedCrossMeans.rds"))
# activate multithread OpenBLAS
export OMP_NUM_THREADS=88
rm(list=ls()); gc()
library(tidyverse); library(magrittr); library(predCrossVar); library(BGLR);
# BLUPs -----------
<-readRDS(here::here("data","blups_forawcdata.rds")) %>%
blupsselect(Trait,blups) %>%
unnest(blups) %>%
select(Trait,germplasmName,drgBLUP) %>%
spread(Trait,drgBLUP) %>%
select(germplasmName,all_of(c("DM","logFYLD","MCMDS","TCHART"))) # precaution to ensure consistent column order
# Training datasets -----------
<-readRDS(file = here::here("data","parentwise_crossVal_folds.rds")) %>%
parentfoldsrename(Repeat=id,Fold=id2) %>%
select(Repeat,Fold,testparents,trainset) %>%
pivot_longer(c(trainset), # exclude the testsets
names_to = "Dataset",
values_to = "sampleIDs") %>%
mutate(Model="DirectionalDom") %>%
arrange(desc(Dataset),Repeat,Fold) %>%
mutate(blups=map(sampleIDs,~filter(blups,germplasmName %in% .)),
outName=paste0("mt_",Repeat,"_",Fold,"_",Dataset,"_",Model))
# Pedigree -----------
<-readRDS(here::here("data","ped_awc.rds")) %>%
peddistinct(sireID,damID)
# Crosses To Predict -------------
%<>%
parentfolds mutate(CrossesToPredict=map(testparents,~filter(ped,sireID %in% . | damID %in% .)))
# SNP data ------------
<-readRDS(here::here("data","dosages_awc.rds")) %>%
snpsremove_invariant(.);
# Path for output ----------
<-"output/crossPredictions"
outpath
# for consistency
%<>%
parentfolds rename(outprefix=outName)
# Parallelization specs ---------
require(furrr); options(mc.cores=25); plan(multiprocess)
options(future.globals.maxSize=5000*1024^2)
# MCMC params ------
<-30000; burnIn<-5000; thin<-5
nIter
# getDirectionalDomMtCrossMeanPreds function
# Wrapper function: for each rep-fold-Model (==unique set of marker effects), predict the relevant cross means.
# This version is for a directional dominance model.
# Differences from getMtCrossMeanPreds:
# 1. inbreeding effect for each trait is extracted from the BGLR output,
### divided by N snps and added to the vector of SNP effects
# 2. Predicted cross mean GEBV:
### Compute allele sub effects as a+d(q-p) and multiply by allelic dosages of parents.
### Cross mean GEBV = 0.5*(GEBV_P1 + GEBV+P2)
# 3. Predicted cross mean GETGV: G = sum( 𝑎(𝑝 − 𝑞 − 𝑦) + 𝑑[2𝑝𝑞 + 𝑦(𝑝 − 𝑞)] )
### a and d being the additive and dominance effects
### p and q being the allele frequencies of one parent
### y is the difference of freq. between the two parents
source(here::here("code","getDirectionalDomMtCrossMeanPreds.R"))
#
<-parentfolds %>%
predictedCrossMeansmutate(crossMeans=future_pmap(.,getDirectionalDomMtCrossMeanPreds,doseMat=snps))
saveRDS(predictedCrossMeans,file=here::here("output/crossPredictions","predictedDirectionalDomCrossMeans.rds"))
library(tidyverse); library(magrittr); library(predCrossVar)
# Predicted (co)variances
<-list.files(here::here("output/crossPredictions")) %>%
predictedCrossVarsgrep("predictedCrossVars_chunk",.,value = T) %>%
map_df(.,~readRDS(here::here("output/crossPredictions",.))) %>%
select(Repeat,Fold,Model,crossVars) %>%
mutate(crossVars=map(crossVars,
function(crossVars){
<-crossVars$predictedCrossVars$varcovars %>%
outmutate(varcomps=map(varcomps,~.$predictedfamvars)) %>%
unnest(varcomps) %>%
unnest(predVars)
return(out)})) %>%
unnest(crossVars)
# Predicted means
<-readRDS(here::here("output/crossPredictions","predictedCrossMeans.rds")) %>%
predmeansselect(Repeat,Fold,Model,crossMeans) %>%
unnest_wider(crossMeans) %>%
select(-runtime) %>%
unnest(predictedCrossMeans) %>%
select(-sireGEBV,-damGEBV) %>%
pivot_longer(cols = contains("predMean"), values_to = "predMean", names_to = "predOf", names_prefix = "pred", values_drop_na=TRUE)
# Selection weights
<-readRDS(file=here::here("data","selection_index_weights_4traits.rds"))
indices## Predicted Index Variances
<-predictedCrossVars %>%
predictedCrossVars_SIpivot_longer(cols=c(VPM,PMV),names_to = "VarMethod",values_to = "Var") %>%
select(Repeat,Fold,Model,sireID,damID,VarComp,VarMethod,Trait1,Trait2,Var) %>%
nest(varcovars=c(Trait1,Trait2,Var)) %>%
mutate(varcovars=map(varcovars,
function(varcovars){
# pairwise to square symmetric matrix
<-varcovars %>%
gmatspread(Trait2,Var) %>%
column_to_rownames(var = "Trait1") %>%
%>%
as.matrix $Trait,indices$Trait]
.[indiceslower.tri(gmat)]<-t(gmat)[lower.tri(gmat)]
gmat[return(gmat) }))
%<>%
predictedCrossVars_SI mutate(stdSI=map_dbl(varcovars,~t(indices$stdSI)%*%.%*%indices$stdSI),
biofortSI=map_dbl(varcovars,~t(indices$biofortSI)%*%.%*%indices$biofortSI)) %>%
select(-varcovars) %>%
pivot_longer(cols = c(stdSI,biofortSI),
names_to = "Trait1",
values_to = "Var") %>%
mutate(Trait2=Trait1) %>%
pivot_wider(names_from = "VarMethod", values_from = "Var")
%<>% bind_rows(predictedCrossVars_SI,.)
predictedCrossVars rm(predictedCrossVars_SI)
## Predicted Index Means
<-predmeans %>%
predmeans_SIspread(Trait,predMean) %>%
nest(predMeans=all_of(indices$Trait)) %>%
mutate(stdSI=map_dbl(predMeans,~as.matrix(.)%*%indices$stdSI),
biofortSI=map_dbl(predMeans,~as.matrix(.)%*%indices$biofortSI)) %>%
select(-predMeans) %>%
pivot_longer(cols = c(stdSI,biofortSI), names_to = "Trait", values_to = "predMean")
%<>% bind_rows(predmeans_SI,.)
predmeans rm(predmeans_SI,indices)
Save the predicted means and variances in the current form. Output contains Nsegsnps and compute times still.
saveRDS(predmeans,here::here("output/crossPredictions","predictedCrossMeans_tidy_withSelIndices.rds"))
saveRDS(predictedCrossVars,here::here("output/crossPredictions","predictedCrossVars_tidy_withSelIndices.rds"))
library(tidyverse); library(magrittr); library(predCrossVar)
# Predicted (co)variances
<-bind_rows(list.files(here::here("output/crossPredictions")) %>%
predvarsgrep("predictedDirectionalDomCrossVarBVs_chunk",.,value = T) %>%
grep("_15Dec2020.rds",.,value = T) %>%
map_df(.,~readRDS(here::here("output/crossPredictions",.))) %>%
select(Repeat,Fold,crossVars) %>%
mutate(Model="DirDomBV"),
list.files(here::here("output/crossPredictions")) %>%
grep("predictedDirectionalDomCrossVarTGVs_chunk",.,value = T) %>%
grep("_15Dec2020.rds",.,value = T) %>%
map_df(.,~readRDS(here::here("output/crossPredictions",.))) %>%
select(Repeat,Fold,crossVars) %>%
mutate(Model="DirDomAD")) %>%
mutate(crossVars=map(crossVars,
function(crossVars){
<-crossVars$predictedCrossVars$varcovars %>%
outmutate(varcomps=map(varcomps,~.$predictedfamvars)) %>%
unnest(varcomps) %>%
unnest(predVars)
return(out)})) %>%
unnest(crossVars)
#predvars %>% count(Model,VarComp)
# Predicted means
<-readRDS(here::here("output/crossPredictions","predictedDirectionalDomCrossMeans.rds")) %>%
predmeansselect(Repeat,Fold,crossMeans) %>%
unnest_wider(crossMeans) %>%
select(-runtime) %>%
unnest(predictedCrossMeans) %>%
select(-sireGEBV,-damGEBV) %>%
pivot_longer(cols = contains("predMean"), values_to = "predMean", names_to = "predOf", names_prefix = "pred") %>%
select(Repeat,Fold,sireID,damID,Trait,predOf,predMean)
# Selection weights
<-readRDS(file=here::here("data","selection_index_weights_4traits.rds"))
indices## Predicted Index Variances
<-predvars %>%
predvars_SIpivot_longer(cols=c(VPM,PMV),names_to = "VarMethod",values_to = "Var") %>%
select(Repeat,Fold,sireID,damID,Trait1,Trait2,Model,VarMethod,VarComp,Var) %>%
nest(varcovars=c(Trait1,Trait2,Var)) %>%
mutate(varcovars=map(varcovars,
function(varcovars){
# pairwise to square symmetric matrix
<-varcovars %>%
gmatspread(Trait2,Var) %>%
column_to_rownames(var = "Trait1") %>%
%>%
as.matrix $Trait,indices$Trait]
.[indiceslower.tri(gmat)]<-t(gmat)[lower.tri(gmat)]
gmat[return(gmat) }))
%<>%
predvars_SI mutate(stdSI=map_dbl(varcovars,~t(indices$stdSI)%*%.%*%indices$stdSI),
biofortSI=map_dbl(varcovars,~t(indices$biofortSI)%*%.%*%indices$biofortSI)) %>%
select(-varcovars) %>%
pivot_longer(cols = c(stdSI,biofortSI),
names_to = "Trait1",
values_to = "Var") %>%
mutate(Trait2=Trait1) %>%
pivot_wider(names_from = "VarMethod", values_from = "Var")
%<>% bind_rows(predvars_SI,.)
predvars rm(predvars_SI)
## Predicted Index Means
<-predmeans %>%
predmeans_SIspread(Trait,predMean) %>%
nest(predMeans=all_of(indices$Trait)) %>%
mutate(stdSI=map_dbl(predMeans,~as.matrix(.)%*%indices$stdSI),
biofortSI=map_dbl(predMeans,~as.matrix(.)%*%indices$biofortSI)) %>%
select(-predMeans) %>%
pivot_longer(cols = c(stdSI,biofortSI), names_to = "Trait", values_to = "predMean")
%<>% bind_rows(predmeans_SI,.)
predmeans rm(predmeans_SI)
Save the predicted means and variances in the current form. Output contains Nsegsnps and compute times still.
saveRDS(predmeans,here::here("output/crossPredictions","predictedCrossMeans_DirectionalDom_tidy_withSelIndices.rds"))
saveRDS(predvars,here::here("output/crossPredictions","predictedCrossVars_DirectionalDom_tidy_withSelIndices.rds"))
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] Rcpp_1.0.5 rstudioapi_0.13 whisker_0.4 knitr_1.30
[5] magrittr_2.0.1 R6_2.5.0 rlang_0.4.9 stringr_1.4.0
[9] tools_4.0.2 xfun_0.19 git2r_0.27.1 htmltools_0.5.0
[13] ellipsis_0.3.1 rprojroot_2.0.2 yaml_2.2.1 digest_0.6.27
[17] tibble_3.0.4 lifecycle_0.2.0 crayon_1.3.4 later_1.1.0.1
[21] vctrs_0.3.5 promises_1.1.1 fs_1.5.0 glue_1.4.2
[25] evaluate_0.14 rmarkdown_2.6 stringi_1.5.3 compiler_4.0.2
[29] pillar_1.4.7 httpuv_1.5.4 pkgconfig_2.0.3