Last updated: 2021-03-24
Checks: 5 1
Knit directory:
thesis/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210321)
was run prior to running the code in the R Markdown file.
Setting a seed ensures that any results that rely on randomness,
e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Tracking code development and connecting the code version to the results is
critical for reproducibility. To start using Git, open the Terminal and type
git init
in your project directory.
This project is not being versioned with Git. To obtain the full
reproducibility benefits of using workflowr, please see
?wflow_start
.
files = list.files("../data/vector/extraction/", pattern = "ANOM", full.names = T)
data = lapply(files, function(x){
filename = str_split(basename(x), "_")[[1]]
if(length(filename) == 3){
unit = filename[1]
buffer = as.numeric(filename[2])
var = str_remove(filename[3], ".gpkg")
} else {
unit = filename[1]
buffer = 0
var = str_remove(filename[2], ".gpkg")
}
layers = ogrListLayers(x)
layers = layers[grep("attr_", layers)]
data = do.call(cbind, lapply(layers, function(l){
tmp = st_read(x, layer = l, quiet = TRUE)
names(tmp) = l
tmp
}))
data$id = 1:nrow(data)
data %>%
as_tibble() %>%
mutate(unit = unit, buffer = buffer, var = var) %>%
gather("time", "value", -id, -unit, -buffer, -var) %>%
mutate(time = str_remove(time, "attr_"))
})
data = do.call(rbind, data)
str(data)
tibble [3,571,200 × 6] (S3: tbl_df/tbl/data.frame)
$ id : int [1:3571200] 1 2 3 4 5 6 7 8 9 10 ...
$ unit : chr [1:3571200] "basins" "basins" "basins" "basins" ...
$ buffer: num [1:3571200] 100 100 100 100 100 100 100 100 100 100 ...
$ var : chr [1:3571200] "AGRANOM" "AGRANOM" "AGRANOM" "AGRANOM" ...
$ time : chr [1:3571200] "2000-01" "2000-01" "2000-01" "2000-01" ...
$ value : num [1:3571200] 0.0252 0 0 0 0 ...
The resulting dataframe contains roughly 1.8 Mio. rows containing the district-month observations for the two different units of analysis as well as the buffered data. Let’s start looking at the unbuffered data.
data %>%
group_by(unit, buffer) %>%
summarise(N = n(), isna = sum(is.na(value)), isnotna = sum(!is.na(value)), perc = sum(is.na(value)) / n() * 100)
# A tibble: 8 x 6
# Groups: unit [2]
unit buffer N isna isnotna perc
<chr> <dbl> <int> <int> <int> <dbl>
1 basins 0 486240 720 485520 0.148
2 basins 50 486240 0 486240 0
3 basins 100 486240 0 486240 0
4 basins 200 486240 0 486240 0
5 states 0 406560 720 405840 0.177
6 states 50 406560 0 406560 0
7 states 100 406560 0 406560 0
8 states 200 406560 0 406560 0
data %>%
filter(buffer==0) %>%
mutate(time = as.Date(paste0(time, "-01"))) %>%
group_by(time, unit) %>%
summarise(value = mean(value, na.rm = T)) %>%
ggplot() +
geom_line(aes(x=time, y=value, color = unit)) +
theme_classic() +
labs(y="Precipitation [mm]", x = "Time", color = "Unit of Analysis")
data %>%
filter(unit == "basins", buffer == 0) %>%
mutate(time = as.Date(paste0(time, "-01"))) %>%
group_by(time) %>%
summarise(value = mean(value, na.rm = T)) %>%
pull(value) %>%
ts(start = c(2000,1), frequency = 12) %>%
decompose() -> dec_basins
data %>%
filter(unit == "states", buffer == 0) %>%
mutate(time = as.Date(paste0(time, "-01"))) %>%
group_by(time) %>%
summarise(value = mean(value, na.rm = T)) %>%
pull(value) %>%
ts(start = c(2000,1), frequency = 12) %>%
decompose() -> dec_states
dec_data = list(basins = dec_basins, states = dec_states)
dec_data = lapply(c("basins", "states"), function(x){
tmp = dec_data[[x]]
data.frame(type = x,
obsv = as.numeric(tmp$x),
seasonal = as.numeric(tmp$seasonal),
trend = as.numeric(tmp$trend),
random = as.numeric(tmp$random),
date = seq(as.Date("2000-01-01"), as.Date("2019-12-31"), by = "month"))
})
dec_data = do.call(rbind, dec_data)
dec_data %>%
as_tibble() %>%
gather(component, value, -type, -date) %>%
mutate(component = factor(component, levels = c("obsv", "trend", "seasonal", "random"))) %>%
ggplot() +
geom_line(aes(x=date, y=value, color=type)) +
facet_wrap(~component, nrow = 4, scales = "free_y") +
theme_classic() +
labs(y = "Precipitation [mm]", x = "Time", color = "Unit of Analysis") +
theme(legend.position="bottom")
data %>%
filter( buffer == 0) %>%
mutate(time = as.Date(paste0(time, "-01"))) %>%
group_by(unit, time) %>%
summarise(value = mean(value, na.rm = T)) %>%
spread(key = unit, value = value) -> acf_data
acf(acf_data$states, lag.max = 24)
acf(acf_data$basins, lag.max = 24)
poly_bas = st_read("../data/vector/basins_mask.gpkg", quiet = T)
crs <- st_crs("EPSG:3857")
poly_bas <- st_transform(poly_bas, crs)
poly_bas <- st_simplify(poly_bas, dTolerance = 1000, preserveTopology = T)
poly_bas$id = 1:nrow(poly_bas)
poly_adm = st_read("../data/vector/states_mask.gpkg", quiet = T)
poly_adm <- st_transform(poly_adm, crs)
poly_adm <- st_simplify(poly_adm, dTolerance = 1500, preserveTopology = T)
poly_adm$id = 1:nrow(poly_adm)
data %>%
filter(buffer == 0) %>%
mutate(time = as.Date(paste0(time, "-01")),
month = month(time)) %>%
group_by(unit, id, month) %>%
summarise(obsv = sum(is.na(value))) -> obs_data
data %>%
filter(buffer == 0) %>%
mutate(time = as.Date(paste0(time, "-01")),
month = month(time)) %>%
group_by(unit, id, month) %>%
summarise(value = mean(value, na.rm = T)) -> sum_data
poly_adm = left_join(poly_adm, filter(sum_data, unit == "states"))
poly_bas = left_join(poly_bas, filter(sum_data, unit == "basins"))
poly_adm = left_join(poly_adm, filter(obs_data, unit == "states"))
poly_bas = left_join(poly_bas, filter(obs_data, unit == "basins"))
tm_shape(poly_adm) +
tm_polygons("obsv", palette = "-RdBu", border.col = "white", lwd = .5) +
tm_facets("month")
### Precipitation map
tm_shape(poly_adm) +
tm_polygons(col = "value", palette = "RdYlBu", breaks = c(-Inf,-30,-20,-10,0,10,20,30,+Inf), border.col = "white", lwd = .5) +
tm_facets("month")
tm_shape(poly_bas) +
tm_polygons("obsv", palette = "-RdBu", border.col = "white", lwd = .5) +
tm_facets("month")
tm_shape(poly_bas) +
tm_polygons(col = "value", palette = "RdYlBu", breaks = c(-Inf,-30,-20,-10,0,10,20,30,+Inf), border.col = "white", lwd = .5) +
tm_facets("month")
sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 10 (buster)
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.3.5.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lubridate_1.7.9.2 rgdal_1.5-18 countrycode_1.2.0 welchADF_0.3.2
[5] rstatix_0.6.0 ggpubr_0.4.0 scales_1.1.1 RColorBrewer_1.1-2
[9] latex2exp_0.4.0 cubelyr_1.0.0 gridExtra_2.3 ggtext_0.1.1
[13] magrittr_2.0.1 tmap_3.2 sf_0.9-7 raster_3.4-5
[17] sp_1.4-4 forcats_0.5.0 stringr_1.4.0 purrr_0.3.4
[21] readr_1.4.0 tidyr_1.1.2 tibble_3.0.6 tidyverse_1.3.0
[25] huwiwidown_0.0.1 kableExtra_1.3.1 knitr_1.31 rmarkdown_2.7.3
[29] bookdown_0.21 ggplot2_3.3.3 dplyr_1.0.2 devtools_2.3.2
[33] usethis_2.0.0
loaded via a namespace (and not attached):
[1] readxl_1.3.1 backports_1.2.0 workflowr_1.6.2
[4] lwgeom_0.2-5 splines_3.6.3 crosstalk_1.1.0.1
[7] leaflet_2.0.3 digest_0.6.27 htmltools_0.5.1.1
[10] fansi_0.4.2 memoise_1.1.0 openxlsx_4.2.3
[13] remotes_2.2.0 modelr_0.1.8 prettyunits_1.1.1
[16] colorspace_2.0-0 rvest_0.3.6 haven_2.3.1
[19] xfun_0.21 leafem_0.1.3 callr_3.5.1
[22] crayon_1.4.0 jsonlite_1.7.2 lme4_1.1-26
[25] glue_1.4.2 stars_0.4-3 gtable_0.3.0
[28] webshot_0.5.2 car_3.0-10 pkgbuild_1.2.0
[31] abind_1.4-5 DBI_1.1.0 Rcpp_1.0.5
[34] viridisLite_0.3.0 gridtext_0.1.4 units_0.6-7
[37] foreign_0.8-71 htmlwidgets_1.5.3 httr_1.4.2
[40] ellipsis_0.3.1 farver_2.0.3 pkgconfig_2.0.3
[43] XML_3.99-0.3 dbplyr_2.0.0 utf8_1.1.4
[46] labeling_0.4.2 tidyselect_1.1.0 rlang_0.4.10
[49] later_1.1.0.1 tmaptools_3.1 munsell_0.5.0
[52] cellranger_1.1.0 tools_3.6.3 cli_2.3.0
[55] generics_0.1.0 broom_0.7.2 evaluate_0.14
[58] yaml_2.2.1 processx_3.4.5 leafsync_0.1.0
[61] fs_1.5.0 zip_2.1.1 nlme_3.1-150
[64] xml2_1.3.2 compiler_3.6.3 rstudioapi_0.13
[67] curl_4.3 png_0.1-7 e1071_1.7-4
[70] testthat_3.0.1 ggsignif_0.6.0 reprex_0.3.0
[73] statmod_1.4.35 stringi_1.5.3 highr_0.8
[76] ps_1.5.0 desc_1.2.0 lattice_0.20-41
[79] Matrix_1.2-18 nloptr_1.2.2.2 classInt_0.4-3
[82] vctrs_0.3.6 pillar_1.4.7 lifecycle_0.2.0
[85] data.table_1.13.2 httpuv_1.5.5 R6_2.5.0
[88] promises_1.1.1 KernSmooth_2.23-18 rio_0.5.16
[91] sessioninfo_1.1.1 codetools_0.2-16 dichromat_2.0-0
[94] boot_1.3-25 MASS_7.3-53 assertthat_0.2.1
[97] pkgload_1.1.0 rprojroot_2.0.2 withr_2.4.1
[100] parallel_3.6.3 hms_1.0.0 grid_3.6.3
[103] minqa_1.2.4 class_7.3-17 carData_3.0-4
[106] git2r_0.27.1 base64enc_0.1-3