Last updated: 2020-12-21

Checks: 7 0

Knit directory: mash_application/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 626e385. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/include/.DS_Store
    Ignored:    code/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store
    Ignored:    output/.sos/

Untracked files:
    Untracked:  analysis/Classify.Rmd
    Untracked:  analysis/EstimateCorMash.Rmd
    Untracked:  analysis/EstimateCorMaxMCMash.Rmd
    Untracked:  analysis/HierarchicalFlashSim.Rmd
    Untracked:  analysis/MashLowSignalGTEx4.Rmd
    Untracked:  analysis/OutlierDetection.Rmd
    Untracked:  analysis/OutlierDetection2.Rmd
    Untracked:  analysis/OutlierDetection3.Rmd
    Untracked:  analysis/OutlierDetection4.Rmd
    Untracked:  analysis/mash_missing_row.Rmd
    Untracked:  code/GTExNullModel.R
    Untracked:  code/MashClassify.R
    Untracked:  code/MashCorResult.R
    Untracked:  code/MashCormVResult.R
    Untracked:  code/MashNULLCorResult.R
    Untracked:  code/MashSource.R
    Untracked:  code/Weight_plot.R
    Untracked:  code/addemV.R
    Untracked:  code/dsc-differentV/
    Untracked:  code/dsc-differentV_signal/
    Untracked:  code/estimate_cor.R
    Untracked:  code/generateDataV.R
    Untracked:  code/johnprocess.R
    Untracked:  code/mV.R
    Untracked:  code/sim_mean_sig.R
    Untracked:  code/summary.R
    Untracked:  data/Blischak_et_al_2015/
    Untracked:  data/scale_data.rds
    Untracked:  data/wasp_yuxin/
    Untracked:  output/AddEMV/
    Untracked:  output/CovED_UKBio_strong.rds
    Untracked:  output/CovED_UKBio_strong_Z.rds
    Untracked:  output/EstCorMLECompare/
    Untracked:  output/Flash_UKBio_strong.rds
    Untracked:  output/GTExNULLres/
    Untracked:  output/GTEx_2.5_nullData.rds
    Untracked:  output/GTEx_2.5_nullModel.rds
    Untracked:  output/GTEx_2.5_nullPermData.rds
    Untracked:  output/GTEx_2.5_nullPermModel.rds
    Untracked:  output/GTEx_3.5_nullData.rds
    Untracked:  output/GTEx_3.5_nullModel.rds
    Untracked:  output/GTEx_3.5_nullPermData.rds
    Untracked:  output/GTEx_3.5_nullPermModel.rds
    Untracked:  output/GTEx_3_nullData.rds
    Untracked:  output/GTEx_3_nullModel.rds
    Untracked:  output/GTEx_3_nullPermData.rds
    Untracked:  output/GTEx_3_nullPermModel.rds
    Untracked:  output/GTEx_4.5_nullData.rds
    Untracked:  output/GTEx_4.5_nullModel.rds
    Untracked:  output/GTEx_4.5_nullPermData.rds
    Untracked:  output/GTEx_4.5_nullPermModel.rds
    Untracked:  output/GTEx_4_nullData.rds
    Untracked:  output/GTEx_4_nullModel.rds
    Untracked:  output/GTEx_4_nullPermData.rds
    Untracked:  output/GTEx_4_nullPermModel.rds
    Untracked:  output/MASH.10.em2.result.rds
    Untracked:  output/MASH.10.mle.result.rds
    Untracked:  output/MashCorSim--midway/
    Untracked:  output/Mash_EE_Cov_0_plusR1.rds
    Untracked:  output/UKBio_mash_model.rds
    Untracked:  output/WASP/
    Untracked:  output/diff_v/
    Untracked:  output/diff_v_signal/
    Untracked:  output/dsc-mashr-est_v/
    Untracked:  output/mVIterations/
    Untracked:  output/mVMLEsubset/
    Untracked:  output/mVUlist/
    Untracked:  output/result.em.rds

Unstaged changes:
    Modified:   analysis/EstimateCor.Rmd
    Modified:   analysis/EstimateCorMaxMVSample.Rmd
    Modified:   analysis/WASPmash.Rmd
    Modified:   output/Flash_T2_0.rds
    Modified:   output/Flash_T2_0_mclust.rds
    Modified:   output/Mash_model_0_plusR1.rds
    Modified:   output/PresiAddVarCol.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/EstimateCorMaxMV.Rmd) and HTML (docs/EstimateCorMaxMV.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 626e385 zouyuxin 2020-12-21 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)
html e73ba5f zouyuxin 2018-10-24 Build site.
Rmd 8917cdc zouyuxin 2018-10-24 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)
html 00f626f zouyuxin 2018-10-24 Build site.
Rmd 52be1b5 zouyuxin 2018-10-24 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)
html 83aa8e8 zouyuxin 2018-10-22 Build site.
Rmd 9abd1d0 zouyuxin 2018-10-22 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)
html 3889d07 zouyuxin 2018-10-22 Build site.
Rmd 6a7014a zouyuxin 2018-10-22 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)
html 8f39f1c zouyuxin 2018-10-09 Build site.
Rmd 52d66f3 zouyuxin 2018-10-09 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)
html 4e61be5 zouyuxin 2018-10-09 Build site.
Rmd cd82d7e zouyuxin 2018-10-09 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)
html e3b067e zouyuxin 2018-10-09 Build site.
Rmd 032212c zouyuxin 2018-10-09 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)

library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/summary.R')

We use EM algorithm to estimate V.

B is the \(n\times R\) true value matrix. \(\mathbf{z}\) is a length n vector.

E step

\[ p(\hat{\mathbf{B}}, \mathbf{B}, \mathbf{z}) h(\boldsymbol{\pi}) = \prod_{j=1}^{J} \prod_{p = 1}^{P}\left[\pi_{p} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j})N_{R}(\mathbf{b}_{j}; \mathbf{0}, \Sigma_{p})\right]^{\mathbb{I}(z_{j} = p)} \prod_{p=1}^{P} \pi_{p}^{\lambda_{p}-1} \]

\[ \begin{align*} P(z_{j}=p, \mathbf{b}_{j}|\hat{\mathbf{b}}_{j}) &= \frac{P(z_{j}=p, \mathbf{b}_{j},\hat{\mathbf{b}}_{j})}{P(\hat{\mathbf{b}}_{j})} = \frac{P(\hat{\mathbf{b}}_{j}|\mathbf{b}_{j})P(\mathbf{b}_{j}|z_{j}=p) P(z_{j}=p)}{P(\hat{\mathbf{b}}_{j})} \\ &= \frac{\pi_{p} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j})N_{R}(\mathbf{b}_{j}; \mathbf{0}, \Sigma_{p})}{\sum_{p'}\pi_{p'} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j} + \Sigma_{p'})} \\ &= \frac{\pi_{p} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j} + \Sigma_{p})}{\sum_{p'}\pi_{p'} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j} + \Sigma_{p'})} \frac{N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j})N_{R}(\mathbf{b}_{j}; \mathbf{0}, \Sigma_{p})}{N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j} + \Sigma_{p})} \\ &= \gamma_{jp} P(\mathbf{b}_{j}|z_{j}=p, \hat{\mathbf{b}}_{j}) \\ &= P(z_{j}=p|\hat{\mathbf{b}}_{j}) P(\mathbf{b}_{j}|z_{j}=p, \hat{\mathbf{b}}_{j}) \end{align*} \]

E step: \[ \begin{align*} \mathbb{E}_{\mathbf{z}, \mathbf{B}|\hat{\mathbf{B}}}\log p(\hat{\mathbf{B}}, \mathbf{B}, \mathbf{z}) h(\boldsymbol{\pi}) &= \mathbb{E}_{\mathbf{z}, \mathbf{B}|\hat{\mathbf{B}}} \{ \sum_{j=1}^{J}\sum_{p = 1}^{P} \mathbb{I}(z_{j} = p)\left[\log \pi_{p} + \log N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j}) + \log N_{R}(\mathbf{b}_{j}; \mathbf{0}, \Sigma_{p})\right] + \sum_{p=1}^{P} (\lambda_{p}-1) \log \pi_{p} \} \\ &= \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp} \left[\log \pi_{p} - \frac{1}{2}\log |\mathbf{V}| - \log |\mathbf{S}_{j}| - \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}\mathbf{S}_{j}^{-1}\mathbf{V}^{-1}\mathbf{S}_{j}^{-1}(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})\right) - \frac{1}{2}\log |\Sigma_{p}| - \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left(\mathbf{b}_{j}^{T}\Sigma_{p}^{-1}\mathbf{b}_{j} \right) \right] + \sum_{p=1}^{P} (\lambda_{p}-1)\log \pi_{p} \end{align*} \] ## Fake M step

We have constraint on V, the diagonal of V must be 1. Let \(V = DCD\), C is the covariance matrix, D = \(diag(1/sqrt(C_{jj}))\).

\[ \begin{align*} f(\mathbf{C}) &= \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp} \left[- \frac{1}{2}\log |\mathbf{D}\mathbf{C}\mathbf{D}| - \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}\mathbf{S}_{j}^{-1}\mathbf{D}^{-1}\mathbf{C}^{-1}\mathbf{D}^{-1}\mathbf{S}_{j}^{-1}(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})\right) \right] \\ &= \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp} \left[- \frac{1}{2}\log |\mathbf{C}| - \log |\mathbf{D}|- \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}\mathbf{S}_{j}^{-1}\mathbf{D}^{-1}\mathbf{C}^{-1}\mathbf{D}^{-1}\mathbf{S}_{j}^{-1}(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})\right) \right] \\ f(\mathbf{C})' &= \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp}\left[ -\frac{1}{2} \mathbf{C}^{-1} + \frac{1}{2} \mathbf{C}^{-1} \mathbf{D}^{-1}\mathbf{S}_{j}^{-1}\mathbb{E}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j}) (\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}|\hat{\mathbf{b}}_{j}, z_{j} = p \right)\mathbf{S}_{j}^{-1}\mathbf{D}^{-1} \mathbf{C}^{-1} \right] = 0 \\ \mathbf{C} &= \frac{1}{J} \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp}\mathbf{D}^{-1}\mathbf{S}_{j}^{-1}\mathbb{E}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j}) (\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}|\hat{\mathbf{b}}_{j}, z_{j} = p \right)\mathbf{S}_{j}^{-1}\mathbf{D}^{-1} \\ &= \frac{1}{J} \mathbf{D}^{-1}\sum_{j=1}^{J} \mathbf{S}_{j}^{-1}\mathbb{E}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j}) (\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}|\hat{\mathbf{b}}_{j}\right)\mathbf{S}_{j}^{-1}\mathbf{D}^{-1} \end{align*} \] We can update \(\mathbf{C}\) and \(\mathbf{V}\) as \[ \hat{\mathbf{C}}_{(t+1)} = \hat{\mathbf{D}}^{-1}_{(t)}\frac{1}{J} \left[\sum_{j=1}^{J} \mathbf{S}_{j}^{-1}\mathbb{E}\left[ (\hat{\mathbf{b}}_{j} - \mathbf{b}_{j})(\hat{\mathbf{b}}_{j} - \mathbf{b}_{j})^{T} | \hat{\mathbf{b}}_{j}\right]\mathbf{S}_{j}^{-1} \right] \hat{\mathbf{D}}^{-1}_{(t)} \\ \hat{\mathbf{D}}_{(t+1)} = diag(1/\sqrt{\hat{\mathbf{C}}_{(t+1)jj}}) \\ \hat{\mathbf{V}}_{(t+1)} = \hat{\mathbf{D}}_{(t+1)}\hat{\mathbf{C}}_{(t+1)}\hat{\mathbf{D}}_{(t+1)} \] The resulting \(\hat{\mathbf{V}}_{(t+1)}\) is equivalent as \[ \hat{\mathbf{C}}_{(t+1)} =\frac{1}{J} \left[\sum_{j=1}^{J} \mathbf{S}_{j}^{-1}\mathbb{E}\left[ (\hat{\mathbf{b}}_{j} - \mathbf{b}_{j})(\hat{\mathbf{b}}_{j} - \mathbf{b}_{j})^{T} | \hat{\mathbf{b}}_{j}\right]\mathbf{S}_{j}^{-1} \right] \\ \hat{\mathbf{D}}_{(t+1)} = diag(1/\sqrt{\hat{\mathbf{C}}_{(t+1)jj}}) \\ \hat{\mathbf{V}}_{(t+1)} = \hat{\mathbf{D}}_{(t+1)}\hat{\mathbf{C}}_{(t+1)}\hat{\mathbf{D}}_{(t+1)} \]

Algorithm:

Input: X, Ulist, init_V
Given V, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
delta = 1
while delta > tol
  M step: update C
  Convert to V
  Given V, estimate pi by max loglikelihood (convex problem)
  Compute loglikelihood
  Update delta
penalty <- function(prior, pi_s){
  subset <- (prior != 1.0)
  sum((prior-1)[subset]*log(pi_s[subset]))
}

mixture.MV <- function(mash.data, Ulist, init_V=diag(ncol(mash.data$Bhat)), max_iter = 500, tol=1e-5, prior = c('nullbiased', 'uniform'), cor = TRUE, track_fit = FALSE){
  prior <- match.arg(prior)
  tracking = list()

  m.model = fit_mash_V(mash.data, Ulist, V = init_V, prior=prior)
  pi_s = get_estimated_pi(m.model, dimension = 'all')
  prior.v <- mashr:::set_prior(length(pi_s), prior)
  
  # compute loglikelihood
  log_liks <- numeric(max_iter+1)
  log_liks[1] <- get_loglik(m.model)+penalty(prior.v, pi_s)
  V = init_V
  
  result = list(V = V, logliks = log_liks[1], mash.model = m.model)
  
  for(i in 1:max_iter){
    if(track_fit){
      tracking[[i]] = result
    }
    # max_V
    V = E_V(mash.data, m.model)
    if(cor){
        V = cov2cor(V)
    }
    m.model = fit_mash_V(mash.data, Ulist, V, prior=prior)
    pi_s = get_estimated_pi(m.model, dimension = 'all')

    log_liks[i+1] <- get_loglik(m.model)+penalty(prior.v, pi_s)
    
    result = list(V = V, logliks = log_liks[1:(i+1)], mash.model = m.model)

    # Update delta
    delta.ll <- log_liks[i+1] - log_liks[i]
    if(delta.ll<=tol) break;
  }
  
  if(track_fit){
    result$trace = tracking
  }
  
  return(result)
}

E_V = function(mash.data, m.model){
  n = mashr:::n_effects(mash.data)
  Z = mash.data$Bhat/mash.data$Shat
  post.m.shat = m.model$result$PosteriorMean / mash.data$Shat
  post.sec.shat = plyr::laply(1:n, function(i) (t(m.model$result$PosteriorCov[,,i]/mash.data$Shat[i,])/mash.data$Shat[i,]) + tcrossprod(post.m.shat[i,])) # nx2x2 array
  temp1 = crossprod(Z)
  temp2 = crossprod(post.m.shat, Z) + crossprod(Z, post.m.shat)
  temp3 = unname(plyr::aaply(post.sec.shat, c(2,3), sum))

  (temp1 - temp2 + temp3)/n
}

fit_mash_V <- function(mash.data, Ulist, V, prior=c('nullbiased', 'uniform')){
  m.data = mashr::mash_set_data(Bhat=mash.data$Bhat, Shat=mash.data$Shat, V = V, alpha = mash.data$alpha)
  m.model = mashr::mash(m.data, Ulist, prior=prior, verbose = FALSE, outputlevel = 3)
  return(m.model)
}

Data

set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)

result.mV <- mixture.MV(m.data, U.c)

The estimated \(V\) is

result.mV$V
          [,1]      [,2]
[1,] 1.0000000 0.5087511
[2,] 0.5087511 1.0000000
m.mV = result.mV$mash.model
null.ind = which(apply(data$B,1,sum) == 0)

The log likelihood is -12302.52. There are 26 significant samples, 0 false positives. The RRMSE is 0.5822265.


sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] mashr_0.2.40    ashr_2.2-51     workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.5       plyr_1.8.6       pillar_1.4.7     compiler_4.0.3  
 [5] later_1.1.0.1    git2r_0.27.1     tools_4.0.3      digest_0.6.27   
 [9] evaluate_0.14    lifecycle_0.2.0  tibble_3.0.4     lattice_0.20-41 
[13] pkgconfig_2.0.3  rlang_0.4.9      Matrix_1.2-18    rstudioapi_0.13 
[17] yaml_2.2.1       mvtnorm_1.1-1    xfun_0.19        invgamma_1.1    
[21] stringr_1.4.0    knitr_1.30       fs_1.5.0         vctrs_0.3.5     
[25] rprojroot_2.0.2  grid_4.0.3       glue_1.4.2       R6_2.5.0        
[29] rmarkdown_2.5    mixsqp_0.3-46    rmeta_3.0        irlba_2.3.3     
[33] magrittr_2.0.1   whisker_0.4      MASS_7.3-53      promises_1.1.1  
[37] ellipsis_0.3.1   htmltools_0.5.0  assertthat_0.2.1 abind_1.4-5     
[41] httpuv_1.5.4     stringi_1.5.3    truncnorm_1.0-8  SQUAREM_2020.5  
[45] crayon_1.3.4