Last updated: 2021-03-24

Checks: 5 1

Knit directory: thesis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210321) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init in your project directory.


This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start.


1 Loading the data

files = list.files("../data/vector/extraction/", pattern = "_SPI", full.names = T)

data = lapply(files, function(x){
  filename = str_split(basename(x), "_")[[1]]
  if(length(filename) == 3){
    unit = filename[1]
    buffer = as.numeric(filename[2])
    var = str_remove(filename[3], ".gpkg")
  } else {
    unit = filename[1]
    buffer = 0
    var =  str_remove(filename[2], ".gpkg")
  }
  
  layers = ogrListLayers(x)
  layers = layers[grep("attr_", layers)]
  data = do.call(cbind, lapply(layers, function(l){
    tmp = st_read(x, layer = l, quiet = TRUE)
    lnames = c("SPI1", "SPI3", "SPI6", "SPI12")
    names(tmp) = paste(l, lnames, sep = "-")
    tmp
  }))
  
  data$id = 1:nrow(data)
  data %>%
    as_tibble () %>%
    gather("tmp", "value", -id) %>%
    separate(tmp, into = c("time","SPI"), sep = "-SPI") %>%
    mutate(SPI = as.factor(SPI), 
           time = str_remove(time, "attr_"),
           unit = unit, buffer = buffer, var = var)
})

data = do.call(rbind, data)
str(data)
tibble [7,142,400 × 7] (S3: tbl_df/tbl/data.frame)
 $ id    : int [1:7142400] 1 2 3 4 5 6 7 8 9 10 ...
 $ time  : chr [1:7142400] "2000-01" "2000-01" "2000-01" "2000-01" ...
 $ SPI   : Factor w/ 4 levels "1","12","3","6": 1 1 1 1 1 1 1 1 1 1 ...
 $ value : num [1:7142400] 0.907 0.946 0.968 0.237 0.323 ...
 $ unit  : chr [1:7142400] "basins" "basins" "basins" "basins" ...
 $ buffer: num [1:7142400] 100 100 100 100 100 100 100 100 100 100 ...
 $ var   : chr [1:7142400] "SPI" "SPI" "SPI" "SPI" ...

2 Missing Values

data %>%
  group_by(unit, buffer) %>%
  summarise(N = n(), isna = sum(is.na(value)), isnotna = sum(!is.na(value)), perc = sum(is.na(value)) / n() * 100)
# A tibble: 8 x 6
# Groups:   unit [2]
  unit   buffer      N  isna isnotna  perc
  <chr>   <dbl>  <int> <int>   <int> <dbl>
1 basins      0 972480 23966  948514  2.46
2 basins     50 972480 18275  954205  1.88
3 basins    100 972480 18234  954246  1.88
4 basins    200 972480 18234  954246  1.88
5 states      0 813120 19167  793953  2.36
6 states     50 813120 15249  797871  1.88
7 states    100 813120 15247  797873  1.88
8 states    200 813120 15246  797874  1.88

3 Time Series

data %>%
  filter(buffer==0, unit == "states") %>%
  mutate(time = as.Date(paste0(time, "-01"))) %>%
  group_by(time, unit, SPI) %>%
  summarise(value = median(value, na.rm = T)) %>%
  mutate(sign = if_else(value>0, "pos", "neg"),
         cap = paste0("Scale of ", SPI, " months"),
         scale = as.numeric(as.character(SPI))) %>%
  mutate(cap = fct_reorder(cap, scale, min)) %>%
  ggplot(aes(x=time, y=value, fill = sign)) +
  geom_bar(stat = "identity", show.legend = FALSE) + 
  #scale_x_date(date_breaks = "year", date_labels = "%Y") +
  #scale_y_continuous(breaks = seq(-2, 2, 1)) +
  scale_fill_manual(values = c("#99000d", "#034e7b")) +
  labs(y = "SPI", x = "") +
  theme_classic() +
  facet_wrap(~cap, nrow = 4)

data %>%
  filter(buffer==0, unit == "basins") %>%
  mutate(time = as.Date(paste0(time, "-01"))) %>%
  group_by(time, unit, SPI) %>%
  summarise(value = median(value, na.rm = T)) %>%
  mutate(sign = if_else(value>0, "pos", "neg"),
         cap = paste0("Scale of ", SPI, " months"),
         scale = as.numeric(as.character(SPI))) %>%
  mutate(cap = fct_reorder(cap, scale, min)) %>%
  ggplot(aes(x=time, y=value, fill = sign)) +
  geom_bar(stat = "identity", show.legend = FALSE) + 
  #scale_x_date(date_breaks = "year", date_labels = "%Y") +
  #scale_y_continuous(breaks = seq(-2, 2, 1)) +
  scale_fill_manual(values = c("#99000d", "#034e7b")) +
  labs(y = "SPI", x = "") +
  theme_classic() +
  facet_wrap(~cap, nrow = 4)


sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 10 (buster)

Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.3.5.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=C             
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.7.9.2  rgdal_1.5-18       countrycode_1.2.0  welchADF_0.3.2    
 [5] rstatix_0.6.0      ggpubr_0.4.0       scales_1.1.1       RColorBrewer_1.1-2
 [9] latex2exp_0.4.0    cubelyr_1.0.0      gridExtra_2.3      ggtext_0.1.1      
[13] magrittr_2.0.1     tmap_3.2           sf_0.9-7           raster_3.4-5      
[17] sp_1.4-4           forcats_0.5.0      stringr_1.4.0      purrr_0.3.4       
[21] readr_1.4.0        tidyr_1.1.2        tibble_3.0.6       tidyverse_1.3.0   
[25] huwiwidown_0.0.1   kableExtra_1.3.1   knitr_1.31         rmarkdown_2.7.3   
[29] bookdown_0.21      ggplot2_3.3.3      dplyr_1.0.2        devtools_2.3.2    
[33] usethis_2.0.0     

loaded via a namespace (and not attached):
  [1] readxl_1.3.1       backports_1.2.0    workflowr_1.6.2   
  [4] lwgeom_0.2-5       splines_3.6.3      crosstalk_1.1.0.1 
  [7] leaflet_2.0.3      digest_0.6.27      htmltools_0.5.1.1 
 [10] fansi_0.4.2        memoise_1.1.0      openxlsx_4.2.3    
 [13] remotes_2.2.0      modelr_0.1.8       prettyunits_1.1.1 
 [16] colorspace_2.0-0   rvest_0.3.6        haven_2.3.1       
 [19] xfun_0.21          leafem_0.1.3       callr_3.5.1       
 [22] crayon_1.4.0       jsonlite_1.7.2     lme4_1.1-26       
 [25] glue_1.4.2         stars_0.4-3        gtable_0.3.0      
 [28] webshot_0.5.2      car_3.0-10         pkgbuild_1.2.0    
 [31] abind_1.4-5        DBI_1.1.0          Rcpp_1.0.5        
 [34] viridisLite_0.3.0  gridtext_0.1.4     units_0.6-7       
 [37] foreign_0.8-71     htmlwidgets_1.5.3  httr_1.4.2        
 [40] ellipsis_0.3.1     farver_2.0.3       pkgconfig_2.0.3   
 [43] XML_3.99-0.3       dbplyr_2.0.0       utf8_1.1.4        
 [46] labeling_0.4.2     tidyselect_1.1.0   rlang_0.4.10      
 [49] later_1.1.0.1      tmaptools_3.1      munsell_0.5.0     
 [52] cellranger_1.1.0   tools_3.6.3        cli_2.3.0         
 [55] generics_0.1.0     broom_0.7.2        evaluate_0.14     
 [58] yaml_2.2.1         processx_3.4.5     leafsync_0.1.0    
 [61] fs_1.5.0           zip_2.1.1          nlme_3.1-150      
 [64] xml2_1.3.2         compiler_3.6.3     rstudioapi_0.13   
 [67] curl_4.3           png_0.1-7          e1071_1.7-4       
 [70] testthat_3.0.1     ggsignif_0.6.0     reprex_0.3.0      
 [73] statmod_1.4.35     stringi_1.5.3      highr_0.8         
 [76] ps_1.5.0           desc_1.2.0         lattice_0.20-41   
 [79] Matrix_1.2-18      nloptr_1.2.2.2     classInt_0.4-3    
 [82] vctrs_0.3.6        pillar_1.4.7       lifecycle_0.2.0   
 [85] data.table_1.13.2  httpuv_1.5.5       R6_2.5.0          
 [88] promises_1.1.1     KernSmooth_2.23-18 rio_0.5.16        
 [91] sessioninfo_1.1.1  codetools_0.2-16   dichromat_2.0-0   
 [94] boot_1.3-25        MASS_7.3-53        assertthat_0.2.1  
 [97] pkgload_1.1.0      rprojroot_2.0.2    withr_2.4.1       
[100] parallel_3.6.3     hms_1.0.0          grid_3.6.3        
[103] minqa_1.2.4        class_7.3-17       carData_3.0-4     
[106] git2r_0.27.1       base64enc_0.1-3